
Stochastic Methods

INF SP 2024

Francisco Richter

Francisco Richter
richtf@usi.ch

Contents
Preliminaries

1.1 Randomness . 5
1.2 Random Variable . 5
1.3 Expectation . 6
1.4 Variance . 7
1.5 Conditional Probability . 7
1.6 Moments . 10

Markov Chains
2.1 Stochastic Processes . 13
2.2 Chapman-Kolmogorov Equations . 16
2.3 Characteristics of Markov Chains . 18
2.4 Limit Distribution . 20

Random Networks
3.1 Networks . 25
3.2 Random Graphs . 28
3.3 Branching Processes . 29
3.4 Time Reversible Markov Chain . 31
3.5 Markov Decision Processes (MDP) . 33

Poisson Process
4.1 Counting processes . 37
4.2 Poisson Processes . 39

4.2.1 Homogeneous Poisson Process . 39
4.2.2 Non-Homogeneous Poisson Process . 41

3

4 • Contents
Simulation

5.1 Monte-Carlo Simulation . 43
5.2 Random Number Generators . 45
5.3 Generating Discrete Random Variables . 49
5.4 Generating continuous random variables . 51

Stochastic Processes

6.1 Continuous-Time Markov Chains . 55
6.2 Birth-Death Process . 57

6.2.1 Gillespie Algorithm for Species Evolution . 58
6.3 Renewal Theory . 59
6.4 Queuing Theory . 61
6.5 Reliability Theory . 62
6.6 Brownian Motion . 63

Stochastic Modeling

7.1 Linear Regression . 67
7.2 Logistic Regression . 68
7.3 Support Vector Machines . 69
7.4 Neural Networks . 72

Stochastic Optimization

8.1 Evolutionary Algorithms . 75
8.2 Stochastic gradient descent . 78
8.3 Expectation-Maximization Algorithm . 81
8.4 Markov Chain Monte Carlo for Optimization . 83

Project

Preliminaries

1.1 Randomness

Definition 1.1. Randomness refers to the inherent unpredictability and lack of pattern in
events. Key characteristics include:

Unpredictability: The inability to forecast future outcomes based on past events.

Patternlessness: The absence of any discernible regularity or order.

Statistical Regularity: The tendency to conform to predictable statistical proper-
ties over a large number of trials.

Independence: The occurrence of one event does not influence the occurrence of
another.

Reproducibility in Aggregates: Consistent statistical properties when events are
considered in large groups or aggregates.

1.2 Random Variable
Consider an experiment with a sample space S on which probabilities are defined. A random
variable X is a function that assigns a real value to each outcome of the experiment. For any
set of real numbers C, the probability that X will have a value that is contained in the set C is
equal to the probability that the outcome of the experiment is contained in X−1(C). That is,

P{X ∈ C} = P{X−1(C)},

where X−1(C) is the event consisting of all outcomes s ∈ S such that X(s) ∈ C.
The distribution function F of the random variable X is defined for all real numbers by

F(x) = P{X ≤ x} = P{X ∈ (−∞, x]}.

A probability distribution describes how probabilities are distributed over the values of a ran-
dom variable, providing the probabilities of occurrence of different possible outcomes.

Example. Geometric Distribution
Describes the number of trials needed to get the first success in a sequence of independent
Bernoulli trials. The PMF is given by:

P(X = k) = (1− p)k−1p,

where k is the number of trials until the first success, and p is the probability of success

5

6 • Expectation

on each trial. Example: The probability of getting the first head in a series of coin flips.

Example. Binomial Distribution
Gives the probability of observing a specific number of successes in a fixed number of
independent Bernoulli trials. The PMF is:

P(X = k) =

(
n

k

)
pk(1− p)n−k,

where n is the number of trials, k is the number of successes, and p is the probability of
success on each trial.
Example: The probability of getting exactly three heads in five tosses of a fair coin.

Example. Poisson Distribution
Describes the probability of a given number of events happening in a fixed interval of time
or space. The PMF is:

P(X = k) =
λke−λ

k!
,

where k is the number of events, λ is the average number of events per interval.
Example: The number of cars passing through a checkpoint in an hour.

Example. Exponential Distribution
Describes the time between events in a Poisson point process. The PDF is:

f(x) = λe−λx,

for x ≥ 0, where λ is the rate parameter.
Example: The amount of time until the next earthquake occurs in a given region.

Example. Normal Distribution
Describes how the values of a variable are distributed. The PDF is:

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ)

2

,

where µ is the mean and σ is the standard deviation.
Example: The distribution of heights of adult men in a specific population.

1.3 Expectation

The expectation (or expected value) of a random variable is a measure of the central tendency
of its probability distribution. It is denoted by E[X] for a random variable X and is calculated

Variance • 7

as:
E[X] =

∑
x

xP(X = x)

for discrete random variables, and

E[X] =

∫∞
−∞ xf(x)dx

for continuous random variables, where P(X = x) is the probability mass function for discrete
variables and f(x) is the probability density function for continuous variables.

1.4 Variance
Variance measures the dispersion of a random variable’s values around its mean. It is denoted
by Var(X) or σ2

X and is calculated as:

Var(X) = E[(X− µ)2] = E[X2] − (E[X])2,

where µ = E[X] is the mean (or expectation) of X.
Let’s calculate the expectation and variance of a binomial distribution with parameters n and
p, where n is the number of trials and p is the probability of success.
Expectation:

E[X] =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k.

We use the binomial theorem and properties of binomial coefficients to simplify this expression,
recognizing that this is equivalent to np by considering the derivative of the binomial expansion
(p+ (1− p))n.
Variance:

Var(X) = E[X2] − (E[X])2.

First, calculate E[X2]:

E[X2] =

n∑
k=0

k2

(
n

k

)
pk(1− p)n−k.

This requires using the binomial theorem and properties of binomial coefficients, similar to
the expectation but involves a more complex manipulation. Eventually, we find that E[X2] =
np(1− p) + n2p2. Substituting E[X] = np into the variance formula gives:

Var(X) = np(1− p) + n2p2 − (np)2 = np(1− p).

1.5 Conditional Probability
Recall that for any two events E and F, the conditional probability of E given F is defined, as
long as P(F) > 0, by

P(E|F) =
P(EF)

P(F)

8 • Conditional Probability

Hence, if X and Y are discrete random variables, then it is natural to define the conditional
probability mass function of X given that Y = y, by

pX|Y(x|y) = P{X = x|Y = y} =
P{X = x, Y = y}

P{Y = y}
=

p(x, y)

pY(y)

where p(x, y) is the joint probability mass function of X and Y, and pY(y) is the marginal
probability mass function of Y.
Let E denote an arbitrary event and define the indicator random variable X by

X =

{
1, if E occurs,
0, if E does not occur.

It follows from the definition of X that

E[X] = P(E),

E[X|Y = y] = P(E|Y = y),

for any random variable Y.
Therefore,

P(E) =
∑
y

P(E|Y = y)P(Y = y), if Y is discrete

P(E) =

∫∞
−∞ P(E|Y = y)fY(y)dy, if Y is continuous

where fY(y) is the probability density function of Y.

Example. If X1 and X2 are independent binomial random variables with respective para-
meters (n1, p) and (n2, p), calculate the conditional probability mass function of X1 given
that X1 + X2 = m.

Solution: With q = 1− p,

P{X1 = k|X1 + X2 = m} =
P{X1 = k, X1 + X2 = m}

P{X1 + X2 = m}

=
P{X1 = k, X2 = m− k}

P{X1 + X2 = m}

=
P{X1 = k}P{X2 = m− k}

P{X1 + X2 = m}

=

(
n1

k

)
pkqn1−k

(
n2

m−k

)
pm−kqn2−(m−k)(

n1+n2

m

)
pmqn1+n2−m

where we have used that X1+X2 is a binomial random variable with parameters (n1+n2, p) (see
Example 2.44). Thus, the conditional probability mass function of X1, given that X1+X2 = m,
is

Conditional Probability • 9

P{X1 = k|X1 + X2 = m} =

(
n1

k

)(
n2

m−k

)(
n1+n2

m

)
The distribution is known as the hypergeometric distribution. It is the distribution of the
number of blue balls that are chosen when a sample of m balls is randomly chosen from an urn
that contains n1 blue and n2 red balls.

Example. If X and Y are independent Poisson random variables with respective means λ1

and λ2, calculate the conditional expected value of X given that X+ Y = n.

Solution: Let us first calculate the conditional probability mass function of X given that
X+ Y = n. We obtain

P{X = k|X+ Y = n} =
P{X = k, X+ Y = n}

P{X+ Y = n}

=
P{X = k, Y = n− k}

P{X+ Y = n}

=
P{X = k}P{Y = n− k}

P{X+ Y = n}

=
e−λ1 λk

1

k!
e−λ2 λn−k

2

(n−k)!

e−(λ1+λ2) (λ1+λ2)n

n!

=
n!

(n− k)!k!

λk
1λ

n−k
2

(λ1 + λ2)n

=

(
n

k

)(
λ1

λ1 + λ2

)k(
λ2

λ1 + λ2

)n−k

In other words, the conditional distribution of X given that X + Y = n, is the binomial distri-
bution with parameters n and λ1

λ1+λ2
. Hence,

E{X|X+ Y = n} = n
λ1

λ1 + λ2

This result demonstrates the conditional expectation of X given the sum X + Y, showing that
it follows a binomial distribution in the context of the given Poisson random variables.

Example. Suppose the joint density of X and Y is given by

f(x, y) =

{
6xy(2− x− y), 0 < x < 1, 0 < y < 1,

0, otherwise.

Compute the conditional expectation of X given that Y = y, where 0 < y < 1.

Solution: We first compute the conditional density

fX|Y(x|y) =
f(x, y)

fY(y)

10 • Moments

=
6xy(2− x− y)∫1

0
6xy(2− x− y)dx

=
6xy(2− x− y)

y(4− 3y)

=
6x(2− x− y)

4− 3y

Hence,

E[X|Y = y] =

∫ 1

0

x · 6x(2− x− y)

4− 3y
dx

=
(2− y)2 − 6

4

4− 3y

=
5− 4y

8− 6y

This result provides the conditional expectation E[X|Y = y], which is a function of y.

1.6 Moments
Definition: Moments
Moments are quantitative measures used to describe the shape of a probability distribution.
The n-th moment of a random variable X about the mean is defined as:

µn = E[(X− µ)n],

where µ = E[X] is the mean of X. The first moment about the mean is the mean itself, the second
moment about the mean is the variance, and higher moments describe skewness, kurtosis, and
other aspects of the distribution’s shape.

Moment-Generating Function
Definition: Moment-Generating Function
The moment-generating function (MGF) of a random variable X is defined as:

MX(t) = E[etX],

where t is a real number, and the expectation is taken over the probability distribution of X.
The MGF, if it exists, uniquely determines the probability distribution of X and can be used
to find all the moments of the distribution since the n-th moment of X is given by the n-th
derivative of MX(t) evaluated at t = 0:

µn =
dnMX(t)

dtn

∣∣∣∣
t=0

.

Example:
Consider a random variable X that follows an exponential distribution with rate parameter λ.
The MGF of X is:

MX(t) =

∫∞
0

etxλe−λxdx =
λ

λ− t
,

Moments • 11

for t < λ. The first derivative of MX(t) with respect to t, evaluated at t = 0, gives the mean
(the first moment) of X:

E[X] =
dMX(t)

dt

∣∣∣∣
t=0

=
1

λ
.

Example. Consider a discrete uniform random variable X that can take on the values
1, 2, 3, . . . , n with equal probability.
Task: Find the moment-generating function (MGF) of X, MX(t), and use it to compute
the first and second moments (E[X] and E[X2]).
The MGF of a random variable X is defined as MX(t) = E[etX]. For a discrete uniform
distribution over 1, 2, . . . , n, this becomes:

MX(t) =
1

n

n∑
k=1

etk =
1

n

et(1− etn)

1− et
, for t 6= 0.

To find the first and second moments, we differentiate MX(t) with respect to t and evaluate
at t = 0:

First moment (E[X]): M ′
X(0) =

1
2
(n+ 1).

Second moment (E[X2]): M ′′
X(0) =

1
6
n(n+ 1)(2n+ 1).

Markov Chains

2.1 Stochastic Processes

Definition 2.1. A stochastic process {X(t) : t ∈ T } is a collection of random variables,
where for each t in the index set T , X(t) is a random variable. The index t often represents
time, making X(t) denote the state of the process at time t. The set T is known as the
index set of the process. When T is countable, the process is said to be in discrete time. If
T is an interval of the real line, the process is in continuous time.

This broad definition encompasses the wide variety of processes that evolve over time, where
the evolution is driven by some probabilistic rules. Examples include the number of customers
in a store at any given time, the amount of rainfall accumulated in a day, or the stock price of
a company.

Definition 2.2. A Markov Chain is a stochastic process that satisfies the Markov property,
meaning the future state depends only on the current state and not on the sequence of
events that preceded it. Formally, for any set of states i, j and any time n, the transition
probabilities satisfy:

P{Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0} = P{Xn+1 = j|Xn = i} = Pij.

Examples of Markov Chains include:

Random Walk Model: An individual moves along a line, stepping right with probability
p and left with probability 1− p. The state space is the set of integers Z.

Gambling Model: A gambler wins 1 with probability p or loses 1 with probability 1−p,
stopping when they go broke or reach N. The state space is {0, 1, . . . ,N}, with 0 and N

as absorbing states.

Weather Forecasting Model: The weather is either rain.or ”no rain”with transition
probability α for rain to rain and β for no rain to rain.

Communications System: A system transmits digits 0 or 1, with each digit being
transmitted correctly with probability p. This can be modeled as a two-state Markov
chain.

Mood Model: An individual’s mood is modeled as cheerful, so-so, or glum, with transitions
dependent only on the current state, forming a three-state Markov chain.

The transition matrix P encapsulates the probabilities of moving from one state to another in
one time step. For a Markov chain with m states, P is an m×m matrix where the element Pij

represents the probability of transitioning from state i to state j.

13

14 • Stochastic Processes

Example. Weather Forecasting Model
Suppose the chance of rain tomorrow depends only on whether or not it is raining today. If
it rains today (state 0), it will rain tomorrow with probability α; if it does not rain today
(state 1), it will rain tomorrow with probability β. The transition matrix P is given by:

P =

(
α 1− α

β 1− β

)

Example. Communications System
Consider a system transmitting digits 0 and 1. At each stage, there is a probability p that
the digit will be transmitted correctly. Letting Xn denote the digit at stage n, we have a
two-state Markov chain with transition matrix:

P =

(
p 1− p

1− p p

)

Example. Mood Model
On any given day, Gary’s mood can be cheerful (C), so-so (S), or glum (G) with transition
probabilities dependent on today’s mood. The transition matrix P is:

P =

0,5 0,4 0,1

0,3 0,4 0,3

0,2 0,3 0,5



Example. Random Walk Model
A model for an individual walking on a line who at each point either steps right with
probability p or left with probability 1−p. For state i, the transition probabilities to i+ 1

and i− 1 are:
Pi,i+1 = p = 1− Pi,i−1

For a finite state space version of the Random Walk Model, with states {0, 1, 2, . . . , N}

where N is a boundary, the transition probabilities for moving from state i to i+1 (right) with
probability p and to i− 1 (left) with probability 1− p can be represented as:

P =


1 0 0 · · · 0

1− p 0 p · · · 0
...
0 · · · 1− p 0 p

0 · · · 0 0 1


Note: This matrix is modified to include absorbing states at 0 and N for illustration purposes.

Stochastic Processes • 15

Example. Gambling Model
A gambler either wins $1 with probability p or loses $1 with probability 1 − p. With
absorbing states at 0 and N (broke or target fortune), the transition probabilities for
states i to i+ 1 and i− 1 are similar to the random walk:

Pi,i+1 = p = 1− Pi,i−1

Absorbing states:
P00 = PNN = 1

In the Gambling Model, with the gambler starting with a stake of i dollars and with
absorbing states at 0 and N, the transition probabilities can be written as:

P =



1 0 0 · · · 0 0

q 0 p · · · 0 0

0 q 0
. . . 0 0

...
0 0 0 q 0 p

0 0 0 · · · 0 1


Where p is the probability of winning $1 and q = 1 − p is the probability of losing $1.
Here, states 0 and N are absorbing, meaning if the gambler reaches these states, they stay
there indefinitely.

Let’s consider a Markov chain with three states. The transition matrix for this Markov chain
in generic form is given by:

P =

p11 p12 p13

p21 p22 p23

p31 p32 p33


where pij represents the probability of transitioning from state i to state j.
To explore the long-term behavior of the Markov chain, we investigate the eigenvalues and
eigenvectors of the transition matrix P. The eigenvalues are solutions to the characteristic
equation given by det(P− λI) = 0, and for each eigenvalue λi, the corresponding eigenvector vi
is found by solving the equation (P − λiI)vi = 0.
If we are able to find three linearly independent eigenvectors, we can form a matrix V composed
of these eigenvectors and a diagonal matrix D containing the eigenvalues such that:

V =

 | | |

v1 v2 v3
| | |

 and D =

λ1 0 0

0 λ2 0

0 0 λ3

 .

