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Resumen

Se busca modelar la funcién de variacién de punto cero [39] considerando una va-
riable atmosférica que en trabajos anteriores no era considerada. Esto con el objetivo
de implementar dicha correccién para cielos tanto fotométricos como no fotométricos.

Con este norte se desarrollan métodos de minimizacién, tomando en cuenta tanto
el mal condicionamiento del sistema dado, como la presencia de outliers propia de
este tipo de datos fotométricos. Para ese objetivo se aplica una variante al método de
maximo descenso para funciones no diferenciables, y findlmente se aplica una mejora
por medio de consideraciones geométricas propias de la funcién ||Az — b||;.
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Capitulo 1

Introducciéon

Begin at the beginning,” the
King said, gravely, “and go on
till you come to an end; then
stop.

Lewis Carroll, Alice in
Wonderland, 1899

Durante las ultimas décadas, la Astronomia ha experimentado un asombroso creci-
miento. Nunca antes hubo tantas y tan poderosas herramientas para observar el cielo.
Estas herramientas han permitido a los astronomos observar una vasta cantidad de
objetos raros imposibles de detectar sin ellas, tales como estrellas muy frias o quasars
25].

Este increible progreso ha sido posi-
ble gracias a los enormes avances tec-
nolégicos en cuanto a detectores y cien-
cias de la informacion dentro de los
anos recientes. Un importante efecto de
este desarrollo es basado en las grandes
cantidades de datos que ha sido posi-
ble almacenar mediante dichas herra-
mientas, pudiendo obtener imagenes en
amplios espectros luminicos, los cuales
entregan preciada informacion de parte
del universo.

Figura 1: Quéasar 3C 273. Imagen obteni-
da del sitio oficial de la NASA.

Entre estas herramientas, los detectores CCD [34] ubicados en los telescopios, cons-
tituyen un importante eslabén, permitiendo precision y rendimiento nunca antes al-
canzado. De ese modo se logra agrupar imagenes y datos a una taza del orden de las
decenas de millones de pixeles por segundo. Luego, se hace necesario tener mecanismos

12




*

i

eficientes de procesamiento, de forma de evitar informacién redundante, para permitir
una comprension efectiva y eficiente de las grandes cantidades de datos que obtenemos.

El procedimiento de obtener datos ttiles y fidedignos a partir de telescopios e ins-
trumentos de alto nivel es un proceso complejo, que ain estd en proceso de mejoras.

Dentro de este contexto se enmarca este trabajo, el cual desarrolla modelos ma-
tematicos aplicando herramientas de optimizacion y de andlisis con el objetivo de
complementar el procedimiento de correccion de imagenes astrondémicas.

Esta tesis constituye un aporte tanto a la astronomia (o mas especificamente a la
fotometria) como al modelamiento matematico, razén por la cual estd escrita tanto
para especialistas de ambas areas, como también a lectores relacionados a la ingenieria
en general.

La tesis esta organizada de la siguiente manera: El capitulo 2 revisa conocimientos
bésicos de Fotometria, el cual para un(a) lector(a) familiarizada con el tema puede
ser obviado, el objetivo de este capitulo es situar el contexto y la naturaleza de los
modelos y datos con los que se trabaja, e introducir a un lector ajeno a la fotometria
a este trabajo sin ningin inconveniente posterior. En el capitulo 3 se establecen los
modelos utilizados durante este trabajo, revisando un modelo previamente utilizado, y
desarrollando un modelo mas completo en relacién a la naturaleza fisica del fenémeno,
junto con esto se establecen inconvenientes relacionados a ambos modelos marcando
los lineamientos para el siguiente capitulo. En el capitulo 4 se desarrolla la teoria ma-
tematica del mal condicionamiento del sistema y se proponen soluciones con resultados
positivos. En el capitulo 5 se aborda una segunda alternativa aplicando herramientas
avanzadas de optimizacion junto con un respaldo tedrico aplicado a dichas herramien-
tas.
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Capitulo 2

Definiciones Previas: Astronomia y Fotometria

Creen los mayas que al principio de la historia, cuando los dioses nos
dieron nacimiento, nosotros los humanos, éramos capaces de ver mas
alla del horizonte. Entonces estabamos recién fundados, y los dioses
nos arrojaron polvo a los ojos para que no fuéramos tan poderosos.

