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Week #11: Statistical Learning and Stochastic Inference

Notes by: Francisco Richter

May 15, 2025

Aspect Structured (Traditional) Unstructured (AI/ML)

Input domain | X = RP with schema U arbitrary (text, images, etc.), U ~ Py

Mapping Deterministic f : X — Y Learned f3(¢(u)), 0 = argmin R,

Objective None (hand-coded) Empirical risk R, (0) =
=3 U fole(ui)), yi)

Correctness supy |[f(x) —y*(x)| =0 Statistical: R(#) ~ ming R(0)

Output Exact y = f(x), reproducible Estimate y = f;((u)), has Var[y]

Reproducibility | Vx, same y each run Depends onArandom seed / retraining;
may vary if 6 differs

Validation Unit/integration tests Estimate generalization gap |R(0) —
R (0)|

Monitoring Uptime, exception rates Drift: monitor D(Pyl|P5°?), test risk in
production

Failure mode Crash or logic bug Elevated error rate Err = E[1{f,(U) #
Y]

Table 1: Deterministic vs. Probabilistic Paradigms under Structured and Unstructured Inputs

1 Stochastic Program

To bridge the gap between deterministic and probabilistic paradigms, we introduce the stochastic program
abstraction, which formally separates algorithmic logic, parameters, and randomness.

Definition. Program

A program is a triple (M, 6, P.) where

M :IxQ— O (deterministic map), 6 € © (parameters), e~ P. (randomness),

so that for input X = =z,
Y = My(z,¢), Y| X =x~py(|2).
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Intuition: Stochastic program components

Think of a stochastic program as a recipe with three distinct parts: the cooking procedure (the
deterministic map M), the ingredient proportions (parameters 6), and the inherent variability in
cooking conditions (randomness ¢). Even with the same recipe and proportions, slight variations in
temperature or ingredient quality lead to different outcomes each time.

Remark.

This abstraction clarifies roles:
e M: the fixed computation or algorithm,
¢ 0: the unknown quantities to be learned,
e ¢: the source of nondeterminism or noise.
"Learning" = estimating #; "Inference" = assessing uncertainty in 6.

Example 1.1 (Binary Classifier). A convolutional neural network with weights 6 and dropout mask €
defines

poly | x) = softmax(fo(z;¢)).

Training mazximizes the joint likelihood over data, while dropout reqularizes by introducing randomness
within M .

Example 1.2 (Bayesian Linear Regression). In Bayesian linear regression, we have
My(z,e) =0Tz +¢, e~ N(0,07),
which induces the conditional distribution
Y| X =x~N0T2,0°%).

The parameters 0 are estimated from data, while the noise € captures inherent variability in the relationship
between X and Y .

The stochastic program abstraction provides several benefits:

e Separates concerns: Distinguishes between algorithmic logic, learned parameters, and randomness

Enables formal analysis: Allows rigorous treatment of uncertainty and error

Bridges paradigms: Connects traditional programming with statistical learning

o Clarifies learning objectives: Focuses on estimating parameters rather than designing algorithms

2 Estimation Principles

We now explore fundamental principles for estimating parameters in statistical models. These principles
form the foundation for most machine learning algorithms.
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2.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method for estimating the parameters of a statistical model
by maximizing the likelihood function.

Definition. Maximum Likelihood Estimation

Given independent and identically distributed (i.i.d.) observations X1, Xa,..., X, from a distribution
with probability density function f(x;6), the log-likelihood function is

i=1
and the maximum likelihood estimator (MLE) is

OMLE = arg max £, (6).
0O

Intuition: Maximum likelihood

MLE finds the parameter values that make the observed data most probable. It’s like adjusting the
settings of a camera until the resulting photo looks as close as possible to what you’re seeing with
your own eyes. The "best" settings are those that produce the image most similar to reality.

Theorem 2.1 (Properties of MLE). Under regularity conditions (identifiability, smoothness, non-singular
Fisher information 1(0)), the MLE has the following properties:

e Consistency: 6, — 6o in probability as n — 0.

« Asymptotic normality: \/n(, — 6o) 4 N(0,1(6p)~ 1) as n — oo.

o Efficiency: Achieves the Cramér-Rao lower bound among unbiased estimators.

Remark.

The Fisher information
1(0) = By [~ V?log f(X;0)]

quantifies how much each observation informs about 6; its inverse gives the asymptotic covariance of 6,,.

Example 2.1 (MLE for Normal Distribution). Consider i.i.d. observations X1, Xo, ..., X, from N(u,0?).
The log-likelihood is

1 n
En(:ua 02) = _5 10g(27’(‘) - 5 log - _2 g
Taking partial derivatives and setting them to zero:
ol 1 &
T:ZEZ(Xi—M)ZO (1)
oly, 1 &
5% = 507+ 5t i @
Solving these equations yields the MLEs:
1 & -
/:LMLEZEZXZ‘:X (3)
i=1
n
azg\/fLE = ﬁ Z(Xz ﬂ)Q (4)
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2.2 Least Squares Estimation

Least Squares Estimation is a method for estimating parameters by minimizing the sum of squared
differences between observed and predicted values.

Definition. Least Squares Estimation

Given a model Y; = fo(X;) + &; with &; ~ N(0,0?), the least squares estimator is

OLs = arg;nin Z[Yl — fo(X))%
=1

Remark.

For models with normally distributed errors, least squares estimation is equivalent to maximum likelihood
estimation.

Example 2.2 (Linear Regression). For the linear model fo(x) = Bo + xT B, the least squares estimator is
B=(XTX)"'xTy,
where X is the design matriz with rows XiT and y is the vector of responses Y;.

Theorem 2.2 (Gauss-Markov Theorem). Under the assumptions of the linear model with uncorrelated
errors having equal variance, the least squares estimator is the Best Linear Unbiased Estimator (BLUE),
meaning it has the smallest variance among all linear unbiased estimators.

2.3 Regularization

Regularization techniques address overfitting by adding a penalty term to the objective function, effectively
shrinking parameter estimates toward zero or some other reference value.

Definition. Regularized Estimation

A regularized estimator minimizes the penalized negative log-likelihood or sum of squares:

0y = argmin {—£,(0) + AR(0)},
0

where A > 0 is the regularization parameter and R(6) is the penalty function.
Common penalty functions include:
o Ridge penalty: R(#) = ||0]3 (sum of squared parameters)
o Lasso penalty: R(0) = ||0]|1 (sum of absolute parameters)

o Elastic Net: R() = «|f]|1 + (1 — a)||0||3 (combination of L1 and L2)

Intuition: Regularization

Regularization is like adding a cost for complexity. Without regularization, a model might create an
overly complex explanation that perfectly fits the training data but fails to generalize. Regularization
penalizes this complexity, forcing the model to find simpler explanations that might be slightly less
accurate on training data but generalize better to new data.

Remark.

From a Bayesian viewpoint, regularization corresponds to imposing a prior distribution on the parameters:
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« Ridge regression ++ Gaussian prior 6 ~ N (0, 721)
o Lasso regression <» Laplace prior p(#) o< exp(—A||0]|1)

The regularization parameter A controls the bias-variance trade-off.

Example 2.3 (Ridge Regression). For the linear model with ridge penalty, the estimator is
Bridgge = (XTX 4+ XI)~1XxTy.
The ridge penalty shrinks all coefficients toward zero, but never exactly to zero.

Example 2.4 (Lasso Regression). For the linear model with lasso penalty, there is no closed-form solution,
but efficient algorithms like coordinate descent can find the solution. The lasso has the property of variable
selection: it can shrink some coefficients exactly to zero, effectively removing those features from the model.

Practice Problems

1. Derive the MLE for the parameter p of a Bernoulli distribution based on n independent
observations.

2. Show that for the linear regression model with normally distributed errors, the least squares
estimator is identical to the maximum likelihood estimator.

3. Consider a ridge regression problem with design matrix X and response vector y. How does the
effective degrees of freedom of the model change as the regularization parameter A\ increases
from 0 to co?

Solution:

For problem 1: Let X7, Xo,..., X, be ii.d. Bernoulli(p) random variables. The likelihood function is

n

L(p) = []p¥1(1 —p) X = p2Xi(1 = pyr-2 X
=1

The log-likelihood is

tp) = <Zn: Xi) logp + (n = i&) log(1 — p)

i=1 i=1
Taking the derivative with respect to p and setting it to zero:

- = 0
dp P 1-p

Solving for p gives the MLE:
. 1< S
DPMLE = — Z X=X
g

3 Bootstrap Inference

The bootstrap is a powerful resampling technique for estimating the sampling distribution of a statistic
and constructing confidence intervals when analytical expressions are unavailable or complex.
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3.1 The Bootstrap Principle

Definition. Nonparametric Bootstrap

Given data X1, X, ..., X, and an estimator 0= (X1, Xo, ..., Xp):
1. For b=1,2,...,B, draw a bootstrap sample (Xf(b), X;(b), . ,be(b)) by sampling with replacement
from {X;}.
2. Compute the bootstrap replicate 6*(®) = t(Xf(b), ;(b), . ,X:{(b)).
The empirical distribution of {é*(b)}le approximates the sampling distribution of 0.

Intuition: Bootstrap

The bootstrap treats the observed data as a stand-in for the entire population. By resampling from
this data (with replacement), we simulate drawing new samples from the population. The variation
in statistics calculated from these resamples approximates how the statistic would vary if we could
repeatedly sample from the true population.

3.2 Bootstrap Standard Error and Confidence Intervals

The bootstrap standard error is estimated as:

>

B _
S/Eboot = \l ﬁ Z(é*(b) - é*)27

L et
b=1 Bb:l

Several methods exist for constructing bootstrap confidence intervals:

3.2.1 Percentile Method
The percentile method uses quantiles of the bootstrap distribution:

L, = [é*(a/Q),é*(l—a/Q)]
where 0@ is the g-quantile of the bootstrap distribution.

3.2.2 Basic Bootstrap Method
The basic bootstrap method uses the bootstrap distribution to estimate the sampling distribution of 6—0:
Cli_q = [20 — 67(172/2) 20 — §*(2/2)]
3.2.3 BCa Method (Bias-Corrected and Accelerated)
The BCa method adjusts for bias and non-constant variance:
Cli_g = [%(@), g2

where

20+ Za/2
=
a (ZO * 1—a(zo+ za/2)> (5)

B 20 T 21—a/2
w=e (“ T aGt zla/z)> )
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Algorithm 1 Nonparametric Bootstrap for Confidence Intervals

Require: Data {X;, Xo,..., X, }, estimator function ¢(-), number of bootstrap samples B, confidence
level 1 — «
1: Compute the original estimate § = (X1, Xoy ..., Xp)
2: for b=1to B do
3: Draw a bootstrap sample {Xf(b),X;(b), o ,X:L(b)} by sampling with replacement from {X;}
4: Compute bootstrap replicate §*®) = t(Xf(b), X;(b), . ,X:L(b))
5: end for
6: Sort the bootstrap replicates: 6*() < 6*(2) <...< §*(B)
7: Compute percentile confidence interval: [QA*(LBO‘/%), HA*([B(l_a/m)]
8: return Bootstrap distribution {é*(b)}{il and confidence interval

with zg and a being the bias-correction and acceleration parameters.

Remark.

The bootstrap is model-agnostic and often quite accurate for moderate sample sizes. However, it can be
computationally intensive, and adjustments (bias correction, BCa intervals) improve accuracy in small
samples or when the statistic has high bias or skewness.

3.3 Parametric Bootstrap
The parametric bootstrap assumes a parametric model for the data:

Definition. Parametric Bootstrap

Given data X1, :Xg, ..., X, and a parametric model Fy:
1. Estimate 6 from the original data.
2. For b=1,2,..., B, generate a bootstrap sample (Xf(b),X;(b), ey X;Z(b)) from the fitted model Fj.
3. Compute the bootstrap replicate 6*®) from the bootstrap sample.

Example 3.1 (Bootstrap for Regression Coefficients). Consider a linear regression model Y = X[ + ¢

with B = (XTX)"'XTy. To construct a bootstrap confidence interval for Bj:
1. Compute residuals €; = y; — xZTB 2. For b=1 to B: a. Resample residuals é:(b) with replacement
b. Generate bootstrap responses y;(b) = xZTB + é;‘(b) c. Compute B*(b) = (XTX)*lXTy*(b) 3. Use the

distribution o ﬁ“-k(b) B to construct confidence intervals for [3;
J b=1 J

Practice Problems

1. Implement the nonparametric bootstrap to estimate the standard error and construct a 95%
confidence interval for the median of a dataset.

2. Compare the coverage properties of percentile, basic, and BCa bootstrap confidence intervals
for the correlation coefficient between two variables with a sample size of n = 30.

3. Explain why the bootstrap might fail for estimating the maximum of a uniform distribution.
Propose a modification to improve its performance in this case.
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4 Model Gallery

We now present a spectrum of statistical models, each with increasing flexibility and complexity. These
models form the foundation of modern statistical learning and inference.

4.1 Linear Regression

Linear regression models the relationship between a response variable and one or more predictor variables
as a linear function.

Definition. Linear Regression Model

The linear regression model is defined as:
Y =XB+e, &~N(0,0%I)

where Y € R™ is the response vector, X € R™*P is the design matrix, 8 € RP is the coefficient vector, and
e € R™ is the error vector.

« Estimation: Ordinary Least Squares (OLS) = (XTX)~1xTy
e Inference: 8 ~ N(B,02(XTX)™1)
e Prediction: § = 7 with prediction variance Var(j) = o227 (X7 X) 1z

Example 4.1 (Housing Price Prediction). To predict housing prices, we might use a linear regression
model with predictors such as square footage, number of bedrooms, and neighborhood median income. The
coefficient for square footage represents the expected increase in price for each additional square foot,
holding other variables constant.

