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trabajo. Esta memoria y todos los años de estudio se deben exclusivamente a su po-
tencia de mujer.
pa Agradezco también a Nicolassa por su paciencia y compañerismo.
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Resumen

Se busca modelar la función de variación de punto cero [39] considerando una va-
riable atmosférica que en trabajos anteriores no era considerada. Esto con el objetivo
de implementar dicha corrección para cielos tanto fotométricos como no fotométricos.

Con este norte se desarrollan métodos de minimización, tomando en cuenta tanto
el mal condicionamiento del sistema dado, como la presencia de outliers propia de
este tipo de datos fotométricos. Para ese objetivo se aplica una variante al método de
máximo descenso para funciones no diferenciables, y finálmente se aplica una mejora
por medio de consideraciones geométricas propias de la función ‖Ax− b‖1.
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rápido el valor de la función objetivo, pero con mucha oscilación. Para
las curvas negro, amarillo y burdeo no vemos oscilación, pero vemos un
decrecimiento cada vez mas lento. . . . . . . . . . . . . . . . . . . . . . 57

26. Suma de 5 funciones de valores absolutos . . . . . . . . . . . . . . . . . 59
27. Función | − 2b1 + b2 + 2| . . . . . . . . . . . . . . . . . . . . . . . . . . 60
28. Ejemplo de una función f(b) = ‖Ab−M‖1. . . . . . . . . . . . . . . . 61
29. Aproximación de grado 5 para datos tomados el 19-5-2011. A la izquierda

se encuentra la solución de mı́nimos cuadrados y a la derecha la solución
por medio de minimizar la norma l1 . . . . . . . . . . . . . . . . . . . . 62

30. Comparación para los 3 métodos con datos de cielo fotométrico. Aca
podemos ver como la minimización de norma l1 subsana (observar la
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Caṕıtulo 1
Introducción

“ Begin at the beginning,” the
King said, gravely, “and go on
till you come to an end; then
stop. ”

Lewis Carroll, Alice in
Wonderland, 1899

Durante las últimas décadas, la Astronomı́a ha experimentado un asombroso creci-
miento. Nunca antes hubo tantas y tan poderosas herramientas para observar el cielo.
Estas herramientas han permitido a los astrónomos observar una vasta cantidad de
objetos raros imposibles de detectar sin ellas, tales como estrellas muy fŕıas o quasars
[25].

Este incréıble progreso ha sido posi-
ble gracias a los enormes avances tec-
nológicos en cuanto a detectores y cien-
cias de la información dentro de los
años recientes. Un importante efecto de
este desarrollo es basado en las grandes
cantidades de datos que ha sido posi-
ble almacenar mediante dichas herra-
mientas, pudiendo obtener imágenes en
amplios espectros lumı́nicos, los cuales
entregan preciada información de parte
del universo.

Figura 1: Quásar 3C 273. Imágen obteni-
da del sitio oficial de la NASA.

Entre estas herramientas, los detectores CCD [34] ubicados en los telescopios, cons-
tituyen un importante eslabón, permitiendo precisión y rendimiento nunca antes al-
canzado. De ese modo se logra agrupar imágenes y datos a una taza del orden de las
decenas de millones de pixeles por segundo. Luego, se hace necesario tener mecanismos
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eficientes de procesamiento, de forma de evitar información redundante, para permitir
una comprensión efectiva y eficiente de las grandes cantidades de datos que obtenemos.

El procedimiento de obtener datos útiles y fidedignos a partir de telescopios e ins-
trumentos de alto nivel es un proceso complejo, que aún está en proceso de mejoras.

Dentro de este contexto se enmarca este trabajo, el cual desarrolla modelos ma-
temáticos aplicando herramientas de optimización y de análisis con el objetivo de
complementar el procedimiento de corrección de imágenes astronómicas.

Esta tesis constituye un aporte tanto a la astronomı́a (o mas espećıficamente a la
fotometŕıa) como al modelamiento matemático, razón por la cual está escrita tanto
para especialistas de ambas áreas, como también a lectores relacionados a la ingenieŕıa
en general.

La tesis está organizada de la siguiente manera: El caṕıtulo 2 revisa conocimientos
básicos de Fotometŕıa, el cual para un(a) lector(a) familiarizada con el tema puede
ser obviado, el objetivo de este caṕıtulo es situar el contexto y la naturaleza de los
modelos y datos con los que se trabaja, e introducir a un lector ajeno a la fotometŕıa
a este trabajo sin ningún inconveniente posterior. En el caṕıtulo 3 se establecen los
modelos utilizados durante este trabajo, revisando un modelo previamente utilizado, y
desarrollando un modelo mas completo en relación a la naturaleza f́ısica del fenómeno,
junto con esto se establecen inconvenientes relacionados a ambos modelos marcando
los lineamientos para el siguiente caṕıtulo. En el caṕıtulo 4 se desarrolla la teoŕıa ma-
temática del mal condicionamiento del sistema y se proponen soluciones con resultados
positivos. En el caṕıtulo 5 se aborda una segunda alternativa aplicando herramientas
avanzadas de optimización junto con un respaldo teórico aplicado a dichas herramien-
tas.
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Caṕıtulo 2
Definiciones Previas: Astronomı́a y Fotometŕıa

“ Creen los mayas que al principio de la historia, cuando los dioses nos
dieron nacimiento, nosotros los humanos, éramos capaces de ver mas
allá del horizonte. Entonces estábamos recién fundados, y los dioses
nos arrojaron polvo a los ojos para que no fuéramos tan poderosos. ”

Eduardo Galeano, El libro de los abrazos

La Astronomı́a es una ciencia que por sus encantos no deja a nadie indiferente.
Principalmente por lo maravilloso e intrigante que pueden llegar a ser las imágenes del
universo. Sin embargo, a nivel cient́ıfico, no basta con las imágenes. Estas en prime-
ra instancia constituyen el primer paso al investigar en astronomı́a, pero sólo a nivel
morfológico, es decir, para clasificar objetos por su forma. Acto seguido, surgen de
forma natural interrogantes cuantitativas sobre los cuerpos: ¿cuán lejano se encuentra
el objeto? ¿cuánta enerǵıa emite? ¿que tan caliente es?, etc...

La información más fundamental que podemos medir en cuanto a un objeto celes-
te fuera de nuestro sistema solar, corresponde a la cantidad de enerǵıa, en forma de
radiación electromagnética, que recibimos del objeto. Esta cantidad es llamada flujo y
la ciencia de medir el flujo que recibimos de un cuerpo celeste es llamada fotometŕıa.

En las últimas décadas el crecimiento tecnológico ha aumentado exponencialmente y
con ello los distintos métodos de observación interestelar. Este caṕıtulo busca abarcar
una breve introducción a los términos fotométricos, con el objetivo de introducir al
lector a este lenguaje, concluyendo con el procedimiento de Flat Fielding, con el cual
está estrechamente ligada esta tesis.

REM visible

Prácticamente toda la información que viene de afuera del sistema solar viene hacia
nosotros como algún tipo de radiación electromagnética (REM). Podemos detectar y es-
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Figura 2: Primer instrumento de análisis fotométrico (obtenido de [8]).

tudiar la REM ya sea como un fenómeno ondulatorio o como un fenómeno corpuscular.

En la visión corpuscular de la REM la enerǵıa se transmite en paquetes discretos
llamados fotones. Un fotón tiene una enerǵıa definida y una frecuencia o longitud de
onda. La relación entre la enerǵıa del fotón (Ef ) y la frecuencia del fotón (ν) está dada
por

Ef = hν

donde h corresponde a la constante de Plank. La ecuacion anterior es equivalente a

Ef =
hc

λ

para λ la longitud de onda correspondiente al fotón y c es la velocidad de la luz
[28]. La ecuación anterior es consecuencia de la identidad c = λν.

Si bien la luz visible constituye una fracción muy pequeña del espectro completo de
REM, ésta juega un papel fundamental para la astronomı́a por varias razones. La gran
mayoŕıa de los instrumentos de medición están diseñados para detectar ondas en este
espectro, además gran parte del complemento de áste es bloqueado por la atmósfera y
puede ser sólo analizado por telescopios que se encuentren en el espacio. Sin embargo,
estos telescopios tienen varios inconvenientes, entre ellos el costo de su uso. En términos
astronómicos, la importancia de la banda visible del espectro de REM radica en que la
mayoŕıa de las estrellas y galaxias emiten un fracción significativa de su enerǵıa en estas
longitudes. Este no es el caso de cuerpos fŕıos tales como planetas, polvo interestelar,
o nubes moleculares, los cuales emiten en espectros cercanos al infrarrojo o longitudes
más largas.
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Las Magnitudes Astronómicas

Usualmente hablamos de magnitudes astronómicas para referirnos a varios tipos
de mediciones diferentes, tales como el brillo observado (flujos de enerǵıa o enerǵıa
recibida por unidad de tiempo o área) de estrellas y su luminosidad. El primer catálogo
de magnitudes estelares fue realizado por Hiparco, hace más o menos 2200 años atrás,
donde clasificó las estrellas en 6 niveles de magnitud.

Mucho después, cuando los astrónomos fueron capaces de realizar medidas mas
exactas del brillo de las estrellas, se demostró que la escala de Hiparco sigue una ten-
dencia logaŕıtmica. El i-ésimo nivel de magnitud es aproximadamente 2,5 veces mas
brillante que el nivel i−1. Basado en el sistema de magnitudes de Hiparco, pero usando
sistemas de medición modernos, los astrónomos decidieron definir un sistema de mag-
nitudes donde 5 magnitudes corresponden exactamente a un factor 100 en el brillo o
flujo. Aśı, la estrella i tiene exactamente 1001/5 = 2,512 veces el brillo de la estrella i−1.

De este modo podemos definir la diferencia de magnitudes entre 2 estrellas, m1 y
m2, como

m1 −m2 = −2,5 log10(f1/f2), (1)

donde, fi corresponde al flujo de la estrella i, el cuál, como veremos mas adelante,
es la enerǵıa recibida en unidad de tiempo y de área. Esta constituye la ecuación
fundamental para trabajar con magnitudes. Notemos además que de aqúı podemos
obtener los flujos a partir de las magnitudes

f1

f2

= 10−0,4(m1−m2).

El uso mas común de las magnitudes es expresar el brillo aparente de las estrellas.
Para obtener un valor para la magnitud de una estrella (en vez de diferencias entre
pares de estrellas), se toma una estrella de partida, o punto cero, para el sistema de
magnitudes. El punto cero es usualmente dado por la estrella Vega (ref. [29]), para
la cual muchos obsevadores ya han hecho el dif́ıcil trabajo de medir su flujo, que se
considera constante. Luego, la magnitud de cualquier estrella i en relación al flujo
luminoso emitido por Vega (fvega) corresponde a

mi = −2,5 log

(
fi
fvega

)
Estas magnitudes son llamadas magnitudes aparentes, pues depende de la distancia

entre la estrella y la tierra. Las magnitudes absolutas se relacionan al verdadero brillo
o luminosidad de un objeto. Para obtener la magnitud absoluta de un objeto, debemos
saber la distancia del objeto y la cantidad de polvos estelares entre el objeto y nosotros
entre otras cosas. Obtener este valor con precisión es un proceso bastante complicado.