Eduardo Galeano. El libro de los abrazos

La Astronomia es una ciencia que por sus encantos no deja a nadie indiferente.
Principalmente por lo maravilloso e intrigante que pueden llegar a ser las imagenes del
universo. Sin embargo, a nivel cientifico, no basta con las imagenes. Estas en prime-
ra instancia constituyen el primer paso al investigar en astronomia, pero sélo a nivel
morfolégico, es decir, para clasificar objetos por su forma. Acto seguido, surgen de
forma natural interrogantes cuantitativas sobre los cuerpos: jcuan lejano se encuentra
el objeto? jcuanta energia emite? ;que tan caliente es?, etc...

La informacién mas fundamental que podemos medir en cuanto a un objeto celes-
te fuera de nuestro sistema solar, corresponde a la cantidad de energia, en forma de
radiacién electromagnética, que recibimos del objeto. Esta cantidad es llamada flujo y
la ciencia de medir el flujo que recibimos de un cuerpo celeste es llamada fotometria.

En las ultimas décadas el crecimiento tecnologico ha aumentado exponencialmente y
con ello los distintos métodos de observacion interestelar. Este capitulo busca abarcar
una breve introduccién a los términos fotométricos, con el objetivo de introducir al
lector a este lenguaje, concluyendo con el procedimiento de Flat Fielding, con el cual
esta estrechamente ligada esta tesis.

REM visible

Practicamente toda la informacién que viene de afuera del sistema solar viene hacia
nosotros como algun tipo de radiacién electromagnética (REM). Podemos detectar y es-
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Figura 2: Primer instrumento de andlisis fotométrico (obtenido de [8]).

tudiar la REM ya sea como un fenémeno ondulatorio o como un fenémeno corpuscular.

En la visién corpuscular de la REM la energia se transmite en paquetes discretos
llamados fotones. Un foton tiene una energia definida y una frecuencia o longitud de
onda. La relacién entre la energia del fotén (Ef) y la frecuencia del fotén (v) esta dada
por

i) f= hv
donde h corresponde a la constante de Plank. La ecuacion anterior es equivalente a

he
Ef=—
D
para A la longitud de onda correspondiente al fotén y ¢ es la velocidad de la luz
[28]. La ecuacién anterior es consecuencia de la identidad ¢ = Av.

Si bien la luz visible constituye una fracciéon muy pequena del espectro completo de
REM, ésta juega un papel fundamental para la astronomia por varias razones. La gran
mayoria de los instrumentos de medicién estan disenados para detectar ondas en este
espectro, ademas gran parte del complemento de aste es bloqueado por la atmosfera y
puede ser solo analizado por telescopios que se encuentren en el espacio. Sin embargo,
estos telescopios tienen varios inconvenientes, entre ellos el costo de su uso. En términos
astronoémicos, la importancia de la banda visible del espectro de REM radica en que la
mayoria de las estrellas y galaxias emiten un fraccién significativa de su energia en estas
longitudes. Este no es el caso de cuerpos frios tales como planetas, polvo interestelar,
o nubes moleculares, los cuales emiten en espectros cercanos al infrarrojo o longitudes
mas largas.
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Las Magnitudes Astronémicas

Usualmente hablamos de magnitudes astronomicas para referirnos a varios tipos
de mediciones diferentes, tales como el brillo observado (flujos de energia o energia
recibida por unidad de tiempo o drea) de estrellas y su luminosidad. El primer catalogo
de magnitudes estelares fue realizado por Hiparco, hace mas o menos 2200 anos atras,
donde clasifico las estrellas en 6 niveles de magnitud.

Mucho después, cuando los astrénomos fueron capaces de realizar medidas mas
exactas del brillo de las estrellas, se demostré que la escala de Hiparco sigue una ten-
dencia logaritmica. El i-ésimo nivel de magnitud es aproximadamente 2,5 veces mas
brillante que el nivel i —1. Basado en el sistema de magnitudes de Hiparco, pero usando
sistemas de medicién modernos, los astronomos decidieron definir un sistema de mag-
nitudes donde 5 magnitudes corresponden exactamente a un factor 100 en el brillo o
flujo. As, la estrella i tiene exactamente 1007/® = 2,512 veces el brillo de la estrella i—1.