This allows us to express P as P = VDV−1.
To find Pn, where n is a positive integer, we use the property of matrix powers in diagonalized
form:

Pn = VDnV−1,

where Dn is the diagonal matrix with the eigenvalues raised to the power of n:

Dn =

λn
1 0 0

0 λn
2 0

0 0 λn
3

 .

16 • Chapman-Kolmogorov Equations

Diagonalization of the transition matrix facilitates efficient computation of its powers. This
method provides a straightforward way to determine the state probabilities after any number
of transitions, illuminating the Markov chain’s long-term dynamics.

2.2 Chapman-Kolmogorov Equations

The n-step transition probabilities, denoted by P
(n)
ij , define the probability that a process in

state i will transition to state j after n steps. Formally, for n ≥ 0 and states i, j, we have:

P
(n)
ij = Pr(Xn+k = j | Xk = i)

where P
(1)
ij = Pij corresponds to the one-step transition probability from state i to state j.

The Chapman-Kolmogorov equations describe how to compute the probabilities of transitioning
from one state to another in a Markov chain over multiple steps. Given a Markov chain with
states, the n-step transition probability from state i to state j, denoted as P(n)

ij , is the probability
of transitioning from i to j in n steps.
These probabilities can be computed using the Chapman-Kolmogorov equations, which are as
follows:

P
(n+m)
ij =

∞∑
k=0

P
(n)
ik P

(m)
kj (2.1)

This equation states that the probability of moving from state i to state j in n + m steps is
the sum, over all possible intermediate states k, of the probability of moving from i to k in n

steps and then from k to j in m steps.
In matrix notation, if P(n) denotes the matrix of n-step transition probabilities, then the
Chapman-Kolmogorov equation can be expressed as:

P(n+m) = P(n) · P(m) (2.2)
where the dot represents matrix multiplication. This formula is particularly useful for computing
transition probabilities over multiple steps in a compact and efficient manner.

Example. Consider the weather as a two-state Markov chain, where state 0 represents rain
and state 1 represents no rain. Given the transition probabilities α = 0,7 for rain to rain
and β = 0,4 for no rain to rain, we calculate the probability that it will rain four days
from today, given that it is raining today.
The one-step transition probability matrix is:

P =

(
0,7 0,3

0,4 0,6

)
To find the two-day transition probabilities, we compute P(2) = P2:

P(2) = P · P =

(
0,7 0,3

0,4 0,6

)
·
(
0,7 0,3

0,4 0,6

)
=

(
0,61 0,39

0,52 0,48

)

Chapman-Kolmogorov Equations • 17

For the four-day transition probabilities, we compute P(4) = (P(2))2:

P(4) = (P(2))2 =

(
0,61 0,39

0,52 0,48

)
·
(
0,61 0,39

0,52 0,48

)
=

(
0,5749 0,4251

0,5668 0,4332

)
Therefore, the probability that it will rain four days from today, given that it is raining
today (i.e., the transition from state 0 to state 0 in four steps), is P

(4)
00 = 0,5749

Example. Weather Dependence as a Four-State Markov Chain
Consider the weather as a four-state Markov chain with the following states based on the
weather conditions of today and yesterday:

State 0: It rained both today and yesterday.

State 1: It rained today but not yesterday.

State 2: It rained yesterday but not today.

State 3: It did not rain either yesterday or today.

The transition probability matrix P is given by:

P =


0,7 0 0,3 0

0,5 0 0,5 0

0 0,4 0 0,6

0 0,2 0 0,8


Given that it rained on Monday and Tuesday, we have the initial condition as state 0.
To find the probability that it will rain on Thursday, we need to compute the two-step
transition probabilities by squaring the matrix P:

P(2) = P2 =


0,7 0 0,3 0

0,5 0 0,5 0

0 0,4 0 0,6

0 0,2 0 0,8


2

After computing the matrix multiplication, we get:

P(2) =


0,49 0,12 0,21 0,18

0,35 0,20 0,15 0,30

0,20 0,12 0,20 0,48

0,10 0,16 0,10 0,64


To calculate the probability of rain on Thursday, we sum the probabilities of being in state
0 or 1 on Thursday:

P
(2)
00 + P

(2)
01 = 0,49+ 0,12 = 0,61

Thus, the probability that it will rain on Thursday, given that it rained on Monday and
Tuesday, is 0.61.

18 • Characteristics of Markov Chains

2.3 Characteristics of Markov Chains
1. Transition Probabilities: The probabilities of moving from one state to another are

called transition probabilities. They are typically represented in a matrix called the
transition matrix.

2. State Space: The set of all possible states that the chain can be in. This could be a
finite or countably infinite set.

3. Time Structure: Transitions occur at integer time steps.

Example (Financial Market Dynamics). In financial market modeling, a Markov Chain cap-
tures the inherent volatility and unpredictability of the market. Here, the future state only
depends on the current state, disregarding the historical path.
Market States:

Bull Market (Bull): Optimistic phase with rising or expected-to-rise prices.

Bear Market (Bear): Pessimistic phase with prolonged price declines.

Stagnant Market (Stagnant): No clear trend; prices fluctuate within a narrow
range.

Transition Matrix P:

P =

0,5 0,3 0,2

0,4 0,1 0,5

0,1 0,7 0,2


Two-Step Transition P2:

P2 =

0,39 0,32 0,29

0,29 0,48 0,23

0,35 0,24 0,41


Three-Step Transition P3:

P3 =

0,352 0,352 0,296

0,360 0,296 0,344

0,312 0,416 0,272


Interpretation: Transition matrices P2 and P3 offer insights into the market’s longer-
term dynamics. For instance, a Bull to Bear transition becomes more probable in three
steps, highlighting the dynamic, unpredictable nature of financial markets modeled through
Markov Chains.

Let P(n)
ij be the probability that the system transitions from state i to state j in n steps. Then:

P
(n)
ij = P(St+n = j|St = i) = (Pn)ij

Notes:

Characteristics of Markov Chains • 19

P
(n)
ij can be found using the (i, j)th element of the matrix Pn.

The potential paths from i to j in n steps are up to mn−1 (m being the number of states).

Matrix multiplication of P by itself n times accumulates all transition probabilities.

Another representation of this concept, considering any times s < t < u, is given by:

Pij(s, u) =
∑
k∈S

Pik(s, t) · Pkj(t, u) (2.3)

Consider the previously discussed financial market model. If we’re interested in the probability
of transitioning from a Bull market to a Bear market over five steps, P5, we can employ the
Chapman-Kolmogorov equation. Using our already computed matrices P2 and P3, the equation
becomes:

(P5)Bull, Bear =
∑
k

(P2)Bull, k · (P3)k,Bear (2.4)

Using the above equation, we find that:

(P5)Bull, Bear ≈ 0,3526

Here, k represents all possible market states (Bull, Bear, Stagnant). This methodology not only
simplifies computations but also offers insights into multi-step transitions in financial markets,
enabling better predictive models.

Example. Consider a pensioner who receives 2 (thousand francs) at the beginning of each
month. The amount required for monthly expenses is independent of his current capital and
equals i with probability Pi, for i = 1, 2, 3, 4, ensuring

∑4

i=1 Pi = 1. Should the pensioner’s
end-of-month capital exceed 3, the excess is given to his son. Assuming an initial capital
of 5, we investigate the probability of the pensioner’s capital dropping to 1 or less within
the next four months.
Solution: We model the pensioner’s financial status as a Markov chain, with the state
representing the end-of-month capital. To focus on scenarios where the capital drops to
1 or less, state 1 signifies such occurrences. Given the pensioner’s practice of giving away
excess capital, our analysis is limited to states 1, 2, and 3. The transition probability matrix
Q = [Qi,j] is defined as:

Q =

 1 0 0

P3 + P4 P2 P1

P4 P3 P1 + P2

 .

Considering Pi = 1/4 for i = 1, 2, 3, 4, the matrix simplifies to:

Q =

 1 0 0

1/2 1/4 1/4

1/4 1/4 1/2

 .

20 • Limit Distribution

Upon squaring this matrix twice, we obtain:

Q(4) =

 1 0 0

222/256 13/256 21/256

201/256 21/256 34/256

 .

Given the pensioner’s starting capital as 3, the probability of it reducing to 1 or less within
four months is Q

(4)
3,1 = 201/256.

2.4 Limit Distribution
Limiting distribution, in the context of Markov chains, refers to the distribution to which the
state probabilities converge as the number of steps (or time) goes to infinity.
Markov Chains, with their inherent ability to model complex stochastic systems, have significant
applications across various domains, from finance and meteorology to social sciences. One of
the most pivotal inquiries in the realm of Markov Chains pertains to their long-term behavior.
Specifically, will the system stabilize into a steady state or equilibrium? This section delves into
the notions that underpin this behavior, including the limit distribution and the properties of
irreducibility, aperiodicity, and ergodicity.

Definition 2.3 (Limit Distribution). A distribution π is called a limit distribution for a
Markov Chain if

lím
n→∞Pn

ij = πj

for every state i. The limit distribution provides insights into the enduring behavior of the
system and is inherently linked to the properties discussed below.

The distribution π encapsulates the stable or steady-state probabilities associated with each
state as the number of transitions grows indefinitely large. For a finite Markov Chain, the
cumulative sum of all elements of π equals 1, emphasizing that π is a probability distribution.

Example (Convergence of P to π). For the given transition matrix P, let’s inspect its powers:
For P5: 0,34296 0,35264 0,3044

0,34664 0,33984 0,31352

0,33752 0,3648 0,29768


For P10: 0,34260 0,35183 0,30557

0,34251 0,35210 0,30539

0,34268 0,35159 0,30573


For P20: 0,34259 0,35185 0,30556

0,34259 0,35185 0,30556

0,34259 0,35185 0,30556



Limit Distribution • 21

By the time we examine P50 and P100, the matrix has stabilized to:0,34259 0,35185 0,30556

0,34259 0,35185 0,30556

0,34259 0,35185 0,30556


From the matrices above, we discern a clear trend: as we raise T to higher powers, the rows
of the matrix are converging to the limit distribution π. This showcases the theoretical
underpinning that, given certain conditions, the Markov Chain will stabilize to a unique
long-term distribution.

Definition 2.4. A Markov Chain is irreducible if it is possible to traverse from any state
to any other state within a finite number of steps. Formally, for any states i, j ∈ S, there
exists n ≥ 1 such that P

(n)
ij > 0.

Irreducibility plays a paramount role in systems like social networks, ensuring the flow of
information across the entire network.

Example. Consider a Markov chain with state space {1, 2, 3} and transition matrix

P =

0,5 0,5 0

0 0,5 0,5

0,5 0 0,5

 .

This chain is irreducible because it is possible to move between any two states in at most
2 steps.

Definition The period of a state in a Markov chain is the greatest common divisor of all
the lengths of paths that lead from the state back to itself. The period of state i is defined as
d(i) = gcd{n > 0 : Pn

ii > 0}.

Example. Consider a Markov chain with four states, A, B, C, and D, and the transition
matrix P given by:

P =


0 0,5 0,5 0

0,5 0 0 0,5

0,5 0 0 0,5

0 0,5 0,5 0

 .

The powers of the transition matrix P are calculated as follows:
For P2 (the matrix squared):

P2 =


0,5 0 0 0,5

0 0,5 0,5 0

0 0,5 0,5 0

0,5 0 0 0,5

 ,

22 • Limit Distribution

For P3 (the matrix cubed):

P3 =


0 0,5 0,5 0

0,5 0 0 0,5

0,5 0 0 0,5

0 0,5 0,5 0

 ,

For P4 (the matrix to the fourth power):

P4 =


0,5 0 0 0,5

0 0,5 0,5 0

0 0,5 0,5 0

0,5 0 0 0,5

 .

These results indicate the probabilities of transitioning from one state to another after 2, 3,
and 4 steps, respectively. The cyclic pattern, where P2 and P4 are identical, and similarly P and
P3 are identical, suggests a periodicity in the Markov chain. Specifically, this implies that the
system exhibits a period of 2, as the transition probabilities return to their original configuration
every 2 steps. Thus, each state in this Markov chain has a period of 2, meaning it is possible
to return to the same state in multiples of 2 steps.

Definition 2.5. A state of a Markov Chain exhibits aperiodicity if it doesn’t revisit itself
in a fixed pattern. Formally, a state i is aperiodic if the greatest common divisor of the set
of steps n at which it returns to itself is one: gcd{n : P

(n)
ii > 0} = 1.

Aperiodicity is crucial in financial models to avoid deterministic cyclical behaviors, ensuring
the model captures the nuances of real-world dynamics.

Definition 2.6. A Markov Chain is termed ergodic if it embodies both irreducibility and
aperiodicity. Ergodicity ensures the existence of a unique limit distribution π.

Theorem (Convergence to a Limiting Distribution): Let {Xn, n ≥ 0} be an irreducible,
aperiodic Markov chain with a finite or countably infinite state space S. If π is a stationary
distribution for this chain, then for any initial state i ∈ S,

lím
n→∞P

(n)
ij = π(j),

where P(n)
ij represents the n-step transition probability from state i to state j, and the stationary

distribution π satisfies
π(j) =

∑
i∈S

π(i)Pij,

for all j ∈ S, ensuring
∑

j∈S π(j) = 1.
This theorem illustrates that under conditions of irreducibility and aperiodicity, the distribution
of states of the Markov chain converges to a stationary distribution π, which is independent
of the initial state. The stationary distribution π is characterized by the property that the
long-term behavior of the chain can be described as a weighted sum of its immediate one-step
transitions, governed by the transition probabilities Pij.

Limit Distribution • 23

Example. Two-State Markov Chain
Consider a Markov chain with two states, 1 and 2, and transition matrix

P =

[
0,9 0,1

0,5 0,5

]
.

Objective: Find the limiting distribution.

Solution:
The stationary distribution π satisfies πP = π and π1 + π2 = 1. We solve

0,9π1 + 0,5π2 = π1,

0,1π1 + 0,5π2 = π2.

This leads to π1 =
5
6

and π2 =
1
6
.

Interpretation: The chain converges to a distribution where it is in state 1 with probability
5
6

and in state 2 with probability 1
6
, regardless of the initial state.

Weather Model
Consider a weather model with states ”Sunny”(S) and Rainy”(R), and transition matrix

P =

[
0,8 0,2

0,3 0,7

]
.

Objective: Determine the long-term weather forecast.
Solution: Solving for π in πP = π with πS + πR = 1 yields πS = 0,6 and πR = 0,4.

Long term, the forecast is sunny 60 % of the time and rainy 40 % of the time, regardless of
initial weather.

Example. Three-State Markov Chain
Consider a Markov chain with states 1, 2, and 3, and transition matrix

P =

0,5 0,2 0,3

0,1 0,6 0,3

0,4 0,1 0,5

 .

Objective: Find the limiting distribution.

Solution: We find the stationary distribution π = [π1, π2, π3] by solving πP = π subject to
π1 + π2 + π3 = 1. After solving, we interpret the probabilities of each state in the long term.

Example. Absorbing Markov Chain
Consider an absorbing Markov chain with states A (absorbing), 1, and 2, and transition
matrix

P =

 1 0 0

0,1 0,8 0,1

0,2 0,2 0,6

 .

24 • Limit Distribution

Objective: Probability of absorption starting from 1 and 2.

Solution: Calculate the fundamental matrix to find the absorption probabilities, leading to a
clear understanding of long-term behavior towards the absorbing state.

Example. The Gambler’s Problem is a classic scenario in stochastic processes, illustrating
decision-making under uncertainty. A gambler has the opportunity to bet on the outcomes
of a series of coin flips. If the coin comes up heads, the gambler wins as much money as
they have bet; if it comes up tails, they lose their bet. The goal is to reach a certain amount
of money, G, starting with an initial stake s. The game ends when the gambler reaches G

or loses everything.
Objective: Determine the probability of reaching the goal G before going broke, given
the initial stake s and the probability p of winning each bet.

Solution:
Let P(s) denote the probability of reaching the goal starting with s. The probabilities satisfy
the following recursive relationship:

P(s) = pP(s+ 1) + (1− p)P(s− 1), 0 < s < G,

with boundary conditions P(0) = 0 and P(G) = 1.
This difference equation can be solved using methods for linear homogeneous recurrence rela-
tions with boundary conditions.

Consider a simple case where p = 0,5 (a fair coin) and the goal G = 4. We seek the probability
of reaching 4 starting from s = 1.
By solving the recurrence relation with the given boundary conditions, we find:

P(s) =
s

G
,

for a fair game (p = 0,5). Therefore, the probability of reaching the goal of 4 starting with 1 is
P(1) = 1

4
.

The Gambler’s Problem showcases the use of stochastic models to evaluate probabilities of
achieving certain states within a system governed by random processes. It highlights how initial
conditions, transition probabilities, and boundary conditions play a crucial role in determining
the outcome’s likelihood.

Random Networks

3.1 Networks

Definition 3.1. A Network (or Graph) is a collection of entities called Nodes (or Vertices)
and the relationships or connections between them, termed as Edges (or Links). Each edge
connects two nodes and indicates a relationship between them.

We define the set of nodes V and the set of edges E as follows:

V = {1, 2, 3, 4, 5} (3.1)

E = {(1, 2), (2, 3), (1, 3), (2, 4), (3, 4), (4, 5)} (3.2)

1 2

3 4

5

Figura 3.1: Example network with 5 nodes and 6 edges.

After defining networks in terms of nodes and edges, a mathematical representation is essential
for analysis. The adjacency matrix offers a compact way to depict the relationships within a
network.

Definition 3.2. The Adjacency Matrix A is a square matrix of size N×N where N is
the total number of nodes. Entry Aij equals 1 if there’s an edge from node i to node j and
0 otherwise.

The adjacency matrix for the network in the previous example is:

A =


0 1 1 0 0

1 0 1 1 0

1 1 0 1 0

0 1 1 0 1

0 0 0 1 0


An adjacency matrix is a powerful tool for representing graphs because it encodes all the
information about connections between nodes in a systematic manner. The cell Aij represents
the edge from node i to node j. If Aij = 1, then an edge exists; otherwise, it’s zero. This binary
encoding simplifies complex relationships into a format easily analyzed computationally.

25

26 • Networks

Definition 3.3. A Shortest Path between two nodes u and v in a graph is a path that
has the minimum number of edges (in an unweighted graph) or the minimum sum of edge
weights (in a weighted graph) among all possible paths between u and v. The length of
this path is denoted as d(u, v).

Definition 3.4. The Diameter of a graph is the longest shortest path between any two
nodes in the graph. Formally, if d(u, v) is the shortest path between nodes u and v, then
the diameter D is defined as:

D = máx
u,v∈V

d(u, v)

Let’s consider the previous network example, where V = {1, 2, 3, 4, 5} and E = {(1, 2), (2, 3), (1, 3), (2, 4), (3, 4), (4, 5)}.
The shortest paths between all pairs of nodes are:

Shortest path from 1 to 2, 3, 4, 5 are 1, 1, 2, 3 respectively.

Shortest path from 2 to 1, 3, 4, 5 are 1, 1, 1, 2 respectively.

Shortest path from 3 to 1, 2, 4, 5 are 1, 1, 1, 2 respectively.

Shortest path from 4 to 1, 2, 3, 5 are 2, 1, 1, 1 respectively.

Shortest path from 5 to 1, 2, 3, 4 are 3, 2, 2, 1 respectively.

The diameter of this graph is the longest of these shortest paths, which in this case is 3 (from
node 1 to node 5).
An interesting property of adjacency matrices is that they can be multiplied to find paths of
varying lengths between nodes. Specifically, A2 (the matrix A multiplied by itself) will give us
all possible paths of length 2 between any two nodes i and j.
For example, the element (A2)ij will represent the number of paths of length 2 between nodes
i and j. The logic behind this comes from the nature of matrix multiplication, where each
element in the resulting matrix is computed as a sum of products involving elements from
the corresponding row and column of the original matrices. In the context of networks, this
translates to summing up possible intermediary steps to form paths of the length in question.
Given the adjacency matrix A from our previous example:

A =


0 1 1 0 0

1 0 1 1 0

1 1 0 1 0

0 1 1 0 1

0 0 0 1 0


We can calculate A2 by multiplying A by itself. The resulting matrix A2 will represent the
number of paths of length 2 between any two nodes i and j.

A2 =


2 1 1 1 0

1 3 2 1 1

1 2 3 1 1

1 1 1 2 0

0 1 1 0 1



Networks • 27

For instance, the element (A2)13 = 1 tells us there is exactly 1 path of length 2 from node 1 to
node 3. This path is 1 → 2 → 3.
Similarly, the element (A2)24 = 1 indicates there is one path of length 2 from node 2 to node
4. This path is 2 → 3 → 4.
Knowing the shortest paths and diameters in a network has a wide range of practical appli-
cations. For instance, in social networks, the diameter can provide insights into how quickly
information may spread across the network. In transportation networks, identifying the shor-
test paths is crucial for optimizing travel routes. Understanding these properties is integral for
network resilience, efficiency, and information dissemination.
Before delving into the fascinating properties of random graphs, let’s establish what it means for
a set of nodes to be connected within a graph. This idea naturally extends from our discussion
about paths of varying lengths.

Definition 3.5 (Connected Component). A Connected Component in a network is a
maximal set of nodes C such that for every pair of nodes a, b in C, there exists an undirected
path from a to b.

To identify connected components, one may start at an arbitrary node and find all nodes
reachable from it. This set forms one connected component, and the process is repeated until
all nodes are included in a connected component.
Consider our earlier example network with adjacency matrix A as follows:

A =


0 1 1 0 0

1 0 1 1 0

1 1 0 1 0

0 1 1 0 1

0 0 0 1 0


We already calculated A2 which provides us with all paths of length 2 between any two nodes
i and j:

A2 =


2 1 1 2 0

1 3 2 1 1

1 2 3 1 1

2 1 1 2 0

0 1 1 0 1


Now, let’s calculate A3 to find all paths of length 3 between any two nodes:

A3 = A×A2 =


0 3 3 1 1

3 0 3 3 1

3 3 0 3 1

1 3 3 0 2

1 1 1 2 0


For instance, the element (A3)14 is 1, which means there is one path of length 3 between node
1 and node 4. Similarly, (A3)52 is also 1, indicating a single path of length 3 between nodes 5
and 2.
These calculations reinforce the notion that the network consists of a single connected com-
ponent C = {1, 2, 3, 4, 5}, as all nodes are reachable from one another via paths of varying
lengths.

28 • Random Graphs

Having reviewed the basic notations and mathematical properties of networks, in the upcoming
sections, we’ll delve deeper into various network models. These models will help illuminate the
structures and intricacies of networks we encounter daily, from social media connections to vast
communication networks. With these tools, we aim to foster a richer understanding of how
systems and patterns interconnect in the world around us.

3.2 Random Graphs
Random graphs are a foundational construct in the mathematical treatment of network theory,
offering researchers a framework for understanding the probabilistic interactions within complex
networks.

Definition 3.6 (Random Network). A Random Network is a graph in which the presence
or absence of an edge between any two distinct nodes is determined by a random process
or probabilistic rule.

Among various random graph models, the Erdos-Renyi model stands out due to its simplicity
and foundational role in network theory.

Definition 3.7 (Erdos-Renyi Model). The Erdos-Renyi Model, denoted as G(n, p), is
defined as a random graph consisting of n nodes, where each potential edge between
distinct nodes i and j is included with probability p, independently of the other edges.

The probability of an edge forming between any two nodes i and j in the Erdos-Renyi model
G(n, p) is:

P(Edge between i and j) = p (3.3)

Definition 3.8 (Giant Connected Component). A Giant Connected Component in a
graph is a connected component that includes a substantial fraction of the entire set of
nodes in the graph. In the Erdos-Renyi model, a giant connected component emerges when
the edge probability p surpasses a critical value pc.

The critical probability pc for the emergence of a giant component in an Erdos-Renyi graph
G(n, p) is approximately:

pc ≈
log(n)

n
(3.4)

[Empirical Estimation of pc] To empirically estimate the critical probability pc at which a giant
connected component forms in an Erdos-Renyi graph G(n, p), we will perform the following
experiment:

1. Initialize n = 1000 nodes.

2. Vary p from 0 to 1 in increments of 0.01.

Branching Processes • 29

3. For each p, generate a random graph G(n, p).

4. Identify the largest connected component C in G.

5. Record the size |C| of the largest connected component.

6. Plot |C| as a function of p.

7. Observe the value of p where |C| starts to dramatically increase. This value is an empirical
estimate of pc.

The Erdos-Renyi model, despite its simplistic assumptions, serves as a key reference model
in the realm of network theory. Its clear framework for randomness offers a foundation for
the study of more complex networks, making it a cornerstone in disciplines such as computer
science, biology, and social sciences.
The Preferential Attachment Model, popularized by Albert-László Barabási and Réka Albert,
is grounded in the adage ”the rich get richer.”Nodes are more likely to link to nodes that
already have many connections. This dynamic leads to ”hubs.or nodes with significantly higher
connectivity than others.
Mathematically, the probability Π(k) that a new node connects to a node with k connections
is proportional to k. This results in a scale-free network, characterized by a power-law degree
distribution.
The Preferential Attachment Model is a foundational concept often used to explain how real-
world networks evolve to exhibit a scale-free degree distribution. Proposed by Barabási and
Albert in 1999, this model argues that networks grow by the principle of ”the rich get ri-
cher,”whereby new nodes are more likely to connect to already well-connected nodes.
The central equation governing the Preferential Attachment Model is:

Π(k) =
k∑
j kj

(3.5)

where Π(k) is the probability that a new node will connect to a node with degree k, and the
sum runs over all nodes j in the network.
The Preferential Attachment Model provides a basis for understanding how highly connected
”hubs.emerge in networks. These hubs play a critical role in the network’s overall structure and
resilience, often dominating processes like information spread or failure propagation.
The Preferential Attachment Model finds applications in various fields, including the World
Wide Web, citation networks, and even biological systems, to explain phenomena like protein-
protein interaction networks.

3.3 Branching Processes
Branching processes are stochastic models that describe the dynamics of populations where
individuals reproduce independently. These models are widely used in biology for understanding
population dynamics and disease spread, as well as in physics for particle decay simulations.

Definition 3.9 (Branching Process). A branching process {Zn}
∞
n=0 is defined where Zn de-

notes the number of individuals in the n-th generation. Initiated with Z0 = 1, the process

30 • Branching Processes

evolves according to:

Zn+1 =

Zn∑
i=1

Xn,i,

where {Xn,i} are i.i.d. random variables representing the offspring of the i-th individual in
generation n.

The Galton-Watson process is a notable example of a branching process, used to study extin-
ction probabilities and the effects of varying reproductive rates.

Definition 3.10 (Galton-Watson Process). A Galton-Watson process involves each indivi-
dual in the population reproducing independently according to a fixed probability distri-
bution, starting from a single ancestor.

Example. Consider a Galton-Watson process where each individual reproduces with either
0 or 2 offspring, each outcome equally likely. This model explores outcomes like potential
extinction if no offspring are produced, or exponential growth if reproduction rates are
maximized.

The expected number of offspring per individual, µ, is given by:

µ =

∞∑
j=0

jPj,

and the variance in the number of offspring, σ2, is:

σ2 =

∞∑
j=0

(j− µ)2Pj.

The probability of eventual extinction, π0, for a population is crucial for understanding its
long-term sustainability and is defined by:

π0 =

∞∑
j=0

Pj(π0)
j.

Example. If a branching process has an offspring distribution with P0 = 0,5 and P2 = 0,5,
then the mean µ = 1 and variance σ2 = 0,5, illustrating a critical threshold where the
population’s fate hinges on initial fluctuations.

These elements highlight how branching processes model complex population dynamics, empha-
sizing the interplay between stochasticity in reproduction and the overarching trends in popu-
lation growth or decline.

Time Reversible Markov Chain • 31

3.4 Time Reversible Markov Chain
Time Reversible Markov Chains facilitate analysis of Markov processes in reverse time while
preserving Markovian characteristics. For a Markov chain with:

Transition probabilities: Pij, transitioning from state i to state j.

Stationary distribution: πi, the long-term state probabilities.

The reversed chain’s transition probabilities, Qij, are calculated as:

Qij =
πjPji

πi

(3.6)

For time reversibility, the detailed balance condition must be satisfied:

πiPij = πjPji, ∀i, j (3.7)

This condition ensures the forward and reverse processes are indistinguishable at equilibrium,
reflecting a symmetry in transitions.

Implications of Time Reversibility

Time reversibility imposes a unique equilibrium structure on the Markov chain, leading to:

1. Symmetric Behavior: The chain exhibits a balance in transitions, allowing forward and
backward analysis.

2. Ergodicity: For ergodic chains, time reversibility ensures uniform mixing over time,
strengthening the chain’s stochastic properties.

3. Inference and Estimation: Time reversibility simplifies the estimation of transition
probabilities and stationary distributions, facilitating easier model parameterization.

Monte Carlo Markov Chain (MCMC)
Monte Carlo Markov Chain (MCMC) methods are essential for sampling from complex pro-
bability distributions by constructing a Markov chain that has the desired distribution as its
stationary distribution. The main objective is to utilize these samples for approximating inte-
grals, optimizing functions, and exploring properties of distributions that are difficult to analyze
analytically.
An MCMC method constructs a Markov chain such that for every pair of states x and y, the
detailed balance condition with respect to π is satisfied:

πxPxy = πyPyx, ∀x, y (3.8)

Metropolis-Hastings Algorithm:

1. Begin with an initial state x0.

2. For each iteration t = 1, 2, . . . , T :

32 • Time Reversible Markov Chain

a) Propose a new state y from a proposal distribution q(y|xt−1).

b) Calculate the acceptance ratio a = πyq(xt−1|y)

πxt−1
q(y|xt−1)

.

c) Accept the new state with probability mín(1, a), resulting in xt = y; otherwise,
retain xt = xt−1.

Gibbs Sampling: This algorithm is particularly useful for sampling from multivariate distribu-
tions. It sequentially updates each component of the state vector, sampling from the conditional
distribution of each component given all other components, thus facilitating efficient exploration
of the state space.

Illustration: Sampling from a Biased Coin Distribution

To demonstrate the application of MCMC, consider sampling from the distribution of a biased
coin’s outcomes, where the probability of heads (H) is πH = 0,7 and tails (T) is πT = 0,3.
Procedure:

1. Define the target distribution π(x) with πH = 0,7 and πT = 0,3.

2. Employ a proposal distribution q(y|x) that allows transitions between states with a cer-
tain probability.

3. Use the Metropolis-Hastings algorithm to accept or reject proposed transitions, thereby
generating a sample from the target distribution.

Proof of Convergence for the Metropolis-Hastings Algorithm
To demonstrate that the Markov chain generated by the Metropolis-Hastings algorithm con-
verges to the desired stationary distribution π, we rely on the detailed balance condition. This
condition is essential for ensuring that the Markov chain is time-reversible and reaches equili-
brium.

Detailed Balance Condition

The detailed balance condition for a Markov chain with stationary distribution π is given by:

πiPij = πjPji, ∀i, j (3.9)

Metropolis-Hastings Algorithm Steps

The Metropolis-Hastings algorithm involves two steps: proposal and acceptance-rejection.

1. Proposal: Propose a transition from the current state i to a new state j using a proposal
distribution qij.

2. Acceptance-Rejection: The acceptance ratio aij for transitioning from state i to state
j is computed as:

aij =
πjqji

πiqij

(3.10)

Markov Decision Processes (MDP) • 33

The transition is accepted with probability αij = mín(1, aij), resulting in the effective
transition probability:

Pij = qijαij (3.11)

For non-accepted transitions, the chain remains in the current state, ensuring the proba-
bilities sum to 1.

Proof of Convergence Using Detailed Balance

To verify that the detailed balance condition is satisfied and thus prove convergence to the
distribution π, we examine the effective transition probabilities:

πiPij = πiqijαij

= πiqij mín
(
1,

πjqji

πiqij

)
For the reverse transition from state j to state i, the symmetry in the mín function allows us
to write:

πjPji = πjqjiαji

= πjqji mín
(
1,

πiqij

πjqji

)
By design, the Metropolis-Hastings algorithm’s acceptance-rejection step ensures that for all
state pairs (i, j), the detailed balance condition:

πiPij = πjPji (3.12)

is satisfied, proving that π is indeed the stationary distribution of the Markov chain generated
by the algorithm.

3.5 Markov Decision Processes (MDP)
A Markov Decision Process (MDP) provides a mathematical framework for modeling decision-
making in situations where outcomes are partly random and partly under the control of a
decision-maker. MDPs are useful in studying optimization problems solved via dynamic pro-
gramming and reinforcement learning.
An MDP is defined as a tuple (S,A, P, R) where:

S is a finite set of states.

A is a finite set of actions.

P is the state transition probability function, Pij(a), representing the probability of
transitioning from state i to state j under action a.

34 • Markov Decision Processes (MDP)

R is the reward function, R(i, a) or R(i, j, a), specifying the reward received when transitio-
ning from state i to state j due to action a.

The goal within an MDP framework is to discover a policy π that maximizes the expected
cumulative reward from any initial state over a horizon, which can be finite or infinite.
A policy π specifies the action a to be taken in each state s. The optimal policy π∗ is the one
that maximizes the expected cumulative reward over time, which can be found using dynamic
programming techniques, such as value iteration or policy iteration, or through direct policy
search methods in reinforcement learning contexts.
The challenge in solving MDPs lies in the trade-off between immediate rewards and long-term
gains, requiring careful consideration of future state probabilities and rewards when choosing
actions.

Definition 3.11 (Markov Decision Process). A Markov Decision Process is defined by a tuple
(S,A, P, R), where S is the set of states, A is the set of actions, P is the state transition
probability function P : S×A× S → [0, 1], and R is the reward function R : S×A → R.

A policy β specifies the action to be chosen in each state, potentially as a probability distribution
over actions. The goal is to identify a policy that maximizes the expected average reward over
time. For any policy β, the expected reward when taking action a in state i is given by R(i, a).
The steady-state probability of being in state i and taking action a under policy β is denoted
by πia, satisfying: ∑

a∈A

πia = 1, ∀i ∈ S (3.13)

πja =
∑
i∈S

πiaPij(a), ∀j ∈ S, a ∈ A (3.14)

The expected average reward under policy β is then given by:

Expected Average Reward(β) =
∑
i∈S

∑
a∈A

πiaR(i, a) (3.15)

The aim is to find a policy β that maximizes this expected average reward.
Grid Navigation MDP: Consider a grid where an agent aims to move from a start position
to a goal position with minimal steps. The states S represent grid cells, and the actions A =
{up, down, left, right} move the agent between states. Assume all movements have a reward
of −1, encouraging the shortest path, and reaching the goal yields a reward of +10.
If the agent attempts to move into a wall or outside the grid, it remains in its current state.
Let’s consider a simplified 2x2 grid with states {1, 2, 3, 4}, where state 4 is the goal, and state 3
is an obstacle. The transition probabilities Pij(a) for moving from state i to state j with action
a might look like:

P11(up) = 0, P11(right) = 1, and so on.

The reward function R(i, a) for moving from state i using action a:

Markov Decision Processes (MDP) • 35

R(1, right) = −1, R(2, right) = +10.

To determine the optimal policy, one could use value iteration to calculate the value of each
state and derive the policy that maximizes rewards.
Gambling MDP: A gambler with an initial wealth of W dollars can bet any integer amount
b ≤ W on a fair coin toss. Winning doubles the bet, while losing forfeits it. Here, states S

represent the gambler’s current wealth, and actions A are the possible bet sizes. The goal is to
reach a wealth of Wmax.
The state transition probabilities for betting b dollars are:

PW,W+b(b) = 0,5, PW,W−b(b) = 0,5.

The reward function R(W,b) could be defined as:

R(W,b) =


+1 if W + b = Wmax

−1 if W − b = 0

0 otherwise

Poisson Process

4.1 Counting processes
Poisson processes are a fundamental concept in stochastic modeling, providing a rigorous mathe-
matical framework for understanding events that occur randomly in time or space. Arrival times
and counting processes such as Poisson processes find applications in a myriad of contexts, each
with its own set of challenges and implications. For instance, in healthcare, modeling the arrival
times of patients in an emergency room can be crucial for optimizing resource allocation and
improving patient outcomes. Similarly, understanding the time intervals between bus arrivals
at a specific stop can offer insights into public transportation scheduling and efficiency. In the
realm of computer science, the arrival times of data packets in a network can be analyzed to
optimize bandwidth and reduce latency. Businesses too can benefit; for example, modeling the
arrival times of customers in a service queue, whether in a call center or a fast-food restaurant,
can lead to enhanced service management. Natural events like earthquakes, floods, and forest
fires also exhibit arrival times that can be modeled to better understand and predict these
phenomena. In retail, the time between customer arrivals at a checkout counter can inform
decisions about staffing and service speed. Social media platforms often scrutinize the timing of
posts or mentions to understand user engagement or to detect trending topics. In manufactu-
ring, arrival times of components on an assembly line can be critical for identifying bottlenecks
and optimizing production. Financial markets are another fertile ground where the arrival ti-
mes of buy/sell orders can shed light on market dynamics. Finally, in ecology, monitoring the
arrival times of different species at a watering hole or feeding station can offer invaluable data
for conservation efforts and ecological research.

Definition 4.1 (Counting Process). A counting process is a stochastic process {N(t), t ≥ 0}

that represents the total number of events that have occurred up to time t. The function
N(t) satisfies the following properties:

1. N(0) = 0 (initial condition)

2. N(t) is integer-valued for all t ≥ 0

3. N(t) is non-decreasing as t increases; that is, if s < t, then N(s) ≤ N(t)

4. The function N(t) is right-continuous, meaning that for each t, líms→t+ N(s) = N(t)

In simpler terms, a counting process counts the number of times a certain event has occurred
by any given time t. The count starts at zero and can only increase as time moves forward.
Consider a time interval T that we divide into n smaller intervals, each of length ∆t = T

n
. We

are interested in counting the number of occurrences of a particular event within each small
time interval ∆t.
Initially, let’s model this as a Bernoulli process. In each small time interval ∆t, the event can

37

38 • Counting processes

either occur with probability p or not occur with probability 1− p.

P(Event occurs in ∆t) = p (4.1)

P(Event does not occur in ∆t) = 1− p (4.2)

For large n and small ∆t, we can relate p to a rate parameter λ as follows:

p = λ∆t (4.3)

Now, let’s consider the number of events X that occur in the entire interval T . The variable X is
a sum of n independent Bernoulli random variables, each with success probability p. Therefore,
X follows a binomial distribution:

X ∼ Binomial(n, p) (4.4)

The probability of observing exactly k events in T is given by:

P(X = k) =

(
n

k

)
pk(1− p)(n−k) (4.5)

Substitute p = λ∆t and 1− p = 1− λ∆t:

P(X = k) =

(
n

k

)
(λ∆t)k(1− λ∆t)(n−k) (4.6)

The binomial coefficient can be expanded as:(
n

k

)
=

n!

k!(n− k)!
=

n(n− 1) · · · (n− k+ 1)

k!
(4.7)

Substitute this into the probability mass function:

P(X = k) =
n(n− 1) · · · (n− k+ 1)

k!
(λ∆t)k(1− λ∆t)(n−k) (4.8)

The first limit becomes 1 as n gets larger and larger. The second limit turns into exp(−λT) in
the same way. These observations lead us to a key theorem about how the Bernoulli process
evolves into a Poisson process.

Theorem 4.2 (Convergence from Bernoulli to Poisson). Let X be the number of events in
a time interval T broken down into n smaller intervals. Each smaller interval has length
∆t = T

n
. If each interval has a Bernoulli-distributed event occurrence with probability

p = λ∆t, then as n approaches infinity with n∆t = T constant, the distribution of X turns
into a Poisson distribution. Specifically,

lím
n→∞

(
n

k

)
pk(1− p)(n−k) =

(λT)k

k!
exp(−λT) (4.9)

In this limit, X follows a Poisson distribution with parameter λT .

Poisson Processes • 39

4.2 Poisson Processes
In the world of stochastic processes, the Poisson process holds a place of prominence for its
mathematical elegance and wide-ranging applicability. It’s a vital tool in various domains such
as queuing theory, telecommunications, and even quantum physics. The Poisson process serves
as a mathematical model for situations where events occur randomly in time or space.

4.2.1. Homogeneous Poisson Process
We start by introducing the most straightforward version of the Poisson process, the Homoge-
neous Poisson Process. In this variant, the rate at which events happen is constant over time,
making it a natural extension of the Bernoulli process under limiting conditions.

Definition 4.3 (Homogeneous Poisson Process). Let (N(t) : t ≥ 0) be a counting process.
N(t) is said to be a Homogeneous Poisson Process with rate λ > 0 if the following conditions
hold:

1. N(0) = 0

2. The increments are independent.

3. The number of events in any interval of length t follows a Poisson distribution with
mean λt.

The Homogeneous Poisson Process is uniquely characterized by its rate parameter λ, which
tells us the average number of events per unit time. It’s called ’homogeneous’ because this rate
is constant across time. This process provides a stochastic model for a variety of real-world
phenomena where events occur continuously and independently at a constant average rate.
The concept of waiting times is crucial for understanding any stochastic process, and the Poisson
process is no exception. In a Homogeneous Poisson Process, the waiting times between successive
events are exponentially distributed.

Theorem 4.4 (Exponential Waiting Times). In a Homogeneous Poisson Process with rate λ,
the time T until the first event occurs follows an exponential distribution with parameter
λ, i.e.,

P(T ≤ t) = 1− e−λt

This theorem can be derived from the properties of the Poisson process and provides essential
insights into the behavior of the system. For example, it tells us that the process has no memory,
meaning the time until the next event is independent of the past.
To prove that the waiting times are exponentially distributed in a Homogeneous Poisson Pro-
cess, let’s consider the probability that no event occurs in the interval [0, t]. According to the
definition of a Homogeneous Poisson Process, the number of events N(t) in any interval [0, t]
follows a Poisson distribution with mean λt. Therefore,

P(N(t) = 0) =
e−λt(λt)0

0!
= e−λt (4.10)

40 • Poisson Processes

Now, the time T until the first event occurs is greater than t if and only if no event occurs in
the interval [0, t]. Therefore,

P(T > t) = P(N(t) = 0) = e−λt (4.11)

To find the distribution of T , we can find its cumulative distribution function (CDF), which is
given by P(T ≤ t). The CDF is the complement of P(T > t):

P(T ≤ t) = 1− P(T > t) = 1− e−λt (4.12)

Differentiating both sides with respect to t gives us the probability density function (PDF) of
T :

fT(t) =
d

dt
P(T ≤ t) = λe−λt (4.13)

This is the PDF of an exponential distribution with rate parameter λ, completing the proof.
The memoryless property is a unique feature of the exponential distribution that has significant
implications for the Poisson process. In mathematical terms, the memoryless property for an
exponentially distributed random variable T with rate λ is described as follows:

P(T > s+ t | T > s) = P(T > t) for all s, t ≥ 0 (4.14)

This equation states that the probability that we have to wait an additional t time units given
that we’ve already waited s time units is the same as if we had not waited at all.
To prove the memoryless property, we need to show that the conditional probability P(T >

s+ t | T > s) equals P(T > t).
Starting with the definition of conditional probability:

P(T > s+ t | T > s) =
P(T > s+ t and T > s)

P(T > s)

=
P(T > s+ t)

P(T > s)

We’ve used the fact that T > s+ t implies T > s, which allows us to simplify the numerator.
Now, we know that T is exponentially distributed with rate λ, so:

P(T > s+ t | T > s) =
e−λ(s+t)

e−λs

= e−λt

= P(T > t)

This completes the proof of the memoryless property.

Theorem 4.5 (Memoryless Property). The waiting times in a Homogeneous Poisson Process
are memoryless, i.e., for any s, t ≥ 0,

P(T > s+ t | T > s) = P(T > t)

Poisson Processes • 41

4.2.2. Non-Homogeneous Poisson Process
A Homogeneous Poisson Process assumes a constant rate of events, which may not adequately
model dynamic real-world scenarios where the event rate fluctuates over time, such as in web
traffic analysis or emergency room visit frequencies. The Non-Homogeneous Poisson Process
(NHPP) generalizes this by incorporating a rate function, λ(t), that varies with time.

A counting process N(t) for t ≥ 0 is defined as a Non-Homogeneous Poisson Process if it
satisfies the following criteria:

1. N(0) = 0.

2. The increments N(t) −N(s) for 0 ≤ s < t are independent.

3. The number of events in any interval [s, t] is Poisson distributed with mean given by∫t

s
λ(u)du, where λ(u) is a time-dependent rate function.

The rate function λ(t) should be non-negative for all t and may be specified in various forms
(e.g., linear, sinusoidal, step function) to appropriately model different time-dependent beha-
viors.

Simulation

5.1 Monte-Carlo Simulation
Let X = (X1, . . . , Xn) denote a random vector having a given density function f(x1, . . . , xn) and
suppose we are interested in computing

E[g(X)] =

∫
· · ·

∫
g(x1, . . . , xn)f(x1, . . . , xn)dx1 · · ·dxn

for some n-dimensional function g. For instance, g could represent the total delay in queue of
the first bn/2c customers when the X values represent the first bn/2c inter-arrival and service
times. In many situations, it is not analytically possible either to compute the preceding multiple
integral exactly or even to numerically approximate it within a given accuracy. One possibility
that remains is to approximate E[g(X)] by means of simulation.
To approximate E[g(X)], start by generating a random vector

X(1) =

X
(1)
1...

X
(1)
n


having the joint density f(x1, . . . , xn) and then compute

Y(1) = g(X(1)).

Now generate a second random vector (independent of the first) X(2) and compute Y(2) = g(X(2)).
Keep on doing this until r, a fixed number of independent and identically distributed random
variables Y(i) = g(X(i)), i = 1, . . . , r have been generated. Now by the strong law of large
numbers, we know that

lím
r→∞

Y(1) + . . .+ Y(r)

r
= E[Y(i)] = E[g(X)]

and so we can use the average of the generated Ys as an estimate of E[g(X)]. This approach to
estimating E[g(X)] is called the Monte Carlo simulation.

Fundamental Theorem of Monte Carlo Integration
Building on the Law of Large Numbers, Monte Carlo Integration approximates integrals by
averaging function values at randomly chosen points.

Theorem 5.1 (Monte Carlo Integration). Consider a real-valued function f(x) defined over

43

44 • Monte-Carlo Simulation

a domain D. The Monte Carlo estimate for the integral
∫
D
f(x)dx is:

∫
D

f(x)dx =
1

N

N∑
i=1

f(xi),

where xi are random samples drawn uniformly from D. As N approaches infinity, and
under certain conditions, this estimate converges to the true value of the integral, thanks
to the Law of Large Numbers.

Monte Carlo Integration can be approached using indicator random variables, especially useful
when the domain of integration, D, is complex or irregularly shaped. This method leverages
random sampling and probability to provide an estimate for the integral.
The methodology is:

1. Random Sampling: Draw a random point (u1, u2) uniformly from a larger domain R

that encompasses D.

2. Indicator Variable: Define a binary random variable I as:

I =

{
1 if u1 ≤ f(u2) and (u1, u2) ∈ D

0 otherwise

This variable I is 1 if the point (u1, u2) lies below the curve of f within D, and 0 otherwise.

3. Compute the Proportion: After drawing N random points, compute the proportion
p̂ of points for which I = 1. This proportion estimates the ratio of the area under f in D

to the area of R.

4. Estimate the Integral: The integral of f over D is approximately p̂× |R|.

The expectation of the indicator random variable I is given by:

E[I] = P((u1, u2) is under f and in D)

This expectation is essentially the proportion of the area under f within D relative to R:

E[I] =
Area under f in D

|R|

The Monte Carlo estimate for this expectation, after N trials, is:

p̂ =
1

N

N∑
i=1

Ii

where Ii is the value of I for the i-th random sample. Thus, the Monte Carlo estimate for the
integral of f over D becomes:

p̂× |R|

By the Law of Large Numbers, as N grows larger, p̂ converges to E[I], making our integral
estimate increasingly accurate.

Random Number Generators • 45

Example (Estimation of π using Monte Carlo). Consider a unit circle inscribed in a unit
square. If we uniformly sample random points within this square, the probability that a
point lies inside the circle is equal to the ratio of the area of the circle to the area of the
square. Given that the area of the unit circle is π and the area of the unit square is 1, this
ratio is π

4
.

Let’s define an indicator random variable I:

I =

{
1 if the point is inside the unit circle
0 otherwise

After drawing N random points in the square, the proportion p̂ of points for which I = 1

approximates the ratio of the area of the circle to the square. Therefore, an estimate of π
is given by:

π ≈ 4× p̂

This method leverages the geometric interpretation of π and the probabilistic foundations
of Monte Carlo to provide an estimate. As N grows larger, the estimate becomes more
accurate due to the Law of Large Numbers.

Example. Consider the function f(x) = x2 over the interval [0, 1]. The actual value of this
integral is 1

3
. Using Monte Carlo integration, we can estimate this value.

As seen in the Figure, the blue curve represents the function f(x) = x2. The green dots
represent the random points that fall below the curve, and the red dots represent the points
that fall above the curve. Through this method, we estimated the value of the integral to
be approximately 0,3349, which is close to the actual value of 1

3
≈ 0,3333.

5.2 Random Number Generators

Definition 5.2 (Random number). A random number is an unpredictable value, genera-
ted independently from preceding or succeeding numbers. It lacks any discernible pattern
or regularity, making it impossible to deduce without understanding the underlying ran-
dom generation process. Additionally, a random number should accurately represent true
randomness, ensuring an equitable chance for all potential outcomes.

Moving from individual random numbers, it is essential to understand how we can generate a
series of such numbers, which leads us to the concept of a random number generator.

Definition 5.3 (Random number Generator). A Random Number Generator (RNG) is
an algorithm that produces a sequence of numbers that lacks any pattern, i.e., appears
random.
More formally, an RNG is defined as a function:

46 • Random Number Generators

R :S → T

(s) 7→ t

where:

S is the seed space, a finite set of initial states. An RNG is typically initialized with
a value in S, known as the seed.

T is the target space, typically the set of real numbers in the interval [0, 1) or a set
of integer values.

The function R maps each seed s ∈ S to a target t ∈ T in a manner that appears
random.

RNGs are essential in many areas of computing, including simulation, cryptography, and pro-
babilistic algorithms. While the outputs of an RNG may appear random, they are determined
entirely by the initial seed and are thus pseudorandom.
To get closer to ”truerandomness in computer systems, one approach is to use some fundamen-
tally unpredictable process as a source of randomness. These are known as hardware (or true)
random number generators (HRNGs or TRNGs).
For example, they might use physical processes like atmospheric noise, radioactive decay, or
even small variations in the timing of keyboard presses or mouse movements. These sources are
inherently unpredictable and do not follow a deterministic algorithm, so the numbers generated
in this way can be considered truly random.
However, HRNGs tend to be slower and more difficult to implement than PRNGs, and in many
cases, the numbers generated by PRNGs are sufficiently random for the task at hand.
With the understanding of what random numbers and their generators are, we can now lay
down some properties that a well-functioning random number generator should exhibit:

Unpredictability: Without knowing the algorithm and seed, it should be impossible to
predict future numbers.

Reproducibility: Given the same seed, the RNG should produce the same sequence of
numbers.

Representation of True Randomness: The RNG should accurately represent true
randomness, ensuring an equitable chance for all potential outcomes.

Long period: The sequence of numbers should be long before repeating.

Efficiency: The RNG should generate numbers quickly.

