
Stochastic Methods – Week 14 1

Week #14: Decision-Making and Collaboration

Notes by: Francisco Richter

May 15, 2025

Overview
Multi-agent systems—where multiple autonomous agents interact in a shared environment—are central to
artificial intelligence and operations research. When randomness influences system dynamics, stochastic
processes provide the appropriate mathematical framework. This lecture offers a rigorous exposition
of stochastic processes in multi-agent decision-making. We first review key models, including Markov
Decision Processes (MDPs), stochastic games (Markov games), and Decentralized Partially Observable
MDPs (Dec-POMDPs). Next, we discuss solution methodologies, reinforcement learning approaches, and
advanced topics such as exploration-exploitation tradeoffs and bias. Finally, we introduce a comprehensive
multi-agent framework that defines agents, tasks, tools, crews, processes, and collaboration—equipping
you with both theoretical foundations and practical design principles.

1 Fundamentals of Sequential Decision-Making
MDPs provide a mathematical model for a single agent interacting with a stochastic environment. In
an MDP the agent chooses actions in a series of states so as to maximize the expected total discounted
reward.

Definition. Markov Decision Process (MDP)
An MDP is a tuple

M = ⟨S, A, P, R, γ⟩,

where:

• S is a finite set of states.

• A is a finite set of actions.

• P (s′ | s, a) is the probability of transitioning from state s to state s′ when action a is taken, satisfying∑
s′∈S

P (s′ | s, a) = 1.

• R(s, a) is the immediate reward received when action a is executed in state s.

• γ ∈ [0, 1) is the discount factor, which reflects the fact that immediate rewards are typically more
valuable than future rewards.

A policy π is a mapping π : S → A (or more generally π : S → ∆(A) for randomized strategies). The
goal is to find an optimal policy π∗ that maximizes the expected total discounted reward.

Stochastic Methods – Week 14 2

Definition. Value Functions
For a policy π, the state-value function is defined as

V π(s) = E
[∞∑

t=0
γtR(st, at)

∣∣∣∣ s0 = s, at = π(st)
]

.

Similarly, the action-value function is

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′ | s, a) V π(s′).

The optimal state-value function, defined as

V ∗(s) = max
π

V π(s),

satisfies the Bellman optimality equation:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P (s′ | s, a) V ∗(s′)
}

.

Theorem 1.1 (Existence and Uniqueness of V ∗). For any finite MDP with γ ∈ [0, 1), the Bellman
operator

(TV)(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P (s′ | s, a) V (s′)
}

is a contraction mapping. Hence, it has a unique fixed point V ∗ and iterative application (value iteration)
converges to V ∗.

Proof Sketch. Since γ < 1, for any two value functions V and W , we have

∥TV − TW∥∞ ≤ γ∥V − W∥∞.

Thus, T is a contraction with contraction factor γ in the supremum norm. By Banach’s fixed-point
theorem, there exists a unique fixed point V ∗ such that TV ∗ = V ∗, and the sequence

Vk+1 = TVk

converges to V ∗ for any initial function V0.

This theorem guarantees that if you repeatedly apply the Bellman update to any initial guess of
the value function (even an arbitrary one), you will converge to the unique optimal value function V ∗.
In practical terms, it means that the method known as value iteration is reliable and will eventually
yield the optimal values for all states. The contraction property (with factor γ) ensures that errors
decrease exponentially with each iteration. This theoretical result underpins many dynamic programming
algorithms in reinforcement learning.

Example 1.1 (Gridworld). Consider an agent navigating a grid where each cell represents a state. The
agent may move in the four cardinal directions (actions). Suppose each move incurs a cost (e.g., −1
reward) except reaching a goal state where a positive reward is obtained. In this MDP, the value iteration
algorithm will update the value of each cell based on the expected discounted rewards of moving toward
the goal. The convergence guaranteed by the theorem tells us that, after enough iterations, the computed
values will accurately reflect the best achievable rewards from every cell.

Stochastic Methods – Week 14 3

2 Extending to Multiple Agents: Stochastic Games
When several agents interact, each with potentially different objectives, we use the framework of stochastic
games (or Markov games).

Definition. Stochastic Game
An n-player stochastic game is a tuple

G = ⟨n, S, {Ai}n
i=1, P, {Ri}n

i=1, γ⟩,

where

• n is the number of agents.

• S is the finite set of states.

• For each agent i, Ai is its finite action set; the joint action is a = (a1, . . . , an) ∈ A1 × · · · × An.

• P (s′ | s, a) is the state transition probability function.

• For each agent i, Ri(s, a) is the reward received.

• γ ∈ [0, 1) is the common discount factor.

Each agent selects a policy πi : S → Ai (or randomized version). The value for agent i under a joint
policy π = (π1, . . . , πn) is

V π
i (s) = E

[∞∑
t=0

γtRi(st, at)
∣∣∣ s0 = s, at = (π1(st), . . . , πn(st))

]
.

Definition. Nash Equilibrium in Stochastic Games
A joint policy π∗ = (π∗

1, . . . , π∗
n) is a Nash equilibrium if, for each agent i and for every alternative policy

π̂i,
V

(π∗
i ,π∗

−i)
i (s) ≥ V

(π̂i,π
∗
−i)

i (s) for all s ∈ S,

where π∗
−i denotes the policies of all agents except i.

Example 2.1 (Zero-Sum Game on a Grid). Imagine a two-player grid game where one agent’s gain is
exactly the other’s loss. The state includes both players’ positions, and each chooses moves simultaneously.
In a zero-sum setting, if player 1’s reward is R(s, a1, a2), then player 2’s reward is −R(s, a1, a2). The
solution concept is a minimax equilibrium.

In zero-sum games the Bellman equation is replaced by a minimax formulation:

V ∗(s) = max
a1∈A1

min
a2∈A2

{
R(s, a1, a2) + γ

∑
s′

P (s′ | s, a1, a2) V ∗(s′)
}

.

3 Decentralized Partially Observable MDPs (Dec-POMDPs)
In many real-world multi-agent systems, agents do not have full state information. The Dec-POMDP
framework models cooperative agents acting under partial observability.

Definition. Dec-POMDP

Stochastic Methods – Week 14 4

A Decentralized POMDP is defined as a tuple

D = ⟨n, S, {Ai}n
i=1, P, {Oi}n

i=1, O, R, γ⟩,

where

• n is the number of agents.

• S is the finite set of states.

• For each agent i, Ai is the action set.

• P (s′ | s, a1, . . . , an) is the state transition function.

• For each agent i, Oi is its set of observations.

• O(o1, . . . , on | s′, a1, . . . , an) is the joint observation probability function.

• R(s, a1, . . . , an) is the common reward function (assuming a cooperative task).

• γ ∈ [0, 1) is the discount factor.

Each agent’s policy now depends on its own observation history. Although Dec-POMDPs are a very
general and expressive framework, they are known to be NEXP-complete to solve optimally even for a
small number of agents.

Example 3.1 (Two-Agent Tiger Problem). Extend the classical Tiger Problem to two agents. Each agent
observes a noisy signal about which door conceals the tiger. They must coordinate (without communication
during execution) to decide who opens which door so as to avoid the tiger. The agents’ decentralized
observations force them to maintain separate histories and design joint policies in advance.

4 A Framework for Multi-Agent Collaboration
In many applications we need to structure interactions between agents. We formalize a framework that
decomposes a multi-agent system into agents, tasks, tools, and processes.

Agents and Tasks

We represent each agent i by a tuple

Ai =
(
Ri, Gi, Ti, Mi, Bi, Di

)
,

where:

• Ri is the agent’s role,

• Gi is its goal,

• Ti is the set of tools available,

• Mi represents its memory or knowledge,

• Bi is a backstory or prior experience,

• Di indicates its capability for delegation.

Stochastic Methods – Week 14 5

A task is defined by
τ =

(
Dτ , Eτ , Tτ , Aτ

)
,

where:

• Dτ is a precise description,

• Eτ is the expected output,

• Tτ are the required tools,

• Aτ is the agent (or crew) assigned.

Processes and Collaboration

A process is a sequence of tasks,
P = (τ1, τ2, . . . , τm),

with overall process time

TP =
m∑

i=1
Tc(τi),

where Tc(τi) is the completion time of task τi.
Collaboration is modeled by a function

C : C × T × M → C,

where a crew C is a set of agents and C updates their states based on task requirements and shared
memory. Metrics such as crew efficiency

η(C) = 1
|C|

∑
i∈C

P (Gi | Ti, Mi)

capture how well the agents’ individual capabilities combine to achieve a common goal.

5 Advanced Topics and Concluding Remarks

Randomized Strategies and Equilibrium Selection

In multi-agent settings, equilibrium strategies are often mixed (randomized) to avoid predictability. For
example, in Rock–Paper–Scissors the only Nash equilibrium is for each player to randomize uniformly over
the three actions. In learning algorithms, exploration is achieved by annealing an exploration parameter
(e.g., ε in ε-greedy methods).

Complexity and Learning Challenges

While MDPs admit efficient dynamic programming solutions, general stochastic games and Dec-POMDPs
are computationally intractable (PPAD-complete or NEXP-complete). This motivates the use of approxi-
mate methods such as multi-agent reinforcement learning (MARL). Approaches include:

• Independent Learning: Each agent treats others as part of the environment.

• Centralized Training with Decentralized Execution: Agents learn a joint value function (or
critic) but deploy individual policies.

• Equilibrium-Based Methods: Algorithms such as Nash Q-learning incorporate game-theoretic
equilibrium computations into the update rules.

Stochastic Methods – Week 14 6

Final Remarks

Stochastic processes in multi-agent systems form a rich and challenging area that unifies concepts from
MDPs, game theory, and distributed decision-making. This lecture has presented a formal yet intuitive
framework—starting from single-agent models and progressing to the decentralized and multi-agent
setting—equipping you with both theoretical foundations and practical design principles.

References
1. Sutton, R. S. & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT

Press.

2. Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley.

3. Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2), 286–295.

4. Shapley, L. S. (1953). Stochastic Games. Proceedings of the National Academy of Sciences, 39(10),
1095–1100.

5. Littman, M. L. (1994). Markov Games as a Framework for Multi-Agent Reinforcement Learning. In
Proceedings of the 11th International Conference on Machine Learning (pp. 157–163).

6. Hu, J. & Wellman, M. P. (2003). Nash Q-Learning for General-Sum Stochastic Games. Journal of
Machine Learning Research, 4, 1039–1069.

7. Oliehoek, F. A. & Amato, C. (2016). A Concise Introduction to Decentralized POMDPs. Springer.

8. Bernstein, D. S., Givan, R., Immerman, N. & Zilberstein, S. (2002). The Complexity of Decentralized
Control of Markov Decision Processes. Mathematics of Operations Research, 27(4), 819–840.

	Fundamentals of Sequential Decision-Making
	Extending to Multiple Agents: Stochastic Games
	Decentralized Partially Observable MDPs (Dec-POMDPs)
	A Framework for Multi-Agent Collaboration
	Advanced Topics and Concluding Remarks

