Week #1: Introduction to Stochastic Methods

Stochastic Methods Course

Notes by: Francisco Richter

18.02.2025

1 Introduction

Probability theory is the mathematical study of uncertainty. It provides the tools for modeling random phenomena, making predictions, and understanding systems influenced by chance.

2 Random Numbers and Their Generators

A random number is an unpredictable value generated independently of other numbers, lacking any discernible pattern.

Definition. Random Number Generator

A Random Number Generator (RNG) is an algorithm that produces a sequence of numbers that appears random. Formally, an RNG is a function

$$R: S \to T$$
,

where:

- S is the seed space (a finite set of initial states). A seed $s \in S$ is used to initialize the RNG.
- T is the target space (typically the interval [0, 1) or a set of integers).
- The function R maps each seed s to a value $u \in T$ in a manner that appears random.

A high-quality RNG should satisfy the following:

- Unpredictability: Future values cannot be deduced without knowing the seed and algorithm.
- Reproducibility: The same seed produces the same sequence.
- True Randomness Representation: All outcomes have an equitable chance.
- Long Period: The sequence takes a long time to repeat.
- **Efficiency:** Numbers are generated quickly.

Example 2.1 (Linear Congruential Generator). The Linear Congruential Generator (LCG) produces a sequence via:

$$X_{n+1} = (aX_n + c) \mod m,$$

where X_n is the current number, a is the multiplier, c is the increment, m is the modulus and $X_0 = S$ is the initial seed.

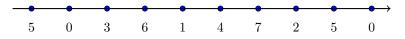


Figure 1: A sequence of values from a Linear Congruential Generator (LCG).

Example 2.2 (PCG64 RNG). *PCG64* is the default RNG in recent versions of NumPy. It combines a 128-bit LCG with an output permutation to yield high-quality 64-bit pseudorandom numbers. The algorithm proceeds in two steps:

1. State Update: The 128-bit state s_n is updated by

$$s_{n+1} = (s_n \cdot a + c) \mod 2^{128},$$

where a and c are carefully chosen constants.

2. Output Permutation: A permutation is applied to the updated state to produce the final output.

This method ensures uniformity, independence, and an extremely long period.

3 Random Variables and Distributions

Definition. Random Variable

A random variable is a function $X: S \to \mathbb{R}$ that assigns a real number to each outcome in a sample space S. For any subset $C \subset \mathbb{R}$, the probability that X falls in C is

$$P\{X \in C\} = P(\{s \in S : X(s) \in C\}).$$

Random variables are classified as follows:

- 1. Discrete Random Variables: Take values in a countable set and are characterized by a Probability Mass Function (PMF).
- 2. Continuous Random Variables: Take values in an uncountable set and are described by a Probability Density Function (PDF).

Definition. Probability Mass Function (PMF)

For a discrete random variable X taking values in a set $A \subset \mathbb{R}$, the PMF is defined by

$$f(x) = P(X = x), \quad x \in A.$$

For any subset $C \subset A$,

$$P\{X \in C\} = \sum_{x \in C} f(x).$$

Definition. Probability Density Function (PDF)

For a continuous random variable X, a function f(x) is its PDF if, for any interval [a, b],

$$P\{a \le X \le b\} = \int_a^b f(x) \, dx,$$

with the normalization condition

$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$

Definition. Cumulative Distribution Function (CDF)

The cumulative distribution function of a random variable X is

$$F(x) = P\{X \le x\}.$$

For discrete variables,

$$F(x) = \sum_{t \le x} f(t),$$

and for continuous variables,

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

A common method for generating samples from any given distribution is the Inverse Transform Sampling.

Theorem 3.1 (Inverse Transform Sampling). Let U be uniformly distributed on [0,1] and let $F_X(x)$ be the CDF of a random variable X with an invertible inverse $F_X^{-1}(u)$. Then, the variable

$$X = F_X^{-1}(U)$$

has CDF $F_X(x)$.

Proof. For any $x \in \mathbb{R}$,

$$P(X \le x) = P(F_X^{-1}(U) \le x) = P(U \le F_X(x)) = F_X(x),$$

since U is uniformly distributed on [0,1] and F_X is strictly increasing.

4 Exercises

Exercise 1: Random Quadratic.

Let b be uniformly distributed on (0,1). Consider the quadratic equation

$$x^2 + bx + 2 = 0$$
.

Find the probability that this quadratic has real roots.

Exercise 2: Number of Hearts in a 5-Card Hand.

From a standard 52-card deck, draw 5 cards without replacement. Let

X = number of hearts in the hand.

- (a) Determine the probability mass function $p_X(k) = P(X = k)$ for k = 0, 1, ..., 5.
- (b) Determine the cumulative distribution function $F_X(k) = P(X \le k)$.

Exercise 3: Coin Toss Difference.

Flip 4 fair coins. Define

$$X = (number\ of\ heads) - (number\ of\ tails).$$

- (a) Find the probability mass function $p_X(x)$.
- (b) Find the cumulative distribution function $F_X(x)$.

Exercise 4: Counting Uniform(0,1) Observations Below 0.4.

Let U_1, U_2, \ldots, U_{10} be independent random variables uniformly distributed on (0,1). Define

$$X = number of U_i with U_i < 0.4.$$

(a) Determine $p_X(k) = P(X = k)$ for k = 0, 1, ..., 10.

(b) Determine $F_X(k) = P(X \le k)$.

Exercise 5: A Discrete Random Variable.

Suppose X takes values k = 0, 1, 2, ... with

$$P(X = k) = e^{-3} \frac{3^k}{k!}.$$

- (a) Show that $\sum_{k=0}^{\infty} P(X=k) = 1$.
- (b) Determine the cumulative distribution function $F_X(k) = P(X \le k)$.

Exercise 6: Distance Between Two Uniform(0,1) Points.

Let Y_1 and Y_2 be independent random variables uniformly distributed on (0,1). Define

$$X = |Y_1 - Y_2|.$$

- (a) Derive the probability density function (PDF) and cumulative distribution function (CDF) of X.
- (b) Verify that X takes values in [0,1] and discuss the shape of its distribution.