Flujo y enerǵıa

Las magnitudes estelares son la base de este trabajo, es por eso que se hace funda-
mental entender un poco más en profundidad qué es lo que concretamente quiere decir
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Figura 3: Magnitud de una estrella. El brillo del objeto y la posición son calculados
utilizando la suma de los valores dentro del ćırculo interior menos el promedio del brillo
del cielo por la cantidad de pixeles en el ćırculo interior. El brillo del cielo es calculado
utilizando los valores entregados por la región entre el anillo medio y el anillo exterior.
Fuente: [48].

la ecuación (1).

Como fue mencionado anteriormente, el objetivo principal de observar el espacio
consiste en realizar medidas de la REM para un determinado cuerpo celeste con la
mayor precisión posible. Existen, por supuesto, muchos detalles que son objeto de es-
tudio. Estos abarcan precisión en la resolución de los objetos observados, precisión en
las longitudes de onda, y precisión en los tiempos de exposición. Un sistema perfecto
de medición es aquel que permitiera entregar información de la cantidad de radiación,
como una función de la longitud de onda, en cualquier parte del cielo para espacios
arbitrariamente pequeños. Sin duda tal sistema no existe, y es necesario lidiar con
estas limitaciones. Del criterio de Raylegh (ref. [6]) se tiene que dado un diámetro de
telescopio fijo, a mayor longitud de onda se tiene menor resolución.

El objetivo principal de la espectrofotometŕıa consiste en obtener la distribución
de la enerǵıa espectral (DEE) de los cuerpos celestes, o cómo la enerǵıa de un cuerpo
es distribuida en longitudes de onda. Para ello se quiere medir la cantidad de enerǵıa
recibida por un observador fuera de la atmósfera terrestre por segundo, por unidad de
área, por unidad de longitud de onda o por intervalo de frecuencia. Si medimos por
intervalo unitario de longitud de onda, las unidades de densidad de flujo espectral son
de la forma

fλ = erg s−1cm−2Å
−1

o en intervalos unitarios de frecuencia

fν = erg s−1cm−2Hz−1

Además, tenemos la relación

fλ =
c

λ2
fν

De este modo, la espectrofotometŕıa, puede ser caracterizada por la resolución de
longitud de onda o de frecuencia, la cual corresponde al menor intervalo para el cual
tenemos información. i.e, si tenemos 1 Å de resolución, entonces sabemos el flujo para
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cada Ångstrom de intervalo de longitud de onda.

Filtros y colores

Como fue descrito en la sección anterior, para un estudio preciso de los cuerpos es
importante obtener la cantidad de luz recibida por intervalos limitados de longitudes
de onda. Una forma eficiente de realizar este trabajo es por medio de filtros de luz, los
cuales permiten seleccionar rangos de longitud de onda. Los cuerpos celestes emiten
luz en una gran banda de REM.

Al realizar observaciones astronómicas, muchas veces estamos interesados en deter-
minadas frecuencias de REM. Un sistema de filtros muy utilizado en la región óptica
del espectro corresponde al sistema UBV. Cada letra corresponde a un filtro dis-
tinto: U para el ultravioleta, B para el azul, y V para el espectro visual (la Figura 4
muestra un gráfico de los valores para el espectro de longitud de onda para cada filtro).

En este sentido definimos las magnitudes de cada filtro- i.e mV (o simplemente
V ) es la magnitud del filtro V - . Usando filtros de ancho de banda (como el UBV)
definimos el ı́ndice de color como la diferencia entre magnitudes en 2 colores, aśı

B − V = mB −mV

define el ı́ndice de color B − V .

ahora podemos aplicar (1) para una misma estrella, donde obtenemos

B − V = mB −mV = −2,5 log(fB/fV ) + cte

En este caso fX es el flujo promedio sobre todas las longitudes de onda para el
filtro X. La constante cte debe incluirse pues depende de la definición de punto cero
utilizada para el sistema de colores. Aśı por convención decimos que el color B− V de
vega corresponde al valor 0,00. Para este sistema tenemos que el color B − V del sol
corresponde a 0,67 por ejemplo.

Al momento de realizar el modelamiento matemático, es importante notar que las
magnitudes son esencialmente logaritmos del flujo, por lo que no es conveniente sumar
o restar flujos, si no, operar con magnitudes.

La Atmósfera

Sin duda la atmósfera ejerce un gran bien para la humanidad, nos provee de oxi-
geno y nos protege de elementos dañinos como rayos X, la REM ultravioleta, rayos
cósmicos, etc... Sin embargo al momento de realizar observaciones astronómicas, esta
se transforma en un verdadero problema.
Complicaciones como nubes o contaminación no son los mayores problemas, ya que
usualmente los telescopios son situados en lugares alejados de la civilización y con
cielos muy despejados, sin embargo, incluso en el lugar más adecuado para realizar
observaciones existen muchos efectos perjudiciales debido a la atmósfera (ref. [34]):
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Figura 4: Espectros de longitud de onda para distintos filtros. Obtenido de [42]

Limitación del ancho de banda del espectro de REM

Difusión: Pérdida de resolución de las imágenes de cuerpos celestes debido al
paso de la luz a través de la turbulencia atmosféfica.

La atmósfera incluso muy lejos de las luces de las ciudades brilla debido a procesos
atómicos en el aire. Esta luz emitida por el cielo, llamada Skyglow, es un gran
problema al observar objetos débiles, pues los fotones provenientes del Skyglow
producen ruido extra, lo que degrada la predicción en las mediciones.

A excepción del caso en que el telescopio apunte hacia el cenit 1, la atmósfera se
comporta como un prisma débil, esparciendo la luz en espectros pequeños a lo
largo del ćırculo máximo que une al cenit y el objeto - el ángulo que hace este
ćırculo con el ćırculo máximo que pasa por el objeto y los polos celestes recibe el
nombre de ángulo paraláctico-. Este efecto es llamado Refracción atmosférica.

Tomando en cuenta esto, existen fundamentalmente dos formas de hacer fotometŕıa:
la fotometŕıa en todo el cielo y la fotometŕıa diferencial. En la fotometŕıa en todo
el cielo se compara el objeto que buscamos medir con estrellas medidas en distintas
partes del cielo, este tipo de fotometŕıa requiere de un cielo absolutamente despejado.
Cuando nos encontramos con condiciones adecuadas para la fotometŕıa de cielo com-
pleto (sin nubes ni polvo en la atmósfera) decimos que tenemos un cielo fotométrico.

1El cenit es por definición el vector normal a la superficie de la tierra

20



Estas condiciones sin embargo no son muy usuales (alrededor del 40 % de las noches
para el VLT). Afortunadamente el segundo método puede ser realizado, usando cáma-
ras CCD, en condiciones de nubes parciales en el cielo. Para la fotometŕıa diferencial
comparamos el brillo del objeto desconocido (usualmente variable, como por ejemplo
una supernova) con el brillo de las estrellas en el mismo marco de una misma CCD.
Si una nube bloquea parte de la luz durante el tiempo de exposición, este bloqueará a
ambos objetos. La habilidad de realizar fotometŕıa diferencial es una gran ventaja para
las cámaras CCD y es esta la técnica utilizada para los datos que se utilizan para este
trabajo.

Figura 5: Absorción atmosférica para distintos efectos de luz. Fuente: [10].

Flat field y la función de variación del punto cero

Acercándonos a la génesis de este trabajo, y para finalizar este caṕıtulo, nos con-
centraremos en un proceso fundamental en el trayecto de obtener una buena imagen
astronómica: el proceso de Flat Field.

Figura 6: Corrección de imágen para la estrella HIC 59206. Créditos ESO Press Release
12 de marzo, 2004.

Como hemos comentado a lo largo del caṕıtulo, el proceso de observar el espacio
con telescopios de alto nivel tiene muchas piedras de tope. Al utilizar telescopios con
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cámaras CCD, es necesario realizar permanentemente calibraciones, pues estos sufren
de defectos que alteran directamente la imagen, los cuales son gatillados por variaciones
en la sensibilidad pixel a pixel del CCD, viñeteo del sistema óptico, suciedad sobre el
detector, etc.

El flat field, campo plano, o imagen de armonización de eficiencias de pixeles, es una
imagen que se obtiene observando una pantalla iluminada uniformemente (la cúpula
del telescopio, el cielo en el crepúsculo, etc). Si el sistema telescopio+instrumento fuese
”ideal” la imagen obtenida seŕıa constante (con las variaciones naturales del ruido de
Poisson o shot noise). Sin embargo en la realidad está lejos de ser constante, y es común
tener variaciones que pueden ser t́ıpicamente de alrededor de un 10 %. El campo plano
es ésta imagen, normalizada a un valor máximo de 1. Si dividimos dos imágenes de
campo plano entre śı obtendremos un valor constante sin importar las variaciones al
interior de ellas. De la misma manera, si dividimos la imagen de un campo estelar por
una imagen de campo plano, el fondo de la imagen será constante. Lo importante es
que no solo es fondo es constante, si no, y más importante, la sensibilidad de cada pixel
pasa a ser constante. En esta imagen aśı corregida la magnitud que medimos a una
estrella no dependerá en que lugar de la imagen se encuentra.

El proceso de realizar esta calibración es llamado Flat fielding. En la práctica exis-
ten algunos problemas relacionados al proceso de obtener una iluminación uniforme
requerida para el flat field:

Para campos de visión grandes, es dif́ıcil evitar gradientes en la iluminación del
plano (especialmente para flat field realizados con el crepúsculo).

La dispersión de la luz, dentro del telescopio y los instrumentos, genera una
redistribución incontrolable de la misma en el campo plano.

Para instrumentos de reducción focal, las múltiples reflexiones en la óptica dentro
del telescópio producen una imagen fantasma en el flat field.

En consecuencia, en muchos casos la imagen de campo plano está contaminad por
luz (que puede venir de reflejos al interior de la óptica). Está luz hace que esta imagen
de campo plano no sea exactamente una medida field de la variación de sensibilidad en
el campo. Esto se traducirá que la magnitud de una estrella medida en distintas partes
del detector vaŕıe. Esta variación, que es independiente de la estrella que se utiliza para
medirla, es lo que llamaremos variación de punto cero [38].

En la figura 7 podemos observar un diagrama que muestra cómo afectan los efec-
tos ocasionados por el procedimiento de Flat Fielding sobre las magnitudes estelares
obtenidas. Una explicación detallada de lo anterior puede encontrarse en [2, 46].

En relación a estos efectos, es que se hace necesario buscar una función que describa
sus consecuencias en la imagen, detectando la verdadera variación punto cero, de esta
forma pudiendo corregirlos y obtener una imagen de calidad superior. La búsqueda de
esta función es el foco principal de esta memoria.

22



a) Ejemplo de una exposición de cam-
po plano, con contribuciones de erro-
res denotados con las lineas punteadas
e intermitentes

b) Ejemplo de una exposición cient́ıfi-
ca de ocho estrellas de igual magnitud
a lo largo del flat field anterior

c) La imagen resultante luego de apli-
car el Flat Fielding. Note que las mag-
nitudes aún no entregan los mismos va-
lores para todas debido a los errores
de corrección en el flat field. Son estos
errores los que se busca determinar

Figura 7: Esquema de defectos producidos por el procedimiento de Flat Fielding. Fuen-
te: [2]
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Caṕıtulo 3
Formulación Matemática del problema

“ Existe una opinión generalizada según la cual la matemática es la
ciencia más dif́ıcil cuando en realidad es la más simple de todas. La
causa de esta paradoja reside en el hecho de que, precisamente por
su simplicidad, los razonamientos matemáticos equivocados quedan
a la vista. En una compleja cuestión de poĺıtica o arte, hay tantos
factores en juego y tantos desconocidos e inaparentes, que es muy
dif́ıcil distinguir lo verdadero de lo falso. El resultado es que cualquier
tonto se cree en condiciones de discutir sobre poĺıtica y arte -y en
verdad lo hace- mientras que mira la matemática desde una respetuosa
distancia. ”

Ernesto Sábato,

En base a la teoŕıa fotométrica presentada en el caṕıtulo anterior, buscamos una
formulación matemática que nos permita modelar el comportamiento de las diferencias
de magnitudes producto de las limitaciones f́ısicas que el observar el firmamento presen-
ta. Concretamente, el objetivo consiste en corregir los errores en la imagen producidos
por el proceso de flat fielding o equivalentemente, encontrar la función de variación
de punto cero (zero point variation), la cual llamaremos zp(x, y), para cada punto del
campo del telescopio (el cual podemos ver como un plano cartesiano). Notemos, por
lo expuesto en el caṕıtulo anterior, que esta es una función que solamente depende de
las coordenadas espaciales (x, y), y no de la estrella observada, como es el caso de las
magnitudes estelares.

En la Figura 8 podemos ver una imagen tomada en el observatorio La Silla [13].
A partir de esta imagen, obtenemos datos fotométricos (descritos en el caṕıtulo ante-
rior) y en base a ellos buscamos una formulación matemática del error obtenido de la
corrección.
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Figura 8: Imagen tomada el 19 de mayo del 2011 en el observatorio La Silla

Aproximación polinomial para funciones en 2 dimensiones

Con el objetivo de encontrar una aproximación adecuada para zp(x, y), muchos
textos de fotometŕıa (ver por ejemplo [41]) suponen que la variación responde a un
comportamiento de polinomios en 2 dimensiones. De esta forma, podemos caracterizar
zp(x, y) escribiendo

zp(x, y) = b1ϕ1(x, y) + b2ϕ2(x, y) + · · ·+ bnϕn(x, y) (2)

donde ϕj(x, y) corresponde a un polinomio de grado j.

Previo a la aproximación de zp(x, y), se hace necesario revisar algunos resultados
sobre aproximaciónes polinomiales. Consideremos una función z(x, y) y m puntos en el
espacio con coordenadas {(xi, yi)}mi=1. Desde la caracterización (2) para los m puntos,
tenemos las m ecuaciones

zp(xi, yi) = b1ϕ1(xi, yi) + b2ϕ(xi, yi) + · · ·+ bnϕn(xi, yi) (3)

o escrito de forma matricial, obtenemos el sistema

Z = Ψb

Aśı, si la solución b es única tenemos la función z(x, y) completamente determinada.
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Definición 1 Decimos que un conjunto de polinomios {ϕ1, ..., ϕn} es linealmente in-
dependiente si para todo a = (a1, ..., an) ∈ Rn se cumple que

n∑
j=1

a, ϕj = 0, ⇐⇒ ai = 0,∀ai.

Teorema 1 Para polinomios linealmente independientes ϕ1, ϕ2, ..., ϕn, la solución del
sistema (3)

z∗(xi, yi) =
n∑
j=0

b∗jϕj(xi, yi), i = {1, ..., n}

tiene una única solución.

Si bien este teorema es aplicable a sistemas con igual número de ecuaciones que
incógnitas (el cual no es nuestro caso de estudio), este resultado constituye un primer
paso hacia el modelamiento de zp(x, y). La demostración se puede encontrar en [5].

Por otro lado, fotométricamente podemos suponer que la aproximación que busca-
mos se comporta de forma polinomial. Matemáticamente, este supuesto es justificado
por el teorema de Wierstrass para funciones continuas aunque zp(x, y) no tenga un
comportamiento polinomial

Teorema 2 Si f : R2 → R es una función continua definida en un subconjunto
cerrado R2 ⊂ R, entonces para cualquier ε > 0 existe un polinomio p : R2 → R tal que

máx
(x,y)∈R2

{|f(x, y)− p(x, y)|} < ε

Una demostración de este clásico teorema puede ser encontrada en [36, 35].

De esta forma, sustentados en lo anterior, se elegirán conjuntos de polinomios li-
nealmente independientes.

El modelo 1

La variación del punto cero es una variación de la magnitud estelar de las estre-
llas producto de la observación. Esta hace que el valor fotométrico (medido) para el
telescópio sea distinto al valor real.

Aśı, la variación del punto cero se define, en una primera instancia, como

zp(x, y) = m(x, y)−mi (4)

donde
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Figura 9: Ejemplo de conjunto de polinomios linealmente independientes p : R2 → R

m(x, y) corresponde a la magnitud fotométrica registrada por el telescópio para
la estrella que se encuentra en el punto (x, y) ∈ R 2.

mi corresponde a la magnitud real de la estrella i (la cuál es desconocida).

Notemos que el valor para el brillo de la estrella mi no depende del punto (x, y) si
no de la estrella propiamente tal y éste es desconocido. Como se comentó en el caṕıtulo
anterior, sólo en casos excepcionales se conoce este valor, el cual es dado por catálogo.
Sin embargo, buscamos un método de corrección para poder aplicarlo a observaciones
de estrellas que seguramente no pertenecen al grupo de estrellas estándar, por lo que
para cada una este valor es desconocido.

Aśı, considerando la aproximación polinomial descrita en la sección anterior, se
tiene

zp(x, y) = m(x, y)−mi =
n∑
j=1

bjϕj(x, y). (5)

Con el objetivo de obtener un sistema de ecuaciones que permita obtener valores
apropiados para los coeficientes bj sin involucrar los valores de las magnitudes reales
para las estrellas, F. Selman [39] basa su modelo en la siguiente idea:

Al obtener una imagen con una cantidad razonable de densidad estelar y pequeños
desfases entre exposiciones, cualquier error en el procedimiento Flat Field se verá re-
flejado en una diferencia de magnitudes estelares registradas para la misma estrella en
diferentes coordenadas en la imagen.

2La cordenada (x, y) corresponde a la posición de la estrella en el campo de visión del telescópio,
considerando que el campo de visión (la imagen) completo corresponde a [−1, 1]× [−1, 1]
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Figura 10: Representación cartesiana del campo de estrellas y su valor de magnitud
fotométrica.

Consideremos imágenes desfasadas espacialmente de los mismos cúmulos de estre-
llas y supongamos que la imagen original corresponde al tiempo t = 0 y la imagen
desfasada corresponde al tiempo t = 1. Denotemos por (xi,t, yi,t) al par ordenado co-
rrespondiente a las coordenadas de la estrella i en la imagen t (ver Figura 11). De esta
forma, por (5) obtenemos

zp(xi,1, yi,1)− zp(xi,0, yi,0) = m(xi,1, yi,1)−mi − (m(xi,0, yi,0)−mi)

= m(xi,1, yi,1)−m(xi,0, yi,0)

=
n∑
k=1

bk(ϕk(xi,1, yi,1)− ϕk(xi,0, yi,0)), para i = 1, 2, ...,m

(6)

donde tenemos m ecuaciones, para las cuales, reescribiendo (6) de forma matricial,
tenemos

M = Ab (7)

donde

M =

 m(x1,1,y1,1)−m(x1,0,y1,0)
m(x2,1,y2,1)−m(x2,0,y2,0)

...
m(xm,1,ym,1)−m(xm,0,ym,0)


m×1

, b =

 b1
b2
...
bn


n×1

y

A =

 ϕ1(x1,1,y1,1)−ϕ1(x1,0,y1,0) ϕ2(x1,1,y1,1)−ϕ2(x1,0,y1,0) ... ϕn(x1,1,y1,1)−ϕn(x1,0,y1,0)
ϕi(x2,1,y2,1)−ϕi(x2,0,y2,0) ϕ2(x2,1,y2,1)−ϕ2(x2,0,y2,0) ... ϕn(x2,1,y2,1)−ϕn(x2,0,y2,0)

...
...

...
...

ϕi(xm,1,ym,1)−ϕi(xm,0,ym,0) ϕ2(xm,1,ym,1)−ϕ2(xm,0,ym,0) ... ϕn(xm,1,ym,1)−ϕn(xm,0,ym,0)


m×n
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Tenemos entonces un sistema lineal, donde A, M son conocidos, y b es el vector de
coeficientes a encontrar.

Figura 11: Representación de un subconjunto de un cúmulo de estrellas tomado en 2
imágenes con desfase.

Observemos, para todo 1 ≤ j ≤ n, j es el grado del polinomio ϕj, y m es el número
de estrellas observadas, por lo que es importante notar3 que n << m. De modo que nos
encontramos con un sistema lineal sobreparametrizado, donde la solución corresponde
a la dada por el problema de optimización descrito a continuación.

Mı́nimos Cuadrados Ordinarios (MCO)

Con el objetivo de obtener una solución al problema (7) se desarrollará una pri-
mera aproximación por medio del llamado método de mı́nimos cuadrados. Para ello
consideremos previamente la siguiente definición

Definición 2 Se define la p-norma para x ∈ Rn como

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p, (8)

y
‖x‖∞ = máx

i=1,...,n
|xi|.

Además definimos la p-norma para matrices, como

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

En la Figura 12 podemos ver geometricamente el comportamiento de las tres normas
más utilizadas.

3n es usualmente un número entre 3 y 20, en cambio, m del orden de los 12000
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Figura 12: Interpretación Geométrica de las tres normas más utilizadas. (Fuente: [23]).

De este modo, una primera aproximación natural [39] a la solución de este problema
consiste en abordar el problema de optimización

mı́n
b∈Rn
||Ab−M ||22 (9)

de donde se obtiene la bien conocida solución de mı́nimos cuadrados 4

b̂ = (ATA)−1ATM. (10)

Una interesante forma de probar este resultado sigue del siguiente teorema.

Teorema 3 Sea A una matriz real de m×n y M un vector de m×1, entonces b̂ ∈ Rn,
dado por (10), satisface

AT (M − Ab̂) = 0

y por lo tanto, para cualquier vector x ∈ Rn, se tiene

||M − Ab̂||2 ≤ ||M − Ax||2.

Este resultado corresponde al Teorema 5.7.1 de [5] y su prueba es directa.

Observación: Notemos que la matriz ATA es una matriz pequeña de n×n. Para
que esta matriz sea invertible es necesario que las columnas de ATA sean linealmente
independientes. Por ello consideremos además el siguiente teorema.

Teorema 4 El rango de ATA es igual al rango de A.

La demostración viene directamente del hecho de que ATAx = 0 si y solamente si
Ax = 0.

De este modo, para que las columnas de ATA sean linealmente independientes es
necesario y suficiente que las columnas de A sean linealmente independientes. Con-
siderando que A es una matriz de m × n y que m >> n, tenemos que es altamente

4Notar que esta solución se tiene para A matriz de rango completo, el cual corresponde a nuestro
caso.
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probable que aśı sea. No obstante, si bien la matriz ATA es probablemente invertible, el
sistema puede de alguna manera estar mal condicionado, en el sentido de que cambios
pequeños en la matriz M pueden generar grandes cambios en la solución b̂. En rela-
ción a lo anterior, es importante asegurar qué tan fiable puede llegar a ser una solución
obtenida en nuestro sistema. El análisis de este tópico se encuentra en el Caṕıtulo 4.

En la Figura 13, podemos ver la aproximación de grado 10, mediante el modelo
descrito utilizando polinomios de Chebysheb para los datos obtenidos de la obser-
vación correspondiente a la Figura 8. Este método resulta bastante útil para cielos
fotométricos, sin embargo el método no contempla posibles variaciones atmosféricas
que pudieran generarse entre exposiciones, por lo que en noches sin cielo fotométrico
el modelo podŕıa atribuirle las variaciones atmosféricas a los errores de flat fielding, lo
que nos llevaŕıa a resultados erróneos. Es por eso que se hace necesario perfeccionar
el modelo contemplando dichas variaciones. En la siguiente sección se propone una
modificación, generando un nuevo modelo que subsana dicha dificultad.

Figura 13: Aproximación polinomial de grado 10

El nuevo modelo

Como se describe en [39], el modelo anterior fue exitosamente testeado en varios
casos, sin embargo no considera las variaciones atmosféricas entre exposiciones. Esto
hace que el modelo no sea robusto a todos los casos, pues requiere de un cielo fo-
tométrico, condiciones que no siempre se tienen. Para remediar esto, se hace necesario
considerar una componente adicional, que modela la presencia de perturbaciones at-
mosféricas entre observaciones.

Considerando la dimensión angular del campo del instrumento en comparación con
la escala de variación de la transmisión atmosférica [37], geométricamente no es extraño
pensar que esta componente (atmosférica) es constante en todo el plano, por lo que sólo
depende del tiempo y no de la ubicación espacial. Considerando esto, replanteamos el
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modelo (4) de la forma

zp(xi,t, yi,t) = m(xi,t, yi,t)−mi + δt (11)

donde δt corresponde a la componente correspondiente a las variaciones en la atmósfe-
ra, la cual no depende de la posición, ni de la estrella, si no sólo del momento t en que
fue tomada la imagen.

Aśı, de forma análoga al desarrollo previo tenemos

zp(xi,1, yi,1)− zp(xi,0, yi,0) = m(xi,1, yi,1)−mi + δ1 − (m(xi,0, yi,0)−mi + δ0)

= m(xi,1, yi,1)−m(xi,0, yi,0) + δ1 − δ0.
(12)

Una posible forma de abordar este problema es eliminando las variables descono-
cidas δ1 y δ0 restando la ecuación (12) para 2 estrellas i, j distintas. De este modo
tenemos

zp(xi,1, yi,1)− zp(xi,0, yi,0)− (zp(xj,1, yj,1)− zp(xj,0, yj,0)) =

= m(xi,1, yi,1)−m(xi,0, yi,0) + δ1 − δ0 − (m(xj,1, yj,1)−m(xj,0, yj,0) + δ1 − δ0) =

= m(xi,1, yi,1)−m(xi,0, yi,0)− (m(xj,1, yj,1)−m(xj,0, yj,0)) (13)

De esta forma, utilizando nuevamente la aproximación polinomial obtenemos el
sistema

m(xi,1, yi,1)−m(xi,0, yi,0)− (m(xj,1, yj,1)−m(xj,0, yj,0)) =

=
l∑

k=1

bk(ϕk(xi,1, yi,1)− ϕk(xi,0, yi,0)− (ϕk(xj,1, yj,1)− ϕk(xj,0, yj,0))) (14)

donde nuevamente nos queda un modelo de la forma

M = Ab (15)

Con M y A conocidas. Notemos que la dimensión de M y A depende del número de
pares de estrellas que se tomen en las diferencias (14). Tomar todos los pares posibles
de estrellas no es conveniente pues la matriz A tendŕıa n2 filas, lo que incrementaŕıa
radicalmente el costo computacional de todo el proceso.

Existen además dos razones f́ısicas adicionales para filtrar el número de pares de
estrellas, estas razones se explican en los siguientes criterios utilizados simultáneamente
en la selección de estrellas:

En la Figura 15 se puede ver una relación entre el error de medición (el cual es
dado por el procedimiento fotométrico descrito en el caṕıtulo 2) asociado a la
magnitud estelar de cada estrella. Ah́ı podemos ver que existe una relación entre
ambas variables. Esto tiene sentido f́ısico, basado en la idea que estrellas menos
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brillantes (magnitudes mas grandes) entregan datos menos precisos. En base a
esto, se filtraron estrellas por orden de magnitudes, dejando de lado las estrellas
muy poco brillantes, es decir, estrellas con una magnitud muy grande. Esto con
el objetivo de disminuir el ruido en nuestro conjunto de datos.

El segundo filtro se aplicó en base a pares de estrellas, dejando solamente las
estrellas con órdenes de magnitudes cercanos. Este filtro se aplicó en base a la
idea que al restar estrellas con magnitudes muy distintas, una de las dos se torna
despreciable en cuando a la otra generando nada más que ruido adicional al
restarlas.

Antes de revisar la implementación de los métodos consideremos la siguiente obser-
vación: En el caso del primer modelo, al realizar la diferencia de magnitudes inevitable-
mente se pierde información sobre el término constante del polinomio, sin embargo al
ser precisamente constante, no depende del punto en el plano y la diferencia se iguala a
cero, por lo que no presenta inconveniente. Para el caso del segundo modelo este hecho
si tiene consecuencias, pues no solo se pierde información para el coeficiente constante
si no que también para todos los coeficientes que acompañan a términos lineales. Para
aclarar este hecho consideremos el polinomio de segundo grado 5

p(x, y) = a1 + a2x+ a3y + a4xy + a5x
2 + a6y

2.

Al realizar las restas para la ecuación (14) nos queda

p(xi,1, yi,1)− p(xi,0, yi,0)− (p(xi,1, yi,1)− p(xi,0, yi,0)) =

= a1 + a2xi,1 + a3yi,1 + a4xi,1yi,1 + a5x
2
i,1 + a6y

2
i,1

− (a1 + a2xi,0 + a3yi,0 + a4xi,0yi,0 + a5x
2
i,0 + a6y

2
i,0)

− (a1 + a2xj,1 + a3yj,1 + a4xj,1yj,1 + a5x
2
j,1 + a6y

2
j,1

− (a1 + a2xj,0 + a3yj,0 + a4xj,0yj,0 + a5x
2
j,0 + a6y

2
j,0))

= a2(xi,1 − xi,0 − (xj,1 − xj,0)) + a3(yi,1 − yi,0 − (yj,1 − yj,0)) + tos

(16)

donde tos denota los términos de orden superior. Ahora, notemos que

xi,1 − xi,0 − (xj,1 − xj,0) = xi,1 − xj,1 − (xi,0 − xj,0)

pero como la distancia entre la estrella i y la estrella j no depende de t tenemos que

xi,1 − xj,1 = xi,0 − xj,0

por lo que
xi,1 − xi,0 − (xj,1 − xj,0) = 0

y de forma análoga,
yi,1 − yi,0 − (yj,1 − yj,0) = 0.

5Para cualquier grado superior el hecho se extiende de forma directa.
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De aqúı concluimos que el segundo método genera una pérdida de información en cuan-
to a los términos lineales de los polinomios. Sin embargo, los teoremas 1 y 2 de todas
formas aseguran una buena aproximación con polinomios linealmente independientes
sin términos lineales.
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Implementación

En la Figura 14 podemos observar un diagrama general 6 del procedimiento de
obtención de zp(x, y). Este sigue básicamente los siguientes pasos:

1. Desde la imagen obtenida por el telescópio se efectúa el procedimiento de foto-
metŕıa descrito en el Caṕıtulo 1.

2. A partir de este procedimiento obtienen datos {(xi,t, yi,t),m(xi,t, yi,t), i} corres-
pondientes a posiciones de las estrellas i = {1, 2, ..., n} en los momentos t =
{0, 1}, magnitudes fotométricas obtenidas para cada estrella en cada momen-
to, y la identificación de cada estrella. Además se obtienen los errores asociados
a la medición de cada estrella, los que se obtienen mediante el mismo proceso
fotométrico.

3. A partir de estos datos fotométricos, se efectúa el mapeo por medio de la base
de funciones {ϕj(x, y)}nj=1 con el que se genera la matriz A y se realizan las
diferencias de las magnitudes fotométricas a utilizar, generando el vector M por
medio de (7).

4. Luego, se obtiene la solución b de coeficientes (por el momento, mediante MCO).

5. Finalmente, con estos coeficientes se obtiene una aproximación a la función de
variación de punto cero.

Imagen Interestelar

Fotometŕıa

ϕ(x, y)

Minimización de residuos

Plot

Datos Fotometricos

A,M

coeficientes

Figura 14: Diagrama del procedimiento de obtención de variación del punto cero.

6Notar que este diagrama es tanto para el método 1 como el método 2, estos difieren en la forma en
que se generan A y M , pero funcionan con el mismo procedimiento, el cual se describe en el diagrama
14.
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Figura 15: Relación de magnitudes estelares versus el error de medición entregado por
fotometŕıa. Cada punto corresponde a una estrella de la Figura 8.

En base al procedimiento descrito utilizando M y A dados por el método 2, y los
filtros señalados anteriormente, se obtuvieron las aproximaciónes polinomiales para el
conjunto de estrellas test, imagen correspondiente a un cielo fotométrico en donde el
método 1 es efectivo.

Se procedió a implementar dicho algoritmo por medio de paquetes cient́ıficos pyt-
hon [12, 26]. Para bajo grados polinomiales se obtubieron resultados satisfactorios, en
el sentido de que los coeficientes de la función de variación de punto cero que entrega el
método 2 son los mismos que los entregados por el método 1 los cuales fueron validados
en trabajos anteriores [39]. Sin embargo, a medida que se aumenta el grado aparecen
tendencias ajenas a lo esperado. Este comportamiento fue previsto en observaciones
anteriores y es abordado en el siguiente caṕıtulo.

En la Figura 16 podemos observar una aproximación de grado 5 por medio de ambos
métodos. En dicha aproximación se obtuvieron coeficientes similares para el polinomio
reproduciendo para el método 2 los mismos niveles de corrección previamente obtenidos
en [39]. Este hecho satisface las expectativas pues logra una corrección adecuada con un
modelo mas general, el cual permite ser aplicado a cielos con variaciones atmosféricas,
lo que previamente no era posible.
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Figura 16: Aproximación de grado 5 mediante el primer método (a la izquierda), y el
método de diferencias de diferencias (a la derecha) para los datos de la Figura 8.

38



39



Caṕıtulo 4
Condicionamiento del sistema

“ Nobody wants to read anyone else’s formulas. ”
Finman’s Law,

Si bien el método de mı́nimos cuadrados ordinario da buenos resultados, en muchos
casos este método no es robusto. Esto es debido a que muchas veces el sistema puede
estar mal condicionado, en el sentido de que cambios muy pequeños en la matriz de
diseño pueden entregar soluciones muy diferentes. Tomando en cuenta que trabajamos
con magnitudes fotométricas, las cuales están constantemente afectadas a errores de
medición, se hace necesario implementar un método que subsane estas dificultades.

Definición 3 Decimos que, para una matriz de rango completo A de m × n y un
vector b ∈ Rn, el problema

mı́n
b∈Rn
||Ab−M ||22 (17)

está bien condicionado en el sentido de Tikhonov si:

1. La solución b ∈ Rn existe;

2. La solución es única;

3. Variaciones infinitamente pequeñas en M conducen a variaciones infinitamente
pequeñas en la solución b.

observación: Las condiciones 1 y 2 se cumplen siempre que la matriz A sea de rango
completo [16].

40



El número de condicionamiento

Motivación

Como se comenta en el caṕıtulo anterior, si bien la matriz A del sistema (9) es
de rango completo, es importante saber en alguna medida ”que tan cerca de no ser
de rango completo” está. Concretamente, interesados en resolver el sistema Ab = M
queremos estudiar como afecta la solución si se perturban los datos ingresados (input)
A y M . Turing [45] introdujo el llamado numero de condición, el cuál da una idea
formal de la sensibilidad de un sistema respecto a sus datos de entrada.

Formalización

Para las normas matriciales y vectoriales descritas en el caṕıtulo anterior tenemos
la siguiente propiedad [16] la cual utilizaremos en el teorema principal de esta sección

Lema 1 Para cualquier vector x 6= 0, matriz A y cualquier norma ‖ · ‖p, tenemos

‖Ax‖p ≤ ‖A‖p · ‖x‖p

Volviendo a nuestro problema original, consideremos el sistema

Ab = M.

En nuestro caso, como en muchos otros casos de ingenieŕıa, los coeficientes del
vector M se encuentran sujetos a errores (pues estos corresponden a mediciones fo-
tométricas de las magnitudes estelares). Teniendo en cuenta esto es de esperar que
nuestro método considere dichos errores, es decir, que cambios pequeños en el vector
M reflejen pequeños cambios en la solución del problema b (que en nuestro caso corres-
ponden a los coeficientes de la aproximación polinomial). De otra forma no podemos
confiar en nuestra solución.

Para esto Turing [45] en 1947 definió el número de condición. La definición de este
número, para el caso de matrices cuadradas no singulares, viene formalmente motivada
por el siguiente teorema 7.

Teorema 5 Consideremos el sistema de ecuaciones lineales

Ab = M

Si llamamos δM al error de medición en M y δb la perturbación en la solución de (5)
entonces

‖δb‖p
‖b‖p

≤ κp(A)
‖δM‖p
‖M‖p

, ∀A ∈Mn×n, ∀M ∈ Rn

Donde κp(A) = ‖A‖p ·‖A−1‖p corresponde al numero de condicionamiento de la matriz
A.

7Este teorema es una adaptación al teorema presentado por Turing para nuestro caso en particular
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Demostración: Por definición tenemos que

A(b+ δb) = M + δM

como b es la solución del sistema de ecuaciones lineales Ab = M entonces

A · δb = δM =⇒ δb = A−1 · δM.

Tomando norma en ambos lados y usando el Lema 1,

‖δb‖p = ‖A−1 · δM‖p ≤ ‖A−1‖p‖δM‖p

Por otro lado

Ab = M ⇐⇒ ‖A‖p · ‖b‖p ≥ ‖M‖p ⇐⇒ ‖b‖p ≥ ‖M‖p · ‖A−1‖p
Entonces se tiene que el error relativo

||δb||p
||b||p

≤ ||A||p · ||A−1||p
||δM ||p
||M ||p

= κp(A)
||δM ||p
||M ||p

,

lo que prueba el resultado. �

Notemos que este resultado es precisamente lo que nos da el control de cuando
estamos dispuestos a ceder en relación a la solución de nuestro problema, en el sentido
de que tenemos una cota para el error de nuestra solución en base al número de con-
dicionamiento de la matriz A y lo errores del vector M . Aśı, decimos que un sistema
está bien condicionado si su número de condición es suficientemente pequeño para que
la cota dada por el teorema anterior entregue variaciones razonables en la solución.
En caso contrario (número de condición muy grande) decimos que el sistema está mal
condicionado.

En este sentido se hace necesario tener controlado el número de condición de las
matrices con las que trabajamos, ya que esto nos da una idea de que error estamos
cometiendo en nuestra estimación.

Para el caso de sistemas sobredeterminados (la matriz A ya no es cuadrada), el re-
sultado se extiende de forma natural, haciendo uso de la pseudoinversa Moore-Penrose
[27, 30] definida como 8

A† = (ATA)−1AT .

De esta forma, extendemos (a matrices rectangulares) la definición al número de
condición [18] como

κp(A) = ||A||p · ||A†||p.
8Notar que la solución del problema de mı́nimos cuadrados utilizada en el caṕıtulo anterior corres-

ponde precisamente a b = A†M .
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Observaciones:

Notemos que el número de condición κp(·) depende de la norma a utilizar. Para el
caso abordado hasta este momento (mı́nimos cuadrados) tenemos que el número de
condición corresponde ([16]) a

κ2(A) =
σ1(A)

σn(A)
(18)

donde σ1(A) y σn(A) son los valores singulares mayor y menor de la matriz A,
respectivamente.

En general para otras normas (en el caṕıtulo siguiente se abordará el caso de la
minimización con la norma ‖ · ‖1) podemos encontrar algunas otras caracterizaciones,
como por ejemplo la desarrollada en [21], donde tenemos que para la norma || · ||p

1

κp(A)
= mı́n

(A+∆∈NRC)

||∆A||p
||A||p

donde definimos NRC como al conjunto de todas las matrices que no son de rango
completo.

Esta caracterización muestra que κp(A) mide la distancia (relativa a la norma ||·||p)
de A al conjunto NRC. Esta es precisamente la motivación explicada al principio de
este caṕıtulo, en donde, si bien la matriz es de rango completo, ella puede arrojar
errores similares a matrices en NRC, de acuerdo a su ” cercańıa ” con dicho conjunto
de matrices. Para una caracterización a normas mas generales se puede consultar [31].

Si bien lo anterior muestra caracterizaciones distintas a (18) para otro tipo de
normas, muchas veces esta definición es suficiente. Esto se basa en el hecho de que
para espacios de dimensión finita (Rn) todas las normas son equivalentes. Aśı, tenemos
como ejemplo las siguientes tres relaciones

1

n
κ2(A) ≤ κ1(A) ≤ nκ2(A) (19)

1

n
κ∞(A) ≤ κ2(A) ≤ nκ∞(A) (20)

1

n2
κ1(A) ≤ κ∞(A) ≤ n2κ1(A). (21)

En particular la ecuación (19) da una relación de las normas con las que se aborda
el problema en este trabajo.

Continuando con el análisis de nuestros datos test, se computó el número de con-
dición para las distintas matrices correspondientes a polinomios de grados entre 5 y
15 para el primer modelo presentado (modelo 1) y para el modelo que contempla las
variaciones atmosféricas (modelo 2). Un gráfico del comportamiento del número de con-
dición versus el grado del polinomio se puede apreciar en la Figura 17. Aca podemos
observar lo que se supońıa previamente:
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1. El número de condición aumenta con el grado del polinomio;

2. El número de condición para el modelo de diferencias de diferencias es mucho
mayor al del primer modelo.

Estos hechos se relacionan totalmente con los resultados mencionados en el caṕıtulo
anterior, donde se obtubieron curvas sin sentido f́ısico para polinomios de orden mayor.
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Figura 17: Gráfico del Número de Condición vs grado de polinomio para ambos mo-
delos. Aca podemos ver el sistema se malcondiciona notablemente mas rápido para el
modelo 2.

Regularización por medio de valores singulares truncados

Con el objetivo de subsanar el problema de condicionamiento previamente detecta-
do, se analiza la naturaleza de dicho mal condicionamiento. Del número de condición
dado por la ecuación (18) podemos observar que para valores muy pequeños del menor
valor singular en relación al mayor valor singular, el sistema se mal condiciona. En
base a esta idea revisaremos resultados previos para luego establecer un método de
regularización consistente. El desarrollo de este método se basa en la (bien conocida)
descomposición en valores singulares. En lo que sigue se verán resultados necesarios
para obtener un método regularizador para nuestro problema en particular. Una visión
introductoria pero más completa del tema se puede encontrar en [43].
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Teorema 6 Si A es una matriz real de m×n, entonces9 existen matrices ortogonales

U = [u1, ..., um] ∈ Rm×m y V = [v1, ..., vn] ∈ Rn×n

tales que

UTAV = diag(σ1, ..., σp) ∈ Rm×n, p = mı́n{m,n}

donde σ1 ≥ ... ≥ σp ≥ 0.

La demostración de este teorema puede ser encontrada en [16].

De esta forma, tenemos que para A ∈ Rm×n, la matriz obtenida en (15) (o en
(7) dependiendo del modelo a utilizar), la descomposición en valores singulares (SVD)
tiene la forma

A = UΣV T = Σn
i=1uiσiv

T
i , (22)

con U = [u1, ..., um] ∈ Rm×m, V = (v1, ..., vn) ∈ Rn×n matrices ortonormales, y
Σ = diag(σ1, ..., σn), para σ1 ≥ ... ≥ σn ≥ 0 valores singulares de A.

Del mismo modo, la expresión para la pseudo-inversa corresponde a

A† =

Rango(A)=n∑
i=1

viσ
−1
i uTi

Notemos que para el caso de matriz cuadrada e invertible se tiene A† = A−1, por
lo que este desarrollo contempla sistemas cuadrados con matrices no singulares.

Luego, podemos escribir la solución de MCO obtenida en el caṕıtulo anterior como

b = A†M =

Rango(A)=n∑
i=1

uTi M

σi
vi (23)

De aqúı podemos observar la influencia que tienen los valores singulares en la so-
lución del sistema para el método de mı́nimos cuadrados. En el caso de que la matriz
no tenga rango completo (y por lo tanto no tenga rango completo), la solución simple-
mente está dada por la sumatoria (23) hasta el número del rango, es decir, realizando
la suma sobre todos los valores singulares mayores que cero. Sin embargo, como se co-
mentó en el caṕıtulo anterior, en la práctica la matriz A es de rango completo, aunque
en muchos casos es numéricamente ”cercana” a no serlo (mal condicionada), es decir
rε < n donde rε es la cantidad de valores singulares mayores que ε, para ε pequeño10.
Por el análisis previo, esta situación inevitablemente conlleva a dificultades numéricas.
Notemos que si tomamos norma en ambos lados de la ecuación (23) tenemos (utilizando
la ortonormalidad de los vectores vi) que

9Denotamos al conjunto de las matrices reales de tamaño m× n como Rm×n
10Notemos que por (18) el sistema está bien condicionado si rε = n para ε grande.
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||b||22 =

Rango(A)=n∑
i=1

(
uTi M

σi

)2

, (24)

por lo tanto, para σi muy pequeños ||b||2 es muy grande, a menos que M se en-
cuentre cercano a ser linealmente dependiente a las columnas de A, o formalmente,
que los últimos n− rε coeficientes uTi M satisfagan

|uTi M | < σi. (25)

Sin embargo, para vectores M con presencia de errores (como es nuestro caso), es
muy poco probable que esto se satisfaga, y la solución b es por lo tanto dominada por
los últimos n− rε componentes de la descomposición SVD utilizada para (23).

En base a estas ideas, en [20] y principalmente en [47] se propone un método de
regularización considerando las matrices

Ak =
k=rε∑
i=1

uiσiv
T
i , (26)

es decir, reemplazando los valores σk+1, ..., σn por ceros. Esta sustitución es respal-
dada por el siguiente teorema (concecuencia directa del Teorema 2.5.3 de [16])

Teorema 7 Sea Mk el conjunto de todas las matrices de rango k, y sea A la matriz
de nuestro sistema lineal definida en (22). Entonces la matriz Ak definida en (26) es
solución del problema

mı́n
Z∈Mk

||A− Z||22 (27)

Es lógico además pensar en la elección de k como k = rε, esto pues k < rε conduce
a una pérdida de la información asociada a valores singulares grandes, y si k > rε
incluimos valores singulares pequeños, los cuales por lo visto durante este caṕıtulo, se
traducen en un mal condicionamiento del sistema.

Aśı, como consecuencia del análisis desarrollado en este caṕıtulo, se propone un
método de regularización como una forma de abordar la problemática asociada a la
implementación del segundo modelo aplicado a la corrección fotométrica. Este se ba-
sa en la sustitución numérica de A por la ecuación (26), obteniendo aśı la solución
alternativa

b = A†kM =
rε∑
i=1

uTi M

σi
vi. (28)

Este método es conocido como descomposición en valores singulares truncados11.

Una visión global de éste y otros métodos de regularización, en especial los llamados
métodos de Tikhonov, aplicados a sistemas sobredeterminados puede ser encontrada
en [19].

11La elección de ε usualmente se escoge en relación a los valores singulares del sistema en particular.
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Aplicación

En base a la teoŕıa descrita se implementaron los algoritmos correspondientes al
método 2. La figura 18 muestra las aproximaciones polinomiales de la función de varia-
ción de punto cero correspondiente a polinomios de grados entre 3 y 14. A simple vista
podemos ver un comportamiento natural para algunos polinomios, no obstante existen
en muchos casos comportamientos incongruentes en las esquinas, tal como hab́ıamos
apreciado en la figura 13. Este tipo de comportamientos se traducen concretamente en
incrementos inusuales en algún coeficiente de la aproximación polinomial, es decir en la
solución del problema de optimización (9) gatillados en muchos casos por la presencia
de outliers propios de la naturaleza de los datos fotométricos. Este tópico se aborda en
el siguiente caṕıtulo.

Figura 18: Aproximaciones de grados 3 a 14 mediante el método de diferencias de
diferencias para los datos test (imagen 8). En la esquina superior izquierda se encuentra
la aproximación polinomial de grado 3, a su derecha la aproximación de grado 4 y
aśı sucesivamente hasta la aproximación de grado 14 en la esquina inferior derecha.
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Caṕıtulo 5
Minimización para la norma l1

“ Todo lo que se funda en la fuerza es frágil y denota la ausencia de
ingenio ”

Charles Fourier,

Los métodos anteriormente implementados, con el norte de reducir los residuos,
buscan solucionar el problema

mı́n
b∈Rn
‖Ab−M‖2

2 (29)

En este caṕıtulo, se propone como alternativa reducir los residuos en el sentido de
la norma l1, es decir, utilizar la solución del problema

mı́n
b∈Rn
‖Ab−M‖1. (30)

Motivación

Si bien el método de mı́nimos cuadrados en general es útil en problemas sobrede-
terminados (incluyendo este), en muchos casos la solución obtenida por (30) es prefe-
rible. Podemos ver, por ejemplo en la Figura 13, donde la solución para (29) da una
aproximación polinomial que presenta un comportamiento inusual alrededor del pun-
to (x, y) = (−1,−1). Claramente este comportamiento no tiene ningún sentido f́ısico
(fotométrico).

Los datos fotómetricos están afectos a una variedad de errores tales como, rayos
cósmicos, defectos en el silicio que daña alguno de los foto receptores, transientes
electrónicos, reflecciones internas, imágenes fantasmas de estrellas brillantes que afec-
tan la medición de solo algunas estrellas, etc. Todas estas fuentes de errores impli-
carán que toda lista de mediciones fotométricas contendrán un número significativo de
outliers, los que afectan directamente la estimación de los parámetros de la función de
variación del punto cero.
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Una alternativa para solucionar problemas de outliers es precisamente minimizar
en relación a la norma l1. Para ver esto consideremos A = [a1, a2, a3, ..., am]T donde
ai es un vector fila en Rn, y M = [M1,M2, ...,Mm]T ∈ Rm. Aśı, por la ecuación (8),
tenemos

‖Ab−M‖1 = |〈a1, b〉 −M1|+ |〈a2, b〉 −M2|+ ...+ |〈am, b〉 −Mm| (31)

y
‖Ab−M‖2

2 = (〈a1, b〉 −M1)2 + (〈a2, b〉 −M2)2 + ...+ (〈am, b〉 −Mm)2 (32)

Si para algún j, Mj es oulier, podemos suponer que |〈aj, x〉 −Mj| >> 1 lo que
implica |〈aj, x〉 −Mj| << (〈aj, x〉 −Mj)

2. Podemos ver entonces que el modelo (29)
se ve mas afectado que el modelo (30) debido a su carácter cuadrático. Una visión es-
tad́ıstica de este hecho se puede encontrar en [24]. Una representación gráfica se puede
ver en las Figuras 19 y 20 tomadas de [11] y [9] respectivamente.

Tomando en cuenta además, que los datos fotométricos están sujetos a errores, y
seguramente cuentan con ouliers, se propone implementar el modelo (30).

Figura 19: Linea punteada para norma
l1 y linea continua mı́nimos cuadrados.
Los puntos blancos representan los da-
tos. (imágen tomada de [11])

Figura 20: Aproximación mediante los
2 métodos distintos. Los puntos negros
representan los datos. (imágen tomada
de [9])

Definiciones y resultados previos

Definición 4 Decimos que la función f : Rn −→ R es una función convexa si

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ Rn.

Proposición 1 La función

f : Rn −→ R
x 7−→ f(b) = ‖b‖1
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es una función convexa.

Demostración: Por desigualdad triangular y linealidad de la norma

f(αx+(1−αy)) = ‖αx+(1−α)y‖1 ≤ α‖x‖1 +(1−α)‖y‖1 = αf(x)+(1−α)f(y) �

De esta forma, considerando que el análisis aqúı planteado tiene como objetivo la
norma l1, consideraremos en lo que resta del caṕıtulo que f es una función convexa
para todos los resultados, a menos de que se mencione lo contrario.

Definición 5 Decimos que el vector g ∈ Rn es un subgradiente de f : Rn → R en
b0 ∈ Rn si para todo b ∈ Rn

f(b) ≥ f(b0) + 〈g, b− b0〉 (33)

Observación: Si f es convexa y diferenciable entonces su gradiente en b es el sub-
gradiente. Sin embargo, el subgradiente puede existir aunque la función f no sea dife-
renciable como se muestra en la Figura 21.

Figura 21: En el punto b1 la función f es diferenciable y su subgradiente es igual a su
gradiente. En el punto b2 la función no es diferenciable y tiene muchos subgradientes.
(imágen obtenida de [7]).

Definición 6 El conjunto de todos los subgradientes de f en b es llamado el subdi-
ferencial de f en b, y es denotado como ∂f(b).

Veamos un ejemplo de nuestro problema para el caso b ∈ R.

Ejemplo 1 Consideremos la norma l1 en una dimensión, es decir f(b) = |b|. Clara-
mente para b 6= 0 el subgradiente es único ∂f(b) = sign(b) = b

|b| . Para b = 0 tenemos

que el subdiferencial son todos los g que cumplen |b| ≥ g|b|, para cualquier b ∈ R, de
este modo ∂f(0) = [−1, 1] (ver Figura 22).
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Teorema 8 Si f es convexa y b ∈ Rn, entonces ∂f(b) es un conjunto no vaćıo y
acotado.

La demostración se puede encontrar en [7].

Figura 22: Figura tomada de [7]

Definición 7 f : Rn → R se dice coerciva si

ĺım
‖b‖→+∞

f(b) = +∞

Proposición 2 Para cualquier matriz A de rango completo, la función

f : Rn −→ R
b 7−→ f(b) = ‖Ab−M‖1

es una función coerciva.

La demostración viene directamente de la definición de coercividad al separar
‖Ab − M‖1 en una suma de valores positivos, hacer una coordenada tender al infi-
nito considendo la norma || · ||∞12.

De este modo, tenemos las herramientas para demostrar que el problema (30) siem-
pre tiene solución:

Teorema 9 Sea f : Rn → R una función continua y coerciva, entonces existe un
punto b∗ ∈ Rn que minimiza f , i.e, f(b∗) = mı́n

b∈Rn
f(b).

Demostración: El resultado es consecuencia directa del teorema de Weierstrass-
Hilbert-Tonelli (ver por ejemplo Teorema 1.2.1 en [1]) �

Luego el problema (30) siempre tiene solución.

De este modo, estamos interesados en aplicar un método capaz de llegar lo mas
cercano posible a la solución de (30) para cualquier matriz rectangular A y vector

12Tomar en cuenta que en Rn todas las normas son equivalentes, para más detalles sobre este hecho
consultar [36]
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M . En vista de que nos encontramos con una función no diferenciable, no es posible
aplicar métodos estándar de optimización numérica, tales como máximo descenso, gra-
diente conjugado, etc. De este modo, buscamos alternativas a estos métodos que nos
lleven a soluciones satisfactorias. Con este objetivo se establecerán dos resultados que
motivarán los métodos implementados en la siguiente sección.

Proposición 3 (Adaptación del Teorema de Moreau-Rockafellar) Si f1, f2 son fun-
ciones convexas, entonces

∀x ∈ Rn, ∂f1(b) + ∂f2(b) = ∂(f1 + f2)(b)

Demostración: Ver [33].

Proposición 4 Un vector b∗ ∈ Rn es un mı́nimo de f : Rn → R si y sólo si 0 ∈ ∂f(b∗)

Demostración: Ver [7].

Generalización del método de máximo descenso a la norma l1

Como se comentó anteriormente, debido a que la función f(b) = ‖b‖1 no es diferen-
ciable, no podemos obtener la solución del problema (30) de forma expĺıcita, por lo que
buscamos un método iterativo que permita encontrar una solución para el problema.

Un método ampliamente utilizado de búsqueda de mı́nimos para funciones dife-
renciables corresponde al método de máximo descenso, el cual consiste en realizar la
iteración

bk+1 = bk − λk∇f(bk) (34)

donde b0 es obtenido de algún criterio dependiendo del problema (en el caso convexo
con gradiente lipschitz el método converge independientemente del valor inicial), se
elige una suceción λk y un criterio de parada. En la Figura 23 podemos ver gráficamente
el comportamiento de las iteraciones por medio del método de máximo descenso.

Una alterativa a más eficiente ([3]) a (34) consiste en el método proximal

bk+1 = bk − λk∇f(bk+1). (35)

Si bien este método es exitoso en muchas ocaciones, por la naturaleza de este caso
en particular no fué posible encontrar una expresión anaĺıtica a la ecuación (35), por lo
que seŕıa necesario realizar una subrutina numérica para solucionar esa ecuación. Con
el objetivo de mantener el algoritmo lo más simple posible se decidió no implementar
el método proximal.

Una generalización a funciones convexas no diferenciables consiste naturalmente en
utilizar la iteración
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Figura 23: Método iterativo de máximo descenso de minimización de la función f(b).

bk+1 = bk − λkg(bk) (36)

donde g(bk) ∈ ∂f(bk).

Para adaptar este método a nuestro caso, es necesario obtener el subdiferencial de
f(b) = ‖Ab −M‖1 para b ∈ Rn. El cálculo de éste sigue directamente del siguiente
resultado ([7]) :

Proposición 5 Sea f : Rn → R convexa, y sea h(b) = f(Ab−M), entonces ∂h(b) =
AT∂f(Ab−M).

Con esto, solo basta obtener el subdiferencial de f(b) = ‖b‖1. Notemos que este es
simplemente una generalización del Ejemplo 1 a más dimensiones.

Aśı, la función f(b) = ‖b‖1 = |b1|+ |b2|+ ...+ |bn| es diferenciable en

D = {b ∈ Rn|bi 6= 0, ∀i = 1, 2, ..., n}

y su subdiferencial corresponde a

∂f(b) = ∇f(b) =


sign(b1)
sign(b2)

...
sign(bn)

 =


b1
|b1|
b2
|b2|
...
bn
|bn|

 , ∀b ∈ D.

Para b ∈ Dc tenemos que, de la misma manera que en el ejemplo 1, para bi = 0

∂f(b) = {g|‖g‖∞ ≤ 1, gT b = ‖b‖1}
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Por lo tanto, si definimos fi(b) como la coordenada i-ésima del vector f(b),

∂fi(b) =

{
sign(bi) si bi 6= 0
[− 1, 1] si bi = 0

Buscamos entonces algún g(b) ∈ ∂f(b) que nos permita realizar el método (36).

Aśı, considerando las Proposiciónes 3 y 4 se hace natural proponer

g(b) =

{
sign(bi) si bi 6= 0

0 si xi = 0.

Por lo tanto

g(b) = (sign(bi))
n
i=1 (37)

donde podemos ver claramente que g(b) ∈ ∂f(b).

Parámetros y algoritmo a utilizar

Buscamos de alguna manera extender los métodos éxitosos de optimización dife-
renciable para el caso no diferenciable, sin embargo, como se comenta en [14], esta
transición no es directa, si no más bien depende de cada caso, es decir, de la función a
minimizar. Wolfe [49] por ejemplo, da algunos ejemplos donde la extensión directa al
método de máximo descenso falla.

Shor [40] demuestra que el paso constante λk = λ no converge, incluso para nuestro
caso particular mas simple donde x ∈ R, es decir, f(b) = |b|. El propone el uso de una
secuencia de pasos que satisfaga

∞∑
k=0

λk =∞, λk → 0 (38)

donde si esta probada la convergencia [40]. Como es común en estos métodos ite-
rativos, coloquialmente pueden ocurrir dos casos que es de interés evitar:

Que el paso actual sea demasiado pequeño, lo que causaŕıa que el método converja
muy lento;

Que el paso sea demasiado grande, lo que generaŕıa demasiada ocilación, provo-
cando nuevamente que el método converja lento.

En la Figura 24 se pueden ver las primeras 35000 iteraciones para la norma ||Ab−
M ||1, para una matriz A de 13250 × 9 y un vector M de 13250 coordenadas. Esta
iteración muestra dos comportamientos simultáneos, por un lado observamos un de-
crecimiento cada vez mas paulatino de la norma, y por otro lado, a menor escala (en el
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Figura 24: Gráfico del valor de ||Ab −M ||1 a lo largo de las iteraciones para un paso
λk = 1

k

recuadro menor) vemos un oscilamiento permanente en las iteraciones. Esta simulación
muestra los dos problemas antes mencionados. Para ella se utilizó λk = 1

k
.

Para ver por otro lado el comportamiento para un paso constante λk = λ, se rea-
lizaron iteraciones para distintas constantes, mostrando un comportamiento similar
pero a distintas escalas (ver Figura 25).

Estos dos ejemplos reflejan el comportamiento general para la función que esta-
mos tratando. A grandes rasgos el comportamiento para pasos grandes corresponde en
principio a una rápida convergencia pero luego a mucha oscilación, lo que conduce a
convergencia lenta. Para pasos más pequeños las iteraciones no oscilan, pero avanzan
muy lento.

Aśı, analizando nuestra función en particular f(b) = ‖Ab −M‖1, consideremos la
siguiente condición.

Condición 1 La secuencia {bk, bk+1, bk+2} cumple f(bk+1) > f(bk) y f(bk+1) < f(bk+2).

Después de varias pruebas vimos heuŕısticamente que el comportamiento natural
para esta función en particular responde a una buena tasa de convergencia para pasos
constantes suficientemente grandes, hasta el momento dado por la condición anterior
donde la función objetivo comienza a oscilar. De esta forma, se propone implementar
el algoritmo 1, el cual consiste concretamente en mantener un paso constante hasta
que la función objetivo comienza a oscilar, en ese momento se disminuye el paso, para
continuar el algoritmo hasta su nueva oscilación y aśı sucesivamente. Notemos que,
debido a que estamos trabajando con una sucesión armónica (1/k) este paso cumple
las condiciones de Shor (38) para convergencia del método.
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Figura 25: Gráfico del valor de ||Ab−M ||1 a lo largo de las iteraciones para distintos
pasos constantes, las curvas azul y verde corresponden a valores de λ mas grandes
donde podemos ver que en un principio desciende mas rápido el valor de la función
objetivo, pero con mucha oscilación. Para las curvas negro, amarillo y burdeo no vemos
oscilación, pero vemos un decrecimiento cada vez mas lento.

Require: A,M, λ,K, x0, k = 0
while k < K do
bk = bk−1 − λAT sign(Abk−1 −M) ;
if Condición 1 then
λ = λ

k

end if
end while

Criterio de parada

Usualmente un criterio de parada natural para el método de máximo descenso es

|∇f(bk)| < ε. (39)

dado que, para una función diferenciable, el mı́nimo se cumple para ∇f(bk) = 0, y
el gradiente decrece de forma continua. Sin embargo para nuestro caso este criterio no
aplica. Pensemos por ejemplo en el caso mas simple f(b) = |b|, el cual tiene su mı́nimo
en b = 0. En este caso |∇f(bk)| = 1 para cualquier b 6= 0, por lo que no tiene sentido
establecer una condición como (39). Para funciones no diferenciables la elección del
criterio no es trivial.

Una posibilidad consiste en establecer como criterio

|f(bk)− f(bk+1)| < ε.
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Notemos que del algoritmo 1, y por la forma de f(b) un criterio similar corresponde
a parar cuando se cumpla

λk < δ

para algún δ establecido.

Es claro además que mientras menor sea el valor de δ más cercana es la solución al
mı́nimo. Sin embargo este valor está limitado por la capacidad computacional.

El Algoritmo 1 se implementó exitosamente, obteniendo soluciones más cercanas al
mı́nimo a medida que δ es mas pequeño o que la cantidad de iteraciones es mayor y la
calidad de la solución está estrechamente ligado con el tiempo de ejecución. Conside-
rando que la implementación esta pensada para corrección de imágenes astronómicas,
las cuales se toman muchas veces por noche, es fundamental que la corrección comple-
ta sea instantánea. Por ello no es posible una implementación con mucho tiempo de
ejecución. Luego, se desarrolla la siguiente idea, mejorando radicalmente el tiempo de
ejecución y la calidad de la solución.

Alternativa geométrica

Consideremos nuevamente el sistema (30). Observemos que

‖Ab−M‖1 =
m∑
i=1

|〈ai, b〉 −Mi| (40)

para ai los vectores fila de la matriz A y Mi la cordenada i-ésima del vector M .

Esta suma tiene una importante interpretación geométrica. En la figura 26 pode-
mos observar un caso donde b ∈ R y m = 5. El valor de ‖Ab −M‖1 corresponde a la
curva superior roja, y los valores |〈ai, b〉 −Mi| a las funciones inferiores. Acá podemos
ver geométricamente a qué corresponde la ecuación (40).

De esta ecuación vemos que la función f(b) = ‖Ab −M‖1 es una función lineal
por trozos. Tenemos además que la función cambia de gradiente en los puntos donde
|〈ai, b〉 −mi| = 0 para algún i. De aqúı se establece el siguiente teorema.

Teorema 10 Si b∗ ∈ Rm es un mı́nimo de f(b) = ‖Ab −M‖1, entonces |〈ai, b∗〉 −
Mi| = 0 para al menos m valores de i.

Demostración: f(b) = ‖Ab−M‖1 es una función lineal (y diferenciable) por trozos
donde el gradiente cambia en los puntos donde |〈ai, b〉 −Mi| = 0. Si |〈ai, b〉 −Mi| 6= 0
para una cantidad de valores de i mayor a n−m entonces existe un subespacio lineal
y una vecindad V de b∗ donde f(b∗) > f(b) para algún b ∈ V . Por lo tanto f(b∗) no es
mı́nimo.

Ejemplo 2 Para el caso b ∈ R2 los subespacios |〈ai, b〉 − Mi| = 0 corresponden a
rectas 13. Podemos ver en la figura 27 la forma de los valores |〈ai, b〉 − Mi| donde

13Para el caso b ∈ R estos espacios corresponden a puntos, para el caso b ∈ R3 corresponden a
planos, y aśı sucesivamente.
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Figura 26: Suma de 5 funciones de valores absolutos

para esta figura tenemos que ai = (−2, 1)T y b = −2. Para este caso el subespacio
|〈ai, b〉 −Mi| = 0 corresponde a la recta b2 = 2b1 − 2.

En la Figura 28 vemos el valor f(b) = ‖Ab−M‖1 para la matriz

A =

 1 1
−2 1
1 0

 , M =

 4
−2
−9


es decir, para la suma de las funciones

f1(b) = |b1 + b2 − 4| (41)

f2(b) = | − 2b1 + b2 + 2| (42)

f3(b) = |b1 + 9| (43)

En la figura derecha vemos una vista del plano x − y, donde observamos que el
mı́nimo se encuentra en la intersección de las rectas f1 = 0 y f2 = 0, es decir el punto
x∗ satisface

f1(b∗) = f2(b∗) = 0

Donde se cumple el Teorema 10.

Luego se propone un nuevo mecanismo de búsqueda eficiente de mı́nimos, basado
en las siguientes ideas

El método de máximo descenso modificado encuentra cercanas al mı́nimo. A
medida que mayor tiempo computacional se disponga al proceso mayor será la
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Figura 27: Función | − 2b1 + b2 + 2|

cercańıa a la solución, sin embargo buscamos un algoritmo que utilize la menor
cantidad de tiempo posible, pues se trata de una corrección que se efectuará para
muchas observaciones astronómicas por noche.

Si tenemos una solución relativamente cercana al mı́nimo, entonces por el teorema
10 debeŕıamos tener al menos m ecuaciones |〈ai, b〉 −mi| cercanas a cero;

Por el teorema 10, la solución óptima satisface un subsistema cuadrado

Âb = M̂,

donde Â es una matriz cuadrada de m×m y M un vector de m cordenadas 14;

La cantidad de combinaciones de m ecuaciones entre las n posibilidades corres-
ponde a

(
n
m

)
. Considerando que n es del orden de 13000 y m alrededor de 9,

este número es demasiado grande 15. No existe computador que calcule todas las
posibilidades para encontrar el mı́nimo en tiempo razonable;

Una vez que tenemos una solución b# cercana al mı́nimo, podemos evaluar las
m ecuaciones |〈ai, b#〉 −Mi| y ordenarlas de menor a mayor obteniendo las mas
cercanas a cero;

Aśı, podemos tener una cantidad razonable de sub-sistemas (de muchas menos
coordenadas) priorizando las filas de A tales que |〈ai, b#〉 − mi| es cercano al

14Notar que m el el grado del polinomio, que por lo general es 7, 9, 11, es decir es un sistema muy
pequeño y fácil de calcular

15
(
13000

9

)
= 1,4176 ∗ 1031
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Figura 28: Ejemplo de una función f(b) = ‖Ab−M‖1.

cero. De este modo solucionamos el sistema por medio de SVD y las técnicas
descritas en el Caṕıtulo 4, para cada uno de estos sub-sistemas, quedándonos
con la solución de menor norma.

En base a estas ideas se construye el siguiente algoritmo

Algorithm 1 Método de máximo descenso ampliado

Require: A,M, λ, s, l, k = 0
· Obtener b# por medio del algoritmo 1. Sujeto a una condición restrictiva de
iteraciones (procurando poco tiempo de ejecución) ;
· Ordenar las filas de la matriz Ab#−M de menor a mayor y almacenar los ı́ndices
correspondientes a las filas ordenadas en el vector J;
for i=s:l do
· Definimos la sub-matriz de A que toma las filas de A correspondientes a los
primeros i valores de J como A¬;
· Definimos el sub-vector de M que toma las coordenadas de M correspondientes
a los primeros i valores de J como M¬;
· Resolvemos el sub-sistema A¬b = M¬ por medio de SVD;
· Guardamos ‖A¬b−M¬‖1

end for
· Entregamos el valor de b que tiene menor norma ‖A¬b−M¬‖1
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Continuando con las simulaciones realizadas a lo largo de esta tesis, entre los tests
que se realizaron, podemos destacar dos casos distintos:

El primero corresponde a la figura 29, donde podemos ver una comparación entre
la minimización de mı́nimos cuadrados y la minimización para la norma || · ||1. Aca
podemos apreciar soluciones similares, pero con el problema de outlier subsanado.

Figura 29: Aproximación de grado 5 para datos tomados el 19-5-2011. A la izquierda
se encuentra la solución de mı́nimos cuadrados y a la derecha la solución por medio de
minimizar la norma l1

Para el segundo caso, se utilizó una imagen con cielo fotométrico, es decir sin varia-
ciones atmosféricas. En este caso es de esperar que la solución obtenida por el método
uno refleje las mismas caracteŕısticas que para el método dos, pues el modelo sim-
plemente hace que el valor correspondiente a la componente atmosférica desaparezca
δt = 0. Podemos ver en la Figura 30 una comparación de los tres métodos implemen-
tados: El método anterior (método uno) en la parte superior, el método desarrollado
en caṕıtulos anteriores (con la componente atmosférica) y los algoritmos desarrollados
en este caṕıtulo para el método dos (también con la componente atmosférica añadida).
Acá podemos ver, en las escalas de los gráficos, como en la tercera figura la gráfica
ya no dispara su escala, manteniendo la escala obtenida exitosamente por el primer
método pero con la ventaja de que tiene la componente atmosférica añadida, lo que lo
hace responder de mejor forma a los requerimientos f́ısicos del problema, y considera
un modelamiento matemático mas completo.
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Imágen obtenida exitosamente por el
primer método [39]. Este método fun-
ciona bien para cielos fotométricos.
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0.1 Imágen obtenida según el modelo 2.
Aca el modelo sufre del mal condiciona-
miento producto del propio modelo para
grados mas elevados (este es un polino-
mio que incluye términos x9y9). Notar
que la escala de la gráfica cambia a mas
del 200 %.
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Superficie obtenida mediante el algo-
ritmo 1. Podemos comprobar con la
primera imágen como subsana las di-
ficultades del método obteniendo solu-
ciones concordantes, con los coeficien-
tes de los polinomios similares. Notar
que las escalas para ambas (esta gráfica
comparada con la primera) son simila-
res.

Figura 30: Comparación para los 3 métodos con datos de cielo fotométrico. Aca pode-
mos ver como la minimización de norma l1 subsana (observar la escala de los gráficos)
los problemas detectados previamente. Los gráficos son realizados con diferentes soft-
wares, pues el primero corresponde a un gráfico antiguo utilizado para comparar, pero
es importante notar en las escalas de los gráficos, la cual muestra en el segundo gráfico
un problema de escala, que como se vió a lo largo de la tesis responde a un mal con-
dicionamiento del segundo método implementado y a problemas de outliers. Si bien
este método no responde precisamente para polinomios de orden alto es necesario de
implementar para subsanar problemas de la atmósfera. En el tercer gráfico se puede
ver una mejora en la escala, sin los problemas del método dos y, a diferencia del primer
gráfico, añadiendo la componente atmosférica.
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Caṕıtulo 6
Conclusiones

“ Solo en el celeste cielo, donde pone los ojos el poeta. ”
Richard Bach, Juan salvador gaviota

Si bien el método desarrollado en [39] resulta útil para cielos fotométricos, es necesa-
rio generalizar el modelo para observaciones en cielos no tan óptimos. En este contexto
se trabajó con un modelo más completo que considera la componente atmosférica en
la que las observaciones pueden ver afectada su fotometŕıa. Si bien el nuevo modelo
resulta explicar de mejor forma el fenómeno f́ısico, matemáticamente presenta incon-
venientes relacionados a un peor condicionamiento. Una primera solución consistió en
aplicar métodos de regularización al sistema, como los son los métodos de valores sin-
gulares truncados.

Los datos además están muy afectos a outliers, por la naturaleza de las mediciones.
Se experimentó con una mimimización para la norma l1 en lugar de utilizar mı́nimos
cuadrados ordinarios. Para esta nueva técnica se obtuvieron mejores resultados, ob-
teniendo curvas más suaves y menos afectas a los ruidos propios de los datos. Sin
embargo, el método de máximo descenso generalizado cuenta con un tiempo de ejecu-
ción mayor al aceptado. Para subsanar esto se diseñó un método alternativo tomando
provecho de las condiciones geométricas particulares de la función ‖Ab−M‖1.

De esta forma, se construyó un método de poco costo computacional que permite
obtener aproximaciones a la variación del punto cero para cielos fotométricos capaces
de reducir la descalibración producto del procedimiento de Flat Fielding en alrededor
de un 10 % [39]. Este nivel constituye los más altos ı́ndices de corrección que se hab́ıan
logrado en [2, 39, 46], logrando ahora que el método sea implementable a cualquier
tipo de cielo.

En conclusión, en base al desarrollo de herramientas matemáticas se construyó una
generalización a métodos de corrección fotométrica pudiendo replicar los resultados
anteriores [39, 2, 39, 46] pero ahora capaz de ser aplicado a cielos con variaciones
atmosféricas.
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