4.2 Logistic Regression
Logistic regression models the probability of a binary outcome as a function of predictor variables.

Definition. Logistic Regression Model

The logistic regression model is defined as:

1 T
Pr(Y =1|2) = 15 = 0la”B)
1

where 0(2) = 7= is the logistic (sigmoid) function.

o Estimation: Maximum Likelihood using Iteratively Reweighted Least Squares (IRLS):
B (XTWX) ' XTw2

Yi—i
mi(1—m;)

where W;; = m;(1 — m;) and z; = n; +
o Inference: A ~ N(B,(XTW X))
e Prediction: 7 = a(xTB)

Example 4.2 (Credit Default Prediction). Logistic regression can predict the probability of a customer
defaulting on a loan based on features like credit score, income, and debt-to-income ratio. The coefficients
indicate how each feature affects the log-odds of default.
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4.3 Generalized Linear Models (GLMs)

GLMs extend linear regression to handle response variables with non-normal distributions through a link
function.

Definition. Generalized Linear Model

A GLM consists of three components:

1. A random component: The response variable Y follows an exponential family distribution
0; — b(0;
p(y; 05, ¢) = exp {w + c(y, ¢)}

2. A systematic component: The linear predictor n; = z! 3

3. A link function: g(u;) = n; where p; = E[Y;] = b/(6;)

Common GLMs include:

e Linear regression: Normal distribution with identity link
e Logistic regression: Binomial distribution with logit link
e Poisson regression: Poisson distribution with log link

e Gamma regression: Gamma distribution with inverse link

o Estimation: Maximum Likelihood using IRLS

o Model assessment: Deviance D = 2[lg,q — K(BA)], which is asymptotically x? under the correct model

Example 4.3 (Insurance Claim Modeling). For modeling insurance claim amounts, which are always
positive and often right-skewed, a Gamma GLM with log link might be appropriate. Predictors could
include driver age, vehicle type, and driving history.

4.4 Generalized Additive Models (GAMs)

GAMs extend GLMs by allowing nonlinear relationships between predictors and the response through
smooth functions.

Definition. Generalized Additive Model
A GAM has the form:

9(pi) = Bo + i fi(@ij)

j=1

where f; are smooth functions, typically represented as:

K;
fi(x) =Y 0 Bji(x)
k=1

with Bjj;, being basis functions (e.g., splines).
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e Estimation: Penalized likelihood maximization:
P
00) = X070,
j=1

where (2 penalizes roughness via [[f} (t)]dt
o Model selection: Generalized Cross-Validation (GCV) or Restricted Maximum Likelihood (REML)

Example 4.4 (Environmental Modeling). GAMs are widely used in environmental science to model
relationships between species abundance and environmental variables. For instance, fish abundance might
have a nonlinear relationship with water temperature, with an optimal range and decreasing abundance at
both higher and lower temperatures.

4.5 Neural Networks

Neural networks are flexible models capable of learning complex, nonlinear relationships through composi-
tions of simple functions.

Definition. Feedforward Neural Network

A feedforward neural network with L layers computes:

RO — o (7)
h([) — O-(W(f)h(éfl) + b(g)) for/=1,2,...,L—1 (8)
§= O (RE-D) (9)

where o is an activation function (e.g., ReLU, sigmoid), W® and b® are the weights and biases of layer
¢, and f&) is the output function.

e Training: Backpropagation with stochastic gradient descent:

5L — VL ® f(L)/ (10)
6(@) _ (W(Z+1)T5(Z+l)) o O_I(Z(Z)) (11)
Vi £ = §OpeDT (12)

o Regularization: Dropout, weight decay, early stopping
e Architecture selection: Cross-validation, grid search

Theorem 4.1 (Universal Approximation Theorem). A feedforward neural network with a single hidden
layer containing a finite number of neurons can approximate any continuous function on a compact domain
to arbitrary precision, given sufficient neurons.

Example 4.5 (Image Classification). Convolutional neural networks, a specialized type of neural network,
excel at image classification tasks. They use convolutional layers to automatically learn hierarchical features
from images, from simple edges and textures in early layers to complex objects in deeper layers.

Practice Problems

1. Derive the maximum likelihood estimator for the parameters of a Poisson regression model
where log(u;) = =1 8.

2. Compare the flexibility and interpretability trade-offs between linear models, GAMSs, and neural
networks. Provide examples of situations where each model would be most appropriate.
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3. Implement a simple neural network with one hidden layer to approximate the function f(z) =
sin(x) over the interval [—m, 71]. Experiment with different numbers of hidden units and activation
functions.
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