It’s important to note that not all random number generators will have all these properties. For
instance, cryptographic random number generators prioritize unpredictability and may sacrifice
reproducibility. The appropriate RNG for a given application depends on what properties are
most important for that use case.
The Linear Congruential Generator (LCG) is a type of pseudorandom number generator, and it
is one of the oldest and best-known pseudorandom number generator algorithms. The simplicity
of its underlying mathematical structure, combined with its fast execution and the minimal
memory it requires, have contributed to its widespread usage.

Random Number Generators • 47

Definition 5.4 (Linear Congruential Generator). The LCG generates a sequence of random
numbers via the following linear recurrence relation:

Xn+1 = (aXn + c) mód m (5.1)
where:

Xn+1 is the next number in the sequence.

Xn is the current number.

a, c, and m are constants, known as the multiplier, increment, and modulus, respec-
tively.

mód denotes the modulus operation.

The initial or seed value X0 = S, is also required to start the sequence.

The LCG is designed to generate a sequence of numbers that appear random but are determinis-
tically produced by the recurrence relation. This deterministic production makes the sequence
reproducible, an essential property in many applications.
The key idea behind the LCG is the modulus operation, which allows the generator to produce
a sequence of numbers in a specific range (0 to m− 1), regardless of the values of a, c, and Xn.
The parameters a, c, and m can be carefully chosen to produce sequences with desirable
properties. For example, with the right parameters, the LCG can achieve a long period (up
to m) before repeating, which is another important characteristic for a good pseudorandom
number generator.
The Linear Congruential Generator (LCG) has several key characteristics that shape its suita-
bility as a random number generator.
Beginning with the simplest properties, the LCG is notably reproducible and efficient. Repro-
ducibility is a crucial characteristic in many applications, such as simulations, where repeating
the same sequence of numbers is vital for replicating results. With an LCG, one can always
expect the same sequence of numbers when provided with the same seed and constants.
When it comes to efficiency, the LCG shines as well. The generation process involves merely
multiplication, addition, and modulus operations, all of which are computationally inexpensive.
The minimalistic requirement of state space, which is just the last generated number, further
enhances this efficiency. This makes LCGs an ideal choice for systems burdened by limited
computational resources or memory.
Unpredictability, another essential attribute of a good random number generator, is somewhat
of a mixed bag for the LCG. While it’s generally challenging to predict the output numbers
without knowing the multiplier, increment, modulus, and seed, a person with knowledge of
the algorithm and access to a sufficient number of sequential numbers from the sequence can
potentially calculate the constants and forecast future numbers. Due to this, LCGs are not
recommended for applications where a high level of unpredictability, such as in cryptography,
is necessary.
To have an idea of the period, consider LCG with the recurrence relation:

Xn+1 = (3Xn + 5) mód 8 (5.2)

where the seed value X0 = 1. This LCG generates a sequence of integers between 0 and 7. See

48 • Random Number Generators

figure 5.3. For this LCG, the sample space Ω for all possible output is the set {0, 1, 2, 3, 4, 5, 6, 7}.
A period of 8, as in the previous example, is indeed quite small and could introduce noticeable
patterns in the generated random numbers. It is clear that the maximum period of the LCG is
m.

5 0 3 6 1 4 7 2 5 0

Figura 5.3: A sequence of realizations from a linear congruential generator (LCG). The x-axis
represents the index in the sequence, and the y-coordinate of each point represents the value
of the LCG at that index. The sequence is shown until it begins to repeat, including the first
and second term of the repetition.

Choosing better values for the initial seed and the parameters of the RNG can lead to a longer
period. Linear Congruential Generators (LCGs) are a type of pseudorandom number generator
characterized by the recurrence relation:

Xn+1 = (aXn + c) mód m

where:

X is the sequence of pseudorandom numbers,

m (the modulus) is 0 < m,

a (the multiplier) is 0 < a < m,

c (the increment) is 0 ≤ c < m,

X0 (the seed) is 0 ≤ X0 < m.

The choice of m, a, and c significantly influences the quality and period of the pseudorandom
number sequence generated by the LCG. Some typically used values for m, a, and c are:

1. Numerical Recipes: Uses m = 232, a = 1664525, and c = 1013904223.

2. Borland C/C++: Borland’s LCG for its C/C++ compiler uses m = 232, a = 22695477,
and c = 1.

3. glibc (used in GCC): The GNU Compiler Collection’s C library uses m = 231, a =
1103515245, and c = 12345.

4. Java’s java.util.Random: Java utilizes m = 248, a = 25214903917, and c = 11.

These parameters are chosen to maximize the period of the LCG (ideally m, which is the ma-
ximum possible period for an LCG) and to ensure a good distribution of the pseudorandom
numbers across the available range. The selection of a, c, and m also aims to minimize correla-
tions between successive numbers in the sequence. Proper selection of these constants is crucial
for the statistical properties of the generated sequence.

Generating Discrete Random Variables • 49

5.3 Generating Discrete Random Variables
Suppose that we want to generate the value of a random variable X having probability mass
function

pj = P(X = xj), j = 0, 1, . . .

This can be accomplished by generating a random number U, and then setting

X =



x0, if U < p0

x1, if p0 ≤ U < p0 + p1

...
xj, if

∑j−1

i=1 pi ≤ U <
∑j

i=1 pi

...

Because P(a ≤ U < b) = b− a, for 0 < a < b < 1, we have

P(X = xj) = P

(
j−1∑
i=1

pi ≤ U <

j∑
i=1

pi

)
= pj

Remark: If the xi are such that xi < xi+1, then

X = xj if F(xj−1) ≤ U < F(xj)

where F(xk) =
∑k

i=0 pi is the distribution function of X. Therefore, the value of X is determined
by generating a random number U and then determining the interval (F(xj−1), F(xj)) in which
U lies. As this is equivalent to finding the inverse of F(U), the preceding method is called the
inverse transform algorithm for generating X.

Example: Generating a Geometric Random Variable
Recall that X is geometric with parameter p if

P(X = j) = pqj−1, j ≥ 1

where q = 1− p. Such a random variable represents the trial number of the first success when
independent trials having a common success probability p are performed in sequence. Because

j−1∑
i=1

P(X = i) = 1− P(X > j− 1) = 1− qj−1

we can generate X by generating a random number U and then setting X equal to that value j

such that
1− qj−1 ≤ U < 1− qj

or, equivalently, such that
qj < 1−U ≤ qj−1

That is,
X = mín{j : qj < 1−U}

50 • Generating Discrete Random Variables

= mín{j : j log(q) < log(1−U)}

= mín
{
j : j >

log(1−U)

log(q)

}
=

⌊
log(1−U)

log(q)

⌋
+ 1

where bxc is the largest integer less than or equal to x. Because 1−U is also uniformly distributed
on (0, 1), it follows that

X =

⌊
log(U)

log(q)

⌋
+ 1

is also geometric with parameter p.

Example: Generating a Binomial Random Variable
To generate a binomial random variable with parameters n, p, we make use of the result that
its probability mass function

pi = P(X = i) =

(
n

i

)
pi(1− p)n−i, i = 0, . . . , n

satisfies the identity
pi+1 =

n− i

i+ 1
· p

1− p
· pi

Consequently, we can express the inverse transform algorithm as follows:

1. Generate a random number U.

2. Calculate c = p

1−p
, i = 0, α = (1− p)n, F = α

3. If U ≤ F, set X = i and stop.

4. Calculate α = cn−i
i+1

α, F = F+ α, i = i+ 1

5. Go to Step 3.

Example: Generating a Poisson Random Variable
The probability mass function of a Poisson random variable with mean λ

pi = P(X = i) = e−λλ
i

i!
, i = 0, 1, . . .

is easily shown to satisfy the identity

pi+1 =
λ

i+ 1
pi, i ≥ 0 (9.1)

Using the preceding recursion equation to compute the Poisson probabilities as they become
needed, the inverse transform algorithm for generating a Poisson random variable with mean λ

can be expressed as follows. (The quantity i refers to the value under consideration at present,
α is the probability that X is equal to i, and F is the probability that X is less than or equal to
i.)

Generating continuous random variables • 51

1. Generate a random number U.

2. If i = 0, α = e−λ, F = α.

3. If U < F, set X = i and stop.

4. Otherwise, α = λ
i+1

α, F = F+ α, i = i+ 1.

5. Go to Step 3.

To check that the preceding algorithm does indeed generate a Poisson random variable with
mean λ, note that it first generates a random number U and then checks whether U < e−λ = p0.
If so, it sets X = 0; if not, it computes p1 by using the recursion Equation (9.1), and then checks
whether U < p0 + p1, and so on.

5.4 Generating continuous random variables
By using the inverse transform sampling method, we can simulate any continuous random
variable, provided we can find the inverse of its CDF. This method is widely used in simulation
studies, statistical modeling, and machine learning applications.

Theorem 5.5. If U ∼ U(0, 1) and F(·) is a valid invertible cumulative distribution function
(CDF), then

X = F−1(U)

Demostración.

P(X ≤ x) = P(F−1(U) ≤ x)

= P(U ≤ F(x))

= FU(F(x))

= F(x).

This theorem provides a straightforward way to generate numbers from an arbitrary probability
distribution by simulating uniform distriuted numbers and calculating the proper transforma-
tion.

Example. The exponential distribution with rate parameter λ > 0 has the probability
density function (pdf):

p(x; λ) = λ exp(−λx) for x ≥ 0. (5.3)
The cumulative distribution function (CDF) of the exponential distribution is:

F(x; λ) = 1− exp(−λx) for x ≥ 0. (5.4)

52 • Generating continuous random variables

The inverse of the CDF is:

F−1(y; λ) = −
1

λ
log(1− y) for 0 < y < 1. (5.5)

To generate a random sample from the exponential distribution using the inverse transform
method, we first generate a random sample y from the uniform distribution on the interval
(0, 1), and then apply the inverse CDF to y:

x = F−1(y; λ) = −
1

λ
log(1− y). (5.6)

This x is a random sample from the exponential distribution with rate parameter λ.

Theorem 5.6. Realizations of X can be generated by simulation U ∼ U(0, 1), and then

X = min{x|FX(x) ≥ U}

Demostración.

P(X = x) = P(U)(U ∈ (PX(X ≤ x− 1), PX(X ≤ x)])

= PX(X ≤ x− 1) − PX(X ≤ x)

= PX(X = x).

Simulation of NHPP Using the Thinning Method
The thinning method is a simulation technique for generating a path of an NHPP with a given
rate function λ(t). The method is implemented through the following steps:

1. Establish a constant λ∗ such that λ∗ ≥ supt≥0 λ(t).

2. Generate a sequence of independent exponential random variables X1, X2, . . . with rate
λ∗, representing the inter-event times in a homogeneous Poisson process.

3. Simultaneously, generate a sequence of independent uniform random variables U1, U2, . . .,
each uniformly distributed over [0,1].

4. Accumulate the times Ti =
∑i

j=1 Xj to find the time of the ith event. If Ti exceeds the
period of interest, terminate the simulation.

5. Retain each event Ti with probability λ(Ti)
λ∗

, effectively ’thinning’ the homogeneous Poisson
process to match the desired nonhomogeneous intensity function λ(t).

Exercises
1: The negative binomial distribution with its probability mass function is defined as:

Generating continuous random variables • 53

P(X = k) =

(
k− 1

r− 1

)
pr(1− p)k−r, k = r, r+ 1, r+ 2, . . .

where k is the total number of trials required to achieve r successes, p is the probability
of success on each trial, and the trials are independent.
Give a method for simulating a negative binomial random variable.

2: Give an algorithm for simulating a random variable having density function

f(x) = 30(x2 − 2x3 + x4), 0 < x < 1

3: Suppose we want to simulate X having probability mass function P{X = i} = Pi, i =
1, . . . , n and suppose we can easily simulate from the probability mass function Qi,

∑n

i=1Qi =
1,Qi ≥ 0. Let C be such that Pi ≤ CQi, i = 1, . . . , n. Show that the following algorithm,
named the discrete rejection method, generates the desired random variable:
Step 1: Generate Y having mass function Q and U an independent random number.
Step 2: If U ≤ PY

CQY
, set X = Y. Otherwise return to step 1.

4: Give another algorithm for generating a binomial random variable with parameters n, p,
by recalling how such a random variable arises. Compare it with the inverse transform
algorithm. Which one do you think is quicker?

Stochastic Processes

6.1 Continuous-Time Markov Chains
A continuous-time Markov chain (CTMC) is a type of stochastic process characterized by jumps
from one state to another with sojourn times that are exponentially distributed. This property
aligns with the process’s Markovian nature, which implies no memory of past states beyond
the current state. The foundational property of a CTMC can be mathematically expressed as:

P(Ti > s+ t | Ti > s) = P(Ti > t), for all s, t ≥ 0. (6.1)

The survival function S(t) is defined by the probability S(t) = P(T > t), where T is the
random variable representing the time until transition in a continuous-time Markov chain. The
memoryless property of this process is expressed as:

P(T > s+ t | T > s) = P(T > t)

Using the definition of conditional probability, this can be rewritten as:

P(T > s+ t)

P(T > s)
= P(T > t)

Substituting the survival function S(t) = P(T > t) into this equation leads to:

S(s+ t)

S(s)
= S(t)

Rearranging gives the functional equation for the survival function:

S(s+ t) = S(s)S(t)

Memoryless Property and Exponential Distribution
The memoryless property states that the probability of the process remaining in its current
state does not depend on how long it has already been in that state. This characteristic can
only be satisfied by the exponential distribution. We can demonstrate this by considering the
following reasoning:

1. Memorylessness Definition: For a random variable T , representing the time until the
chain transitions from state i, memorylessness implies:

P(T > s+ t | T > s) = P(T > t). (6.2)

2. Characterizing the Exponential Distribution:

Assume T has a cumulative distribution function F(t) = P(T ≤ t).

55

56 • Continuous-Time Markov Chains

The survival function, S(t) = P(T > t) = 1−F(t), describes the probability that the
process has not transitioned out of state i by time t.
From memorylessness, S(s+ t) = S(s)S(t).
The only continuous distribution satisfying this functional equation is the exponen-
tial distribution, where S(t) = e−λt for some λ > 0.

3. Rate of Transition:

The rate parameter λ of the exponential distribution, often denoted as νi for state
i, is the reciprocal of the expected sojourn time in state i, 1

νi
.

Transitions between states are governed by probabilities pij, where j 6= i.

Independence of Sojourn Time and Next State
An essential aspect of CTMCs is the independence between the sojourn time in state i and the
choice of the next state j. This independence is vital because any dependency would violate the
Markov property by introducing memory effects that depend on the duration in the current
state, which is contrary to the defining characteristics of Markov processes.
[Computer Algorithm Process Model] Consider a computational routine with two sequential
processes: Process 1 and Process 2. The routine begins with Process 1, which performs the initial
computation, followed by Process 2, which completes the computation with further refinement.
Let the execution times for each process be independent exponentially distributed random
variables with rates µ1 for Process 1 and µ2 for Process 2, respectively. Let’s also assume that
tasks arrive following a Poisson process with a rate of λ, and a new task is only initiated if both
processes are idle.
To model this as a continuous-time Markov chain, we define the state space to reflect the
computational pipeline:

State 0: Both processes are idle, waiting for tasks.

State 1: Process 1 is active, working on a task.

State 2: Process 1 is finished, and Process 2 is active.

The system toggles between being idle and processing a task, with no new tasks starting until
the current one is completely processed by both stages. The transition rates are denoted by

v0 = λ: Rate at which new tasks start when both processes are idle.

v1 = µ1, v2 = µ2: Rates at which Process 1 and Process 2, respectively, complete tasks.

P01 = 1: Once a task starts, it certainly goes to Process 1.

P12 = 1: After completion of Process 1, the task definitely moves to Process 2.

P20 = 1: Following Process 2, the task always leaves the system, returning it to an idle
state.

Birth-Death Process • 57

6.2 Birth-Death Process
A Birth-Death process is a specific type of continuous-time Markov chain often used to model
population dynamics, queuing systems, and chemical reactions.

Definition 6.1 (Birth-Death Process). A Birth-Death process is a continuous-time Markov
chain {X(t) : t ≥ 0} characterized by birth rates λn and death rates µn depending on the
current state n. The process evolves as follows:

From state n, it transitions to state n+ 1 with rate λn.

From state n, it transitions to state n− 1 with rate µn.

Birth-Death processes are widely used in ecology to model population growth and decline,
in computer science to model queuing systems, and in epidemiology to model the spread of
diseases.

0 1 2 …
λ0 λ1 λ2

µ1 µ2

Figura 6.1: Diagram illustrating a Birth-Death Process

Consider a system represented by the number of individuals in it at any given time. The
system follows a birth and death process, where new arrivals occur at rate λn and departures
at rate µn when there are n individuals present. The times between arrivals and departures are
exponentially distributed with means 1/λn and 1/µn, respectively. This model is a continuous-
time Markov chain with state space {0, 1, 2, . . . } and transitions between state n and n ± 1.
The transition rates and probabilities are given by:

v0 = λ0,

vi = λi + µi, i > 0,

P01 = 1,

Pi,i+1 =
λi

λi + µi

, i > 0,

Pi,i−1 =
µi

λi + µi

, i > 0.

The model assumes that the system transitions from state n to n + 1 if a birth occurs before
a death, and the probability of an exponential random variable with rate λi occurring before
one with rate µi is λi/(λi + µi).

Example (The Poisson Process). Consider a birth and death process where there are no
deaths, i.e., µn = 0 for all n ≥ 0, and the birth rate λn = λ for all n ≥ 0. This process
is then simply the Poisson process with the time between arrivals being exponentially
distributed with mean 1/λ.

58 • Birth-Death Process

Example (Birth Process with Linear Birth Rate). In a population where each individual
independently gives birth at an exponential rate λ, the total birth rate is λn = nλ when
there are n individuals. This is known as a Yule process.

Example (Linear Growth Model with Immigration). For a population where each individual
gives birth at a rate λ, and there is an immigration rate θ, the total birth rate is λn = nλ+θ.
Death occurs at a rate µn = nµ.

Example (Machine Repair Model). Consider M machines with a single repair person. Ma-
chines break down at an exponential rate 1/λ, and repairs are completed at a rate 1/µ. The
process is in state n when n machines are not working, and transitions occur as machines
break down or are repaired.

Example (Two-State Continuous-Time Markov Chain). A machine works for an exponential
time with mean 1/λ before failure and is repaired in an exponential time with mean 1/µ.
With state 0 representing a working machine and state 1 representing a machine being
repaired, this system is modeled by a two-state continuous-time Markov chain.

6.2.1. Gillespie Algorithm for Species Evolution
The Gillespie Algorithm, traditionally used in chemical kinetics, is adeptly adapted here for
modeling stochastic speciation and extinction events in species evolution. This approach is par-
ticularly useful in ecological studies where the population dynamics are influenced significantly
by random discrete events.

Procedure of the Gillespie Algorithm
The Gillespie Algorithm simulates the sequence and timing of speciation and extinction events
based on current population state, with the following steps:

1. Initialization: Set the initial number of species N(0) and start the simulation at time
t = 0.

2. Rate Calculation: Calculate the total rates of speciation (λ) and extinction (µ) based
on the current number of species N(t). Each species has a chance to speciate or go extinct,
thus the total rates are:

λtotal = N(t)× λ, µtotal = N(t)× µ

The total rate of any event occurring is a0 = λtotal + µtotal.

3. Determine Waiting Time: Compute the time ∆t until the next event occurs using an
exponential distribution:

∆t =
1

a0

ln
(
1

r

)
,

Renewal Theory • 59

where r is a random number uniformly distributed between 0 and 1.

4. Event Selection: Determine the next event type (speciation or extinction) by sampling
from a multinomial distribution. The probabilities are proportional to the rates:

P(Speciation) = λtotal

a0

, P(Extinction) = µtotal

a0

.

5. Update System: Adjust the number of species N(t) according to the type of event.
Increase by one for speciation, decrease by one for extinction.

6. Advance Time: Update the simulation time by ∆t, setting t = t+ ∆t.

7. Repeat: Continue the simulation until a stopping criterion is met, such as reaching a
specified final time or a critical population threshold.

Example

Example. Imagine a small island ecosystem starting with 10 species. The speciation rate
λ is 0.1 per year per species, and the extinction rate µ is 0.05 per year per species. Using
the Gillespie Algorithm, one can simulate the number of species over 100 years to study
possible extinction scenarios or flourishing of biodiversity.

6.3 Renewal Theory
Renewal Theory is a branch of probability theory that deals with the times at which events
recur. It is particularly useful in processes where events occur repeatedly over time at random
intervals, such as in queueing systems, reliability engineering, and stochastic modeling for bio-
logical or financial applications.

A Renewal Process is a sequence of times at which a given event (such as a system failure and
repair, or customer arrival) occurs. Mathematically, let {Xn}

∞
n=1 be a sequence of independent

and identically distributed (i.i.d.) positive random variables representing the times between
consecutive events (inter-arrival times). The times of occurrences of the events are then given
by the partial sums:

S0 = 0, Sn =

n∑
i=1

Xi for n ≥ 1,

where Sn is the time of the n-th event.

Basic Concepts in Renewal Theory
Renewal Function: The Renewal Function M(t) represents the expected number of
times the event has occurred by time t, defined as:

M(t) = E[Number of renewals by time t] =

∞∑
n=0

P(Sn ≤ t).

60 • Renewal Theory

Inter-arrival Distribution: The times between events are described by their probability
distribution, which significantly influences the behavior of the Renewal Process. Common
distributions include exponential, gamma, and Weibull distributions, each suitable for
different types of applications.

Renewal Equation: The Renewal Equation is a key relation in Renewal Theory, relating
the renewal function with the inter-arrival distribution. It is given by:

m(t) = F(t) +

∫ t

0

m(t− x)dF(x),

where F(t) is the cumulative distribution function of the inter-arrival times and m(t) is
the density function of the renewal function M(t).

Applications of Renewal Theory
Renewal Theory provides the mathematical foundation for analyzing and predicting the beha-
vior of systems where events happen recurrently over time. Applications include:

Queueing Theory: Modeling the arrival of customers in a service system.

Reliability Engineering: Assessing product lifetimes and maintenance schedules.

Inventory Management: Determining restocking times based on usage rates.

Biological Systems: Modeling recurrent biological phenomena such as heartbeats or
neural activity.

Limit Theorems in Renewal Theory
Two fundamental results in Renewal Theory are the Elementary Renewal Theorem and the Key
Renewal Theorem, which provide long-term insights about the behavior of renewal processes:

Elementary Renewal Theorem: States that the average number of renewals in a unit
time interval stabilizes as time goes to infinity:

lím
t→∞

M(t)

t
=

1

µ
,

where µ is the expected value of the inter-arrival time X1.

Key Renewal Theorem: Provides a more general conclusion, which is useful for non-
identical distributions and complex scenarios. It is particularly valuable in deriving steady-
state behaviors in stochastic processes:

lím
t→∞

∞∑
n=0

f(t− Sn) =

(∫∞
0

f(u)du

)(
1

µ

)
,

for directly Riemann integrable function f, showing that the process stabilizes according
to the mean inter-arrival time.

Queuing Theory • 61

6.4 Queuing Theory
Queuing Theory is the mathematical study of waiting lines, or queues. It uses models to show
the process of arriving at the queue, waiting in the queue (if any), and being served by the ser-
ver(s). This theory is applicable in various fields such as telecommunications, traffic engineering,
computing, and in the design and operation of factories, shops, offices, and hospitals.
These processes are birth-death processes, characterized by the rates at which new customers
arrive (births) and existing customers are served (deaths).

Definition

Let {X(t)}t≥0 be a continuous-time Markov chain with state space {0, 1, 2, . . .}. The process X(t)
is a birth-death process if transitions can only occur between neighboring states, specifically:

P(X(t+ ∆t) = n+ 1 | X(t) = n) = λn∆t+ o(∆t),

P(X(t+ ∆t) = n− 1 | X(t) = n) = µn∆t+ o(∆t),

where λn is the birth rate and µn is the death rate.

Steady-State Solution

The steady-state probabilities πn are the long-run probabilities that the system is in state n.
These probabilities satisfy the balance equations:

λn−1πn−1 = µnπn, n ≥ 1,

and the normalization condition: ∞∑
n=0

πn = 1.

Solving the balance equations, we get:

πn = π0

n−1∏
i=0

λi

µi+1

, n ≥ 1,

where π0 is determined by the normalization condition:

π0

(
1+

∞∑
n=1

n−1∏
i=0

λi

µi+1

)
= 1.

Queuing Networks
A queuing network consists of multiple interconnected queues. Customers move between queues,
and the performance of the entire network is of interest.

Open Queuing Networks: Customers can enter from outside the network, pass through
one or more service nodes, and then leave the network. The arrival process is usually modeled
as a Poisson process.

62 • Reliability Theory

Closed Queuing Networks: The total number of customers is fixed. Customers circulate
within the network, moving from one service node to another.

Jackson Networks

Jackson Networks are a class of queuing networks where the nodes are interconnected such that
the arrival process to each node is a Poisson process, and the service times are exponentially
distributed.

Steady-State Distribution: For a network with K nodes, let λi be the effective arrival rate
at node i and µi be the service rate at node i. The steady-state probability P(n) of having ni

customers at node i (for n = (n1, n2, . . . , nK)) is given by:

P(n) =
K∏
i=1

(
ρ
ni

i

(1− ρi)

)
,

where ρi =
λi
µi

is the utilization of node i.

Performance Measures

Typical performance measures in queuing networks include:

Average number of customers L in the system or queue:

L =

∞∑
n=0

nπn.

Average time W a customer spends in the system:

W =
L

λeff
,

where λeff is the effective arrival rate.

Utilization ρ of each server:
ρ =

λ

µ
.

6.5 Reliability Theory
Reliability Theory is a field of study that deals with the ability of a system or component to
function under stated conditions for a specified period. It is widely used in engineering, quality
control, and risk assessment to predict and improve the performance and safety of products
and systems.

System Reliability
System reliability refers to the probability that a system will perform its intended function for
a given period under specified conditions. Systems can be composed of multiple components
arranged in series, parallel, or combinations of both.

Brownian Motion • 63

Series Systems

In a series system, all components must function for the system to function. If any component
fails, the entire system fails. Let Ri(t) be the reliability of component i at time t. The reliability
of a series system with n components is:

Rseries(t) =

n∏
i=1

Ri(t).

Parallel Systems

In a parallel system, the system functions as long as at least one component functions. Let
Ri(t) be the reliability of component i at time t. The reliability of a parallel system with n

components is:

Rparallel(t) = 1−

n∏
i=1

(1− Ri(t)).

Complex Systems

For systems with combinations of series and parallel components, reliability can be determined
using methods such as reliability block diagrams or fault tree analysis. The overall system
reliability is a function of the reliabilities of individual components and their configuration.

Failure Models
Failure models describe the statistical behavior of component lifetimes. These models are es-
sential for predicting and improving system reliability.

Applications of Reliability Theory
Reliability Theory is used in various applications to ensure that systems are dependable and
to optimize maintenance schedules.

Reliability Engineering: Assessing and improving product lifetimes and maintenance
schedules.

Quality Control: Monitoring and improving manufacturing processes to reduce defects
and failures.

Risk Assessment: Evaluating the reliability and safety of critical systems such as ae-
rospace, nuclear power, and medical devices.

6.6 Brownian Motion
Brownian Motion is a continuous-time stochastic process that models random movement, of-
ten used to describe the erratic behavior of particles suspended in a fluid. It has significant
applications in physics, finance, and various fields of engineering.

64 • Brownian Motion

Wiener Process
The Wiener process, named after Norbert Wiener, is the mathematical formalization of Brow-
nian Motion. It is a fundamental process in stochastic calculus and has the following properties:

Definition

A Wiener process {W(t)}t≥0 is a continuous-time stochastic process that satisfies the following
properties:

1. W(0) = 0.

2. W(t) has independent increments.

3. W(t) −W(s) ∼ N(0, t− s) for 0 ≤ s < t.

4. W(t) has continuous paths.

Properties

Markov Property The future evolution of the process depends only on the current state
and not on the past history:

P(W(t+ h) ≤ x | Ft) = P(W(t+ h) ≤ x | W(t)),

where Ft is the filtration representing the history up to time t.

Martingale Property The Wiener process is a martingale, meaning:

E[W(t) | Fs] = W(s), for 0 ≤ s ≤ t.

Quadratic Variation The quadratic variation of W(t) over the interval [0, t] is:

[W](t) = t.

Applications in Finance
Brownian Motion is extensively used in financial mathematics to model the behavior of asset
prices and to derive various financial instruments.

Geometric Brownian Motion (GBM)

A widely used model for stock prices is the Geometric Brownian Motion (GBM), which assumes
that the logarithm of the stock price follows a Brownian Motion with drift. The stochastic
differential equation (SDE) for GBM is:

dSt = µSt dt+ σSt dWt,

where St is the stock price at time t, µ is the drift rate, σ is the volatility, and Wt is a Wiener
process.

Brownian Motion • 65

Solution to GBM The solution to this SDE is given by:

St = S0 exp
((

µ−
σ2

2

)
t+ σWt

)
,

where S0 is the initial stock price.

Black-Scholes Model

The Black-Scholes model for option pricing is derived using GBM. The price of a European call
option is given by the Black-Scholes formula:

C(St, t) = StΦ(d1) − Ke−r(T−t)Φ(d2),

where:

d1 =
ln(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,

Φ is the cumulative distribution function of the standard normal distribution, K is the strike
price, T is the maturity, and r is the risk-free interest rate.

Applications in Physics
In physics, Brownian Motion describes the random motion of particles suspended in a fluid,
providing insights into the kinetic theory of gases and the behavior of microscopic particles.

Einstein’s Explanation

Albert Einstein’s explanation of Brownian Motion provided a theoretical foundation for the
kinetic theory of gases. He related the mean squared displacement of a particle to time and
temperature:

〈x2〉 = 2Dt,

where D is the diffusion coefficient.

Langevin Equation

The Langevin equation provides a description of the dynamics of particles under the influence
of random forces:

m
d2x

dt2
= −γ

dx

dt
+ η(t),

where m is the mass of the particle, γ is the friction coefficient, and η(t) is a random force
representing the thermal fluctuations.

Applications in Engineering
Brownian Motion is used in engineering to model noise and fluctuations in systems, providing
a framework for designing systems that can operate reliably under random perturbations.

66 • Brownian Motion

Stochastic Control

In control engineering, stochastic control involves designing controllers that can handle systems
with inherent randomness. The Linear Quadratic Gaussian (LQG) controller is an example that
uses a combination of linear dynamics, Gaussian noise, and quadratic cost functions.

Signal Processing

In signal processing, Brownian Motion models can be used to describe the behavior of noise in
electronic circuits and communication systems. Techniques such as Kalman filtering are used
to estimate the state of a system in the presence of random noise.

Mathematical Tools
Advanced applications of Brownian Motion often require sophisticated mathematical tools,
including:

Ito Calculus

Ito calculus extends the standard calculus to handle stochastic integrals. The Ito Lemma is a
fundamental result used to find the differential of a function of a stochastic process:

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t,

where [X]t is the quadratic variation of Xt.

Stochastic Differential Equations (SDEs)

SDEs are used to model systems influenced by random noise. They take the form:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt,

where µ is the drift term and σ is the diffusion term.

Stochastic Modeling

Definition 7.1 (Program). A program P is defined as a tuple (M,θ), where:

M : I → O is a function from the input space I to the output space O. M encapsulates
the operational logic of the program, defining specific computations to transform each
input i ∈ I into an output o ∈ O.

θ ∈ Θ are the parameters of the model M, with Θ representing the parameter space.
These parameters adjust the function M, allowing it to be specialized or generalized
according to different tasks or datasets.

In operational terms, for a given input x ∈ I, the program applies M parameterized by θ

to produce an output y, expressed as y = Mθ(x). This computation models the essential
mechanism by which the program processes data and generates results.

Example (Sorting Program). Let I = {x | x is a list of integers} and O = {y | y is a list of integers sorted in non-decreasing order}.
Define a sorting program with M : I → O such that for any x ∈ I, M(x) = y, where y is
the permutation of x sorted in non-decreasing order.

Another example involves image recognition tasks. Let’s consider an image as a matrix:

Example (Dog/Cat Identification Program). Consider Im as a matrix representing a grays-
cale image, where each element Imij denotes the pixel intensity at position (i, j). Let
I = {Im | Im is a m × n matrix} and O = { ′dog ′, ′ cat ′}. Define a classification program
with M : I → O trained to map an input image Im ∈ I to a label y ∈ O based on its
content.

These examples demonstrate how a program as defined by the function M and its parameters
θ, effectively maps inputs to outputs within specified computational domains.

7.1 Linear Regression
Linear regression is a fundamental statistical method for prediction, modeling the relationship
between a dependent variable and one or more explanatory variables.
Consider a dataset {(u(i), v(i))}Ni=1, with each u(i) ∈ Rp as a vector of p input features, and
v(i) ∈ R as the corresponding observed output. We define the model function M as:

Mθ(u
(i)) = θ0 +

p∑
j=1

θju
(i)
j ,

67

68 • Logistic Regression

where θ = (θ0, θ1, . . . , θp) are the model parameters, including the intercept θ0 and coefficients
θj for each feature.
The goal of linear regression is to find the parameter set θ that minimizes the sum of squared
residuals, effectively fitting the model to the data. This objective is formulated as:

mín
θ

N∑
i=1

(
v(i) −Mθ(u

(i))
)2
.

To address this optimization problem using the least squares method, the design matrix U,
which facilitates the solution, is structured as follows:

U =


1 u

(1)
1 u

(1)
2 · · · u

(1)
p

1 u
(2)
1 u

(2)
2 · · · u

(2)
p

...
1 u

(N)
1 u

(N)
2 · · · u

(N)
p

 ,

where each row corresponds to an input vector u(i), augmented with a leading 1 to account for
the intercept θ0.
The least squares solution to the optimization problem is then computed as:

θ∗ = (UTU)−1UTv, (7.1)

where v is the vector of observed outputs.
So, given data, we can ‘train’ a model directly using equation 7.1 and obtain a program, to
predict the outcome of future input features.

7.2 Logistic Regression
Logistic regression is a key method for binary classification, predicting probabilities of binary
outcomes effectively. This approach is particularly suitable for scenarios where the response
variable is categorical, such as in medical diagnostics, spam detection, or credit scoring.
Consider a dataset {(u(i), v(i))}Ni=1, where each u(i) ∈ Rp is a vector of p input features and
v(i) ∈ {0, 1} denotes the binary outcomes. The logistic regression model function M is defined
as:

Mθ(u
(i)) = σ(θTu(i)),

where
σ(z) =

1

1+ e−z

is the logistic sigmoid function that converts a linear combination of inputs into a probability.
Probability Model and Loss Function: The outcome v(i) is modeled as a Bernoulli random
variable with the success probability p(i) = Mθ(u

(i)). The probability of observing v(i) given
u(i) under model parameters θ is given by:

p(v(i) | u(i), θ) = (p(i))v
(i)

(1− p(i))1−v(i).

The likelihood function L(θ), representing the joint probability of observing all the v(i) given
u(i) for i = 1, . . . ,N, is:

L(θ) =

N∏
i=1

(p(i))v
(i)

(1− p(i))1−v(i),

Support Vector Machines • 69

and the log likelihood, which we seek to maximize, is:

ℓ(θ) =

N∑
i=1

[
v(i) log(p(i)) + (1− v(i)) log(1− p(i))

]
.

The goal is to find θ that maximizes ℓ(θ), or equivalently minimizes the negative of ℓ(θ):

mín
θ

−ℓ(θ) = −

N∑
i=1

[
v(i) log(p(i)) + (1− v(i)) log(1− p(i))

]
.

Optimization and Model Training: This optimization problem is generally solved using
iterative techniques such as gradient descent, where each step aims to adjust θ to reduce the
negative log likelihood, improving the model fit to the data.

Upon training, the logistic regression model M can then be used as a predictive tool, estimating
the probability that new inputs fall into one of the binary categories. This capability makes
logistic regression a powerful class of programs within the framework of stochastic modeling for
prediction.

Example (Predicting Programming Project Success). Logistic regression is employed to pre-
dict the success of programming projects based on evaluations from two experts. Each
expert assesses the projects independently, and the logistic model predicts the probability
of project success using these assessments.
Given several programming projects evaluated by the experts, the logistic regression model
is formulated as:

p(Success) = 1

1+ e−z
,

where z is a linear combination of the expert ratings:

z = β0 + β1Expert1 + β2Expert2.

Model Training: The model is trained using a dataset where each project is labeled as
‘1’ (success) or ‘0’ (failure) based on historical outcomes. The coefficients β1 and β2 are
optimized to minimize the prediction error, using methods like gradient descent.
Prediction: The success probability p(Success) for each project is calculated. Projects
with p(Success) ≥ 0,5 are predicted as likely to succeed.
Decision-making:

Projects predicted to succeed may receive additional resources or prioritization.

Projects with low success probabilities might be reviewed or modified.

7.3 Support Vector Machines
Support Vector Machines (SVMs) are powerful supervised learning models used for classification
and regression tasks. The primary objective in SVM is to establish a hyperplane that maximally
separates the classes in the feature space.

70 • Support Vector Machines

Cuadro 7.1: Expert Ratings and Project Outcomes

Project ID Expert 1 Expert 2 Outcome (Success=1)
Project A 8 5 1
Project B 6 5 0
… … … …
Project N 3 9 ?

Definition and Composition of SVM

Definition 7.2 (Support Vector Machine). A Support Vector Machine M is characteri-
zed by a separating hyperplane which divides the feature space I into classes that maximize
the margin between the nearest members of different classes, which are termed as support
vectors.

Mathematical Model
The optimal hyperplane can be represented by the equation:

wTx + b = 0,

where w is the weight vector perpendicular to the hyperplane, x is the input feature vector,
and b is the bias.
The objective is to maximize the margin between the hyperplane and the nearest training data
point of any class, which is mathematically given by:

máx
w,b

2

‖w‖
,

subject to the constraints for each data point (xi, yi) in the training set:

yi(wTxi + b) ≥ 1, ∀i.

Kernel Trick
For non-linear classification, SVMs use the kernel trick to transform the input space into a
higher-dimensional space where a linear separator might exist. The kernel function K relates to
the dot product of two feature vectors in this new space:

K(xi, xj) = ϕ(xi)
Tϕ(xj),

where ϕ is the transformation function to the higher-dimensional space.

Optimization and Learning
The optimization problem in SVMs involves minimizing a quadratic function subject to linear
constraints, which is typically solved using methods such as Sequential Minimal Optimization
(SMO). Once the model parameters w and b are determined, the SVM model M acts as a
program that assigns new inputs x to one of the categories based on the sign of wTx + b.

Support Vector Machines • 71

Implementation in Data Analysis
In practice, SVMs are used to solve a variety of real-world problems such as image classification,
voice recognition, and biological classification, demonstrating robust performance across a wide
range of data types and complexities.
This structured approach allows SVMs to model complex relationships in data by maximizing
the margin between class boundaries, providing a strong predictive performance characterized
by generalization to unseen data.

Generalized Additive Models

Definition 7.3 (Generalized Linear Models). Generalized Linear Models (GLMs) are a broad
class of models that extend traditional linear regression by allowing for a response variable
v(i) whose distribution is a member of the exponential family, and by utilizing a link
function to relate the expected value of the response to the linear predictor. This flexibility
allows GLMs to handle a wider range of data types than standard linear regression.

Consider a dataset {(u(i), v(i))}Ni=1, with each u(i) ∈ Rp representing a vector of p input features,
and v(i) representing the observed responses. The systematic component of a GLM, or the linear
predictor, is defined as:

η(i) = θTu(i),

where η(i) functions as a combination of the input features weighted by the model parameters
θ. The link between the mean of the response distribution µ(i) = E(v(i)) and the linear predictor
is established through a link function g:

µ(i) = g−1(η(i)).

Link Function and Response Distribution: The choice of the link function, such as the
logit for the binomial distribution or the natural log for the Poisson distribution, is crucial and
depends on the nature of the response variable. This ensures the appropriateness of the model
to the data and allows for the modeling of variables that are counts, proportions, or times until
an event.
Loss Function and Estimation: The estimation of parameters in GLMs is generally per-
formed through maximum likelihood estimation (MLE). The likelihood function, based on the
chosen exponential family distribution, is:

L(θ) =

N∏
i=1

f(v(i) | u(i); θ),

where f is the probability density or mass function. The corresponding loss function, utilized
during the optimization process, is the negative log-likelihood:

mín
θ

− logL(θ) = −

N∑
i=1

log f(v(i) | u(i); θ).

Generalized Additive Models (GAMs): As a subclass of GLMs, Generalized Additive
Models (GAMs) further generalize the linear predictor to include non-linear terms via smooth
functions. In GAMs, the linear predictor may include terms like:

η(i) = β0 + s1(u
(i)
1) + s2(u

(i)
2) + · · ·+ sp(u

(i)
p),

72 • Neural Networks

where sj are smooth functions of the predictors that capture non-linear relationships. This
addition enhances the model’s ability to capture complex patterns in the data, making GAMs
particularly useful in ecological and environmental modeling.
Optimization and Practical Implementation: Optimization methods such as Newton-
Raphson or iterative re-weighted least squares (IRLS) are commonly employed to find the
best-fitting model parameters θ that minimize the loss function. This process is key to ensuring
that the GLM or GAM accurately reflects the underlying data relationships.

Once trained, both GLM and GAM function as predictive programs, mapping input featu-
res to predicted outcomes effectively. This capability makes them invaluable tools for diverse
applications in predictive modeling across numerous scientific disciplines.

7.4 Neural Networks
Neural networks are sophisticated mathematical frameworks designed to emulate certain pro-
cessing patterns found in biological neural systems. Below, we describe the foundational com-
ponents and the mathematical structure of neural networks.

General Structure
Neural networks consist of layers of interconnected nodes called neurons. Each neuron in a layer
is connected to several other neurons in the previous and next layers, forming a network that
can propagate data forward from input to output.

Definition 7.4 (Neural Network Architecture). A Neural Network M is formally defined by
its architecture, which includes layers of neurons, and a set of weights w. The architecture
determines how inputs are transformed through the network:

M(x;w) = fL ◦ · · · ◦ f1(x;w1, . . . ,wL)

where x is the input vector to the network, wi denotes the weights for the i-th layer, and
fi are the transformation functions specific to each layer.

Key Operations
Linear Combination: Each neuron computes a weighted sum of its inputs, which serves as
the input to a non-linear activation function. The output of each neuron is given by:

y = f

(
n∑
i=1

wixi + b

)
,

where xi are the inputs to the neuron, wi are the corresponding weights, b is a bias term, and
f is a non-linear activation function.
Convolutional Layers (specific to CNNs): In CNNs, convolutional layers apply filters to
the input, capturing spatial features:

(S ∗ K)(i, j) =
m∑
u=1

m∑
v=1

S(i+ u, j+ v)K(u, v),

Neural Networks • 73

where S is the input matrix, K is a kernel of size m×m, and i, j index the output feature map.
Activation Functions: Activation functions such as ReLU (Rectified Linear Unit) introduce
non-linear properties to the network:

f(x) = máx(0, x),

allowing the network to learn complex patterns in data.

Learning and Optimization
Backpropagation: Neural networks adjust their weights through backpropagation, where
errors between the predicted and actual outputs are propagated back through the network
to update the weights.
Gradient Descent: This optimization method updates weights by moving in the direction
that minimally increases the loss function:

wnew = wold − η∇L(w),

where η is the learning rate and ∇L(w) is the gradient of the loss function with respect to the
weights.
We will see in detail the main stochastic optimization methods in next lecture.

Stochastic Optimization
An optimization problem seeks to find the minimum or maximum of a function subject to
constraints, formally defined as:

Minimize f(x) subject to x ∈ X ,

where f : Rn → R is the objective function and X ⊆ Rn denotes the feasible set.

8.1 Evolutionary Algorithms
Evolutionary Algorithms (EAs) are a class of stochastic optimization algorithms inspired by
biological evolution. They operate on a population P of candidate solutions (individuals), evol-
ving this population through iterations (generations) using mechanisms analogous to those
found in natural selection and genetics.
An evolutionary algorithm can generally be described by the following steps:

1. Initialization: Generate an initial population P(0) of N individuals randomly. Each in-
dividual x(0)i represents a potential solution to the optimization problem.

2. Evaluation: Compute the fitness f(xi) for each individual xi in the population, where
f : X → R is the fitness function that measures the quality of solutions.

3. Selection: Select individuals based on their fitness to form a mating pool. The selection
probability Ps(xi) of an individual xi often depends on its relative fitness to the population:

Ps(xi) =
f(xi)∑N

j=1 f(xj)

4. Crossover: Apply the crossover operator to pairs of individuals in the mating pool
to produce offspring, forming a new generation. A common method is the arithmetic
crossover, where the offspring is a weighted average of the parents:

xoffspring = αxparent1 + (1− α)xparent2

where xparent1 and xparent2 are the genetic vectors of the two selected parents, and α is a
randomly chosen weight between 0 and 1.

5. Mutation: Apply the mutation operator with a small probability to new offspring to
maintain genetic diversity within the population. Mutation randomly alters the genes of
individuals, modeled as:

x ′
i = xi + ϵ, ϵ ∼ N (0, σ2)

where ϵ represents a small random perturbation.

75

76 • Evolutionary Algorithms

6. Replacement: Generate the next generation population by replacing some or all of the
older individuals with new offspring, based on their fitness.

7. Termination: Repeat the evaluation through replacement steps until a termination cri-
terion is met (e.g., a maximum number of generations or a satisfactory fitness level).

Evolutionary algorithms are characterized by their adaptability and robustness in various opti-
mization tasks. They are capable of converging to a global optimum under certain conditions,
making them suitable for complex solution spaces.

Theorem 8.1 (Schema Theorem and Global Convergence). Under ideal conditions, such as
infinite population sizes and generations, evolutionary algorithms can converge to a global
optimum in continuous optimization problems. In genetic algorithms, patterns (schemata)
with higher fitness than average tend to increase in frequency over generations. This is
expressed as:

E(mH,t+1) ≥ mH,t

fH

f̄

where mH,t is the number of instances of schema H at generation t, fH is the average fitness
of those instances, and f̄ is the average fitness of the population. This shows that favorable
genetic patterns spread more, guiding the population towards better solutions.

Evolutionary algorithms exhibit robust performance across a broad spectrum of problems, be-
nefiting from their ability to avoid local optima through stochastic behaviors such as mutations.
The convergence rate can vary greatly and is influenced by factors such as the fitness landscape
and algorithm parameters like mutation rates and crossover methods.

The complexity of evolutionary algorithms is primarily influenced by the population size, the
dimensionality of the solution space, and the computational cost of fitness evaluations. The
long-term behavior and stability of these algorithms can be modeled using dynamical systems
theory and Markov chains, ensuring that performance does not deteriorate over time.

Genetic Algorithms (GA)

Typically use binary strings or fixed-length vectors.

Example: xi = [xi1, xi2, . . . , xin], where xij ∈ {0, 1}.

Regarding mutation:

Usually involves flipping bits in a binary string.

Example: If xi = [1, 0, 1], mutation might change it to x ′
i = [1, 1, 1].

Crossover:

Combines parts of two parent solutions to create offspring.

Evolutionary Algorithms • 77

Example: Single-point crossover:

Parent 1: xi = [1, 0, 1 | 0, 1, 1]

Parent 2: xj = [0, 1, 0 | 1, 0, 0]

Offspring: yk = [1, 0, 1 | 1, 0, 0]

Selection:

Based on fitness, using methods like roulette wheel or tournament selection.

Example: Probability of selection P(xi) =
f(xi)∑
j f(xj)

.

Differential Evolution (DE)

Representation:

Uses real-valued vectors.

Example: xi = [xi1, xi2, . . . , xin], where xij ∈ R.

Mutation:

Creates a donor vector by adding the weighted difference between two population vectors
to a third vector.

Example:
vi = xr1 + F · (xr2 − xr3)

where r1, r2, r3 are distinct indices, and F is a scaling factor.

Crossover:

Combines donor vector with target vector to create a trial vector.

Example: Binomial crossover:

uij =

{
vij if randj(0, 1) ≤ CR or j = jrand

xij otherwise

where CR is the crossover probability.

Selection:

Compares trial vector with target vector and selects the one with better fitness.

Example:

x(t+1)
i =

{
ui if f(ui) ≤ f(xi)

xi otherwise

78 • Stochastic gradient descent

8.2 Stochastic gradient descent

Deterministic Optimization
For convex and differentiable functions, the gradient descent update rule is:

xk+1 = xk − αk∇f(xk),

ensuring convergence to the global minimum under appropriate conditions on the step size αk.

Example (Gradient Descent on a Quadratic Function). Consider minimizing a simple qua-
dratic function f(x) = 1

2
x2. The gradient of this function is ∇f(x) = x, and applying the

gradient descent update rule with a fixed step size αk = 0,1, starting from x0 = 10, we get:

x1 = 10− 0,1× 10 = 9,

x2 = 9− 0,1× 9 = 8,1,

and so forth. This sequence shows that xk converges to 0 as k increases, illustrating the
rate at which values approach the minimum.

Newton’s Method: This is another powerful technique in deterministic optimization, parti-
cularly useful for functions that are twice differentiable. It improves upon gradient descent by
considering the curvature of the function. The update formula for Newton’s method is:

xk+1 = xk −H−1(xk)∇f(xk),

where H−1(xk) is the inverse of the Hessian matrix at xk. This method provides quadratic
convergence near the optimum under suitable conditions, significantly faster than the linear
convergence of gradient descent.

However, deterministic methods can be limited in practical scenarios where the objective fun-
ction is noisy or only partially known, which leads us to Stochastic Optimization.

Stochastic optimization is necessary when the function f is noisy or evaluations are computatio-
nally expensive, requiring methods that can handle uncertainty and incomplete information.
Updates in Stochastic Gradient Descent (SGD) are based on noisy estimates of the gradient:

βk+1 = βk − αk∇̃f(βk),

where αk is the learning rate, and ∇̃f(βk) represents a stochastic approximation of the gradient.

Monte Carlo Approximation

Monte Carlo methods estimate expectations by random sampling. To approximate the gradient
∇f(βk) when the exact calculation is computationally expensive, we use:

∇̃f(βk) ≈
1

N

N∑
i=1

∇f(βi),

Stochastic gradient descent • 79

where βi are independent and identically distributed (i.i.d.) samples drawn from the distribution
of β, and N is the number of samples. This approach is particularly useful when the gradient
∇f(β) cannot be computed exactly or when it’s too expensive to evaluate over the entire
dataset.
Monte Carlo methods leverage the law of large numbers, which states that as the number of
samples N increases, the average of the sampled gradients converges to the true gradient. This
reduces the variance of the gradient estimate, making the update direction more reliable while
maintaining computational efficiency.

ADAM Optimizer

ADAM (Adaptive Moment Estimation) is an extension of stochastic gradient descent that incor-
porates momentum and adaptive learning rates for each parameter. It combines the advantages
of two other extensions of stochastic gradient descent, namely AdaGrad and RMSProp.
Key Features of ADAM:

It stores an exponentially decaying average of past squared gradients vt and an exponen-
tially decaying average of past gradients mt.

It corrects these moments to counteract their initialization at the origin.

Update Rule: The parameters are updated as follows:

mt = β1mt−1 + (1− β1)∇f(xt),

vt = β2vt−1 + (1− β2)(∇f(xt))
2,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

xt+1 = xt − α
m̂t√
v̂t + ϵ

.

where:

β1 and β2 are parameters controlling the exponential decay rates of these moving averages.

α is the learning rate.

ϵ is a small scalar used to prevent division by zero.

This update mechanism adjusts the learning rate for each parameter based on estimates of first
and second moments of the gradients, enabling efficient convergence even for functions with
noisy or sparse gradients.

Advanced Gradient Methods focus on modern techniques with momentum and adaptive rates,
crucial for applications in deep learning. Distributed Optimization cover optimization over finite
sums and distributed techniques, including the decentralized gradient descent model:

xk+1
i = xki − αk

(
∇fi(x

k
i) +

∑
j∈Ni

wij(x
k
i − xkj)

)
.

80 • Stochastic gradient descent

Mini-Batch Gradient Descent

Another common approach in SGD is to use a mini-batch of data points to approximate the
gradient. Let Bk be the mini-batch at iteration k. The approximate gradient is:

∇̃f(βk) =
1

|Bk|

∑
i∈Bk

∇fi(βk),

where fi(βk) is the objective function evaluated at sample i in the mini-batch, and |Bk| denotes
the number of samples in the mini-batch.
Why These Methods Work

Stochastic Nature: Functions like f(β) might represent expectations over a probability
distribution. By sampling, we capture the variability in the data, and the average gradient
of these samples provides an unbiased estimate of the true gradient.

Law of Large Numbers: As the number of samples increases, the average of the sampled
gradients converges to the true gradient, reducing the variance of the estimate.

Computational Efficiency: Using subsets of data or random samples significantly reduces
the computational cost per iteration compared to deterministic gradient descent.

Both Monte Carlo approximation and mini-batch gradient descent are essential for efficiently
handling large-scale and noisy optimization problems, offering a balance between computational
efficiency and gradient estimation accuracy.

Distributed Optimization

Distributed optimization involves performing optimization tasks across multiple processors or
nodes to reduce the computational burden on a single processor and enhance scalability. Let D
be the entire dataset, partitioned into M subsets Dm such that:

D =

M⋃
m=1

Dm.

Each node m holds a subset Dm and performs local computations. The global optimization
problem is:

mín
x∈Rn

1

M

M∑
m=1

Fm(x),

where Fm(x) =
1

|Dm|

∑
i∈Dm

fi(x).
In distributed gradient descent, each node computes its local gradient:

∇̃Fm(xk) =
1

|Dm|

∑
i∈Dm

∇fi(xk),

and the gradients are aggregated to update the global parameter x:

xk+1 = xk − αk

1

M

M∑
m=1

∇̃Fm(xk).

Expectation-Maximization Algorithm • 81

Decentralized Optimization

Decentralized optimization is performed in a networked system where data or computation is
distributed among multiple agents or nodes, minimizing the need for centralized control. Each
node m holds its own data Dm and communicates only with its neighbors. The optimization
objective remains the same:

mín
x∈Rn

1

M

M∑
m=1

Fm(x).

One common method is decentralized gradient descent, where each node updates its parameters
based on local data and sporadic communication with neighboring nodes. Let N (m) denote
the set of neighbors of node m. Each node performs the following updates:
1. Compute local gradient:

∇̃Fm(xk) =
1

|Dm|

∑
i∈Dm

∇fi(xk).

2. Communicate with neighbors and update local parameter:

x(k+1)
m =

∑
n∈N (m)

wmnx
(k)
n − αk∇̃Fm(x

(k)
m),

where wmn are weights representing the influence of neighboring nodes.
This method ensures that each node converges to a common solution while maintaining a
decentralized structure, which is crucial for large-scale and privacy-sensitive applications.
Both distributed and decentralized optimization techniques are essential for efficiently solving
large-scale optimization problems by leveraging the computational power of multiple nodes and
minimizing the drawbacks of centralized control.

8.3 Expectation-Maximization Algorithm
The Expectation-Maximization (EM) algorithm is an iterative method designed to find the
maximum likelihood estimates of parameters in probabilistic models, particularly when data
are incomplete or have missing values.

Algorithm Overview
Expectation Step (E-step): Calculate the expected value of the log-likelihood function,
with respect to the conditional distribution of the latent variables given the observed data
and the current parameter estimates.

Q(θ|θ(t)) = EZ|X,θ(t)[logL(θ;X,Z)]

where θ(t) is the parameter estimate at iteration t, X represents the observed data, Z
represents the latent variables, and L(θ;X,Z) is the complete-data likelihood function.

Maximization Step (M-step): Update the parameters to maximize the expected log-
likelihood found in the E-step:

θ(t+1) = arg máx
θ

Q(θ|θ(t))

The EM algorithm alternates between these two steps until convergence, typically achieving a
local maximum of the likelihood function.

82 • Expectation-Maximization Algorithm

Example (Biomedical Imaging). Consider the task of image reconstruction in positron emis-
sion tomography (PET), where the E-step estimates the distribution of decay events given
the observed data, and the M-step updates the image to maximize the likelihood of the
observed data given the decay events.

Monte Carlo Expectation Maximization (MCEM)
The Monte Carlo Expectation Maximization (MCEM) algorithm extends the EM framework to
situations where the E-step cannot be computed analytically. Instead, it relies on Monte Carlo
methods to approximate the expectation.

MCEM Procedure
1. Simulation Step: Generate samples from the distribution of the latent variables condi-

tioned on the observed data and current parameter estimates.

2. Monte Carlo E-step: Approximate the expectation of the complete-data log-likelihood
using the sampled values:

Q̃(θ|θ(t)) =
1

N

N∑
n=1

logL(θ;X,Z(n))

where Z(n) are the samples of latent variables.

3. M-step: Maximize the estimated Q-function:

θ(t+1) = arg máx
θ

Q̃(θ|θ(t))

Importance Sampling in MCEM
Importance sampling is used in the MCEM to improve the efficiency of the Monte Carlo ap-
proximation, especially when direct sampling from the posterior distribution is challenging.

Q̂(θ|θ(t)) =

N∑
n=1

wn logL(θ;X,Z(n)) (8.1)

where wn are the importance weights correcting for the bias in the sampling distribution, and
Z(n) are the sampled latent variables.

Example (Epidemiological Modeling). In modeling the spread of an infectious disease, use
MCEM to estimate the transmission rates and recovery rates from incomplete data, where
importance sampling addresses the variability in individual susceptibility and recovery
rates.

Markov Chain Monte Carlo for Optimization • 83

8.4 Markov Chain Monte Carlo for Optimization
Markov Chain Monte Carlo (MCMC) methods are primarily known for their application in
Bayesian statistics for sampling from complex posterior distributions. However, these techniques
can also be effectively used for solving optimization problems, especially those involving high-
dimensional spaces or complex, multi-modal landscapes.
The Markov chain generated by the Metropolis-Hastings algorithm converges to a stationary
distribution that is proportional to f(x). For optimization purposes, f(x) can be chosen as a
function that peaks at the global optimum, such as eβf(x), where β is a parameter controlling
the sharpness of the peak.
In machine learning, MCMC methods can be used to optimize likelihood functions or posterior
distributions in settings where direct optimization is challenging due to the complexity of the
model or the presence of multiple local optima.

No Free Lunch Theorems
These theorems articulate that no optimization algorithm outperforms others when averaged
across all possible problems.

Theorem 8.2 (No Free Lunch Theorems). The performance of any optimization algorithm
averaged over all possible problems yields the same result, suggesting that no universally
optimal algorithm exists.

Project

Part 1: Computational evolutionary processes
Evolutionary dynamics explore the underlying processes that shape the development and diver-
sity of systems over time across a variety of fields. These dynamics are commonly modeled using
stochastic processes, such as birth-death processes, where ’births’ and ’deaths’ metaphorically
denote the emergence and disappearance of elements like languages, species, innovations, or
financial products. Such models help illustrate the evolution of these diverse systems through
time.
Consider the following simple evolutionary tree, where the x-axis represents time in millions of
years:

Modeling
Consider a model that addresses the following rates:

Innovation rate (λ): This rate is diversity-dependent and formulated as:

λt = máx{(λ0 − βNNt) , 0}

where λ0 is the baseline innovation rate under ideal conditions (no competition) and Nt

is the number of branches at time t. The function máx ensures that the innovation rate
does not drop below zero.

85

86 •

Extinction rate (µ): The extinction rate is assumed to be a constant value, µ0, reflecting
a baseline risk of extinction that does not vary with time:

µ = máx{µ0, 0}

By adjusting the innovation rate based on diversity, the model accounts for competition and
niche filling, which are pivotal in understanding evolutionary patterns. The constant extinction
rate simplifies the complexity of the model while focusing on the dynamics of innovation.

1. Assuming that this process was generated under rates λ0 = 0,8, βN = −0,075 and
µ0 = 0,1, calculate the probability of the evolutionary process described in the tree
of the picture.

2. Now consider the case where the fossil record is missing. Assume that we know there is
only one extinction and formulate the probability of the extant tree.

3. Use a Monte Carlo method, together with importance sampling, to estimate the integral
above. To do that:

a) Use the uniform sampler. That is, sample the innovation time, the extinction time,
and the allocation of the missing branches from uniform distributions.

b) We can obtain a numerical approximation by using the Monte-Carlo approach con-
sidering

f(xobs|θ) =

∫
x∈X (xobs)

f(x|θ)dx

=

∫
x∈X (xobs)

f(x|θ)

fm(x|θ, xobs)
fm(x|θ, xobs)dx

≈ 1

M

∑
xi∼fm(x|θ,xobs)

f(xi|θ)

fm(xi|θ, xobs)
(9.1)

for M the Monte-Carlo sample size and fm is your sampler of the missing part of
the full tree given an extant tree xobs.

4. Now assume we do not know how many extincted branches are missing. Design an imple-
ment a stochastic method to calculate the probability of the number of missing branches.

5. Propose another sampler, designed by you, and compare the results.

6. Extend the model to non-constant extinction rate, perform simulations with both models
and compare the results. Calculate the probabilities of points 3. and 4. for the non-
constant extinction rate model.

Part 2: Simulation and Learning
In this part, you will use stochastic methods for simulating and training systems that learn.
You have two alternatives to choose from:

• 87

Augmenting trees and then training a Generalized Additive Model (GAM)

Simulating full trees and then training a Neural Network (NN)

Choose one of the following approaches:

2.1 Augmenting Trees and Training a GAM
In this approach, you will extend the evolutionary trees generated in Part 1 with additional
simulated data to train a Generalized Additive Model (GAM). The GAM will be used to predict
the likelihood function as a function of the model parameters. Follow these steps:

1. Simulate additional evolutionary trees by varying the parameters λ0, βN, and µ0 according
to the diversity dependence model described previously:

λ0: Baseline innovation rate
βN: Diversity dependence parameter
µ0: Baseline extinction rate

2. Use the simulated trees to augment the dataset.

3. Estimate the joint probability or likelihood function for different sets of parameters
(λ0, βN, µ0).

4. Train a GAM using the augmented dataset to predict the likelihood function based on
the tree characteristics and parameters.

5. Implement Differential Evolution (DE) or Stochastic Gradient Descent (SGD) to optimize
the GAM and retrieve the proper parameters of the tree.

6. Evaluate the performance of the GAM by comparing its predictions to the known rates
used in the simulations.

2.2 Simulating Full Trees and Training a NN
In this approach, you will simulate entire evolutionary trees and use them to train a Neural
Network (NN). Follow these steps:

1. Simulate a diverse set of full evolutionary trees with varying parameters (λ0, βN, µ0).

2. Encode the trees in a suitable format for neural network input.

3. Split the dataset into training, validation, and test sets.

4. Design and train a Neural Network to predict the parameters (λ0, βN, µ0) from the enco-
ded trees.

5. Evaluate the NN’s performance on the test set.

88 •

Comparative Analysis for Advanced Students
For advanced students who want to explore both approaches, perform a comparative analysis:

1. Compare the predictive accuracy of the GAM and NN models.

2. Discuss the computational efficiency and scalability of each method.

3. Analyze the strengths and weaknesses of each approach.

• 89

Bonus: A simple importance sampler
To sample trees we propose a tree augmentation algorithm that samples independently the
three components of the tree: event types, event times and species allocations. The algorithm
is shown in Figure 9.1.

Step 1. Generate event times and number of extinctions. The number of extinct
species d and 2d missing event times, i.e., speciations and extinctions of these d missing species
are sampled uniformly in the following manner:

1. Sample the number of missing species d uniformly from the discrete space {0, . . . ,Me}

where Me is a predefined ceiling, such that the probability of more than Me extinctions
is extremely unlikely.

2. Sample 2d branching times uniformly from the continuous space (0, T] and then sort
them.

The probability of sampling a set of 2d unobserved event times te = (te1, . . . , t
e
2d) for a tree of

dimension d is

gevent times(d, t
e) =

1

Me + 1

(
1

T

)2d

(2d)!

Note that this scheme samples the dimension of the tree uniformly, but the size of the space of
trees grows in a factorial way with the dimension of the tree. This means that the sample size
required to obtain a robust Monte Carlo approximation of the integral must be large. This is a
limitation of this importance sampler, and hence it is only reliable when many extinctions are
unlikely.

Step 2. Generate event types We simulate a binary event chain τe = (τe1, . . . , τ
e
2d) assig-

ning either S (speciation) or E (extinction) to each event time. This chain is subject to the rule
that the number of Es up to any point in the chain should be less than or equal to the number
of Ss in the chain up to that point. The set of allowed chains is known in the mathematical
literature as the set of Dyck words and several methods for sampling Dyck words have been
developed. Furthermore, given a number of events 2d, the number of possible Dyck words is
known as the Catalan number,

Cd =

(
2d

d

)
1

d+ 1
.

By uniformly sampling a Dyck word τe of length 2d, the probability of a specific event sequence
is given by gevents(τ

e) = 1/Cd.

Step 3. Species allocation Given the missing event times and missing event types we can
perform the tree allocations by sampling a parent species of each missing speciation and by
defining which species, i.e., the parent species or the inserted “new species”, becomes extinct at
the extinction event. To sample uniformly we just need to count the number of possible trees
in agreement with the event times te = (te1, . . . , t

e
2d) and event types. This number, n(τe2d, te2d),

can be calculated by starting with n(τe0, t
e
0) = 1 and applying the following rules when going

from root to tips in the phylogenetic tree:

90 •

S S EE

Input: Observed Phylogeny

Step 1: Draw number of events (2d), and then 2d event times

Step 2: Draw event types (Dyck word)

Step 3 : Allocate missing species

b1

b3

b2

b1

b3

b2

b1

b3

b2

S S EE

b1

b3

b2

Figura 9.1: The three components of our phylogenetic tree augmentation algorithm.

• 91

For each unobserved speciation event at tei , i.e., τei = S, update n(τei , t
e
i) in the following

way,
n(τei = S, tei) = n(τei−1, t

e
i−1)×

(
2No

t−
i
+Ne

t−
i

)
,

where No
t− is the number of observed branches just before t and Ne

t− is the number of
unobserved branches just before t.

For each unobserved extinction event at tei , i.e., τei = E, update n(τei , t
e
i) in the following

way,
n(τei = E, tei) = n(τei−1, t

e
i−1)×Ne

t−
i
.

As we sample uniformly, the probability for each possible allocation ae of the d missing species
at the missing event times te with Dyck word τe in the tree of extant species xobs is then given
by gallocation(a

e) = 1
n(τe

2d
,te
2d

)
.

Sampling probability of a uniformly augmented tree The uniform sampling probability
of the augmented tree xunobs = (d, te, τe, ae) is then given by

g(xunobs|xobs, θ) =
1

Me + 1

(
1

T

)2d

(2d)!
1

Cd

1

n(τe2d, t
e
2d)

(9.2)

From this equation we can see how the dimension of the tree space plays an important role.
For this reason, the uniform importance sampler becomes less efficient when many extinctions
are likely. On the other hand, the uniform sampling scheme allows for easy implementation and
quick computation, thereby making it suitable as a default sampler.

	Preliminaries
	Randomness
	Random Variable
	Expectation
	Variance
	Conditional Probability
	Moments

	Markov Chains
	Stochastic Processes
	Chapman-Kolmogorov Equations
	Characteristics of Markov Chains
	Limit Distribution

	Random Networks
	Networks
	Random Graphs
	Branching Processes
	Time Reversible Markov Chain
	Markov Decision Processes (MDP)

	Poisson Process
	Counting processes
	Poisson Processes
	Homogeneous Poisson Process
	Non-Homogeneous Poisson Process

	Simulation
	Monte-Carlo Simulation
	Random Number Generators
	Generating Discrete Random Variables
	Generating continuous random variables

	Stochastic Processes
	Continuous-Time Markov Chains
	Birth-Death Process
	Gillespie Algorithm for Species Evolution

	Renewal Theory
	Queuing Theory
	Reliability Theory
	Brownian Motion

	Stochastic Modeling
	Linear Regression
	Logistic Regression
	Support Vector Machines
	Neural Networks

	Stochastic Optimization
	Evolutionary Algorithms
	Stochastic gradient descent
	Expectation-Maximization Algorithm
	Markov Chain Monte Carlo for Optimization

	Project