De este modo podemos definir la diferencia de magnitudes entre 2 estrellas, m; y
Mgy, COMO

my —mg = —2,510g,(f1/ f2), (1)

donde, f; corresponde al flujo de la estrella 7, el cual, como veremos mas adelante,
es la energia recibida en unidad de tiempo y de area. Esta constituye la ecuacion
fundamental para trabajar con magnitudes. Notemos ademés que de aqui podemos
obtener los flujos a partir de las magnitudes

ﬁ — 10*0,4(m1*Tn2).
2
El uso mas comun de las magnitudes es expresar el brillo aparente de las estrellas.

Para obtener un valor para la magnitud de una estrella (en vez de diferencias entre
pares de estrellas), se toma una estrella de partida, o punto cero, para el sistema de
magnitudes. El punto cero es usualmente dado por la estrella Vega (ref. [29]), para
la cual muchos obsevadores ya han hecho el dificil trabajo de medir su flujo, que se
considera constante. Luego, la magnitud de cualquier estrella ¢ en relacién al flujo
luminoso emitido por Vega (fieqa) corresponde a

m; = —2,5log (ffi )
vega

Estas magnitudes son llamadas magnitudes aparentes, pues depende de la distancia
entre la estrella y la tierra. Las magnitudes absolutas se relacionan al verdadero brillo
o luminosidad de un objeto. Para obtener la magnitud absoluta de un objeto, debemos
saber la distancia del objeto y la cantidad de polvos estelares entre el objeto y nosotros
entre otras cosas. Obtener este valor con precision es un proceso bastante complicado.

Flujo y energia

Las magnitudes estelares son la base de este trabajo, es por eso que se hace funda-
mental entender un poco mas en profundidad qué es lo que concretamente quiere decir
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Figura 3: Magnitud de una estrella. El brillo del objeto y la posiciéon son calculados
utilizando la suma de los valores dentro del circulo interior menos el promedio del brillo
del cielo por la cantidad de pixeles en el circulo interior. El brillo del cielo es calculado
utilizando los valores entregados por la regién entre el anillo medio y el anillo exterior.
Fuente: [48].

la ecuacion (1).

Como fue mencionado anteriormente, el objetivo principal de observar el espacio
consiste en realizar medidas de la REM para un determinado cuerpo celeste con la
mayor precision posible. Existen, por supuesto, muchos detalles que son objeto de es-
tudio. Estos abarcan precision en la resolucién de los objetos observados, precision en
las longitudes de onda, y precisién en los tiempos de exposicién. Un sistema perfecto
de medicién es aquel que permitiera entregar informacién de la cantidad de radiacion,
como una funciéon de la longitud de onda, en cualquier parte del cielo para espacios
arbitrariamente pequenos. Sin duda tal sistema no existe, y es necesario lidiar con
estas limitaciones. Del criterio de Raylegh (ref. [6]) se tiene que dado un didmetro de
telescopio fijo, a mayor longitud de onda se tiene menor resolucion.

El objetivo principal de la espectrofotometria consiste en obtener la distribucion
de la energia espectral (DEE) de los cuerpos celestes, o como la energia de un cuerpo
es distribuida en longitudes de onda. Para ello se quiere medir la cantidad de energia
recibida por un observador fuera de la atmédsfera terrestre por segundo, por unidad de
area, por unidad de longitud de onda o por intervalo de frecuencia. Si medimos por
intervalo unitario de longitud de onda, las unidades de densidad de flujo espectral son
de la forma

1 95—l
fr=erg s tem2A

o en intervalos unitarios de frecuencia

f, =erg s 'em2Hz !
Ademas, tenemos la relacion

c
f)\ = ﬁfu

De este modo, la espectrofotometria, puede ser caracterizada por la resolucion de

longitud de onda o de frecuencia, la cual corresponde al menor intervalo para el cual

tenemos informacién. i.e, si tenemos 1 A de resolucién, entonces sabemos el flujo para
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cada Angstrom de intervalo de longitud de onda.

Filtros y colores

Como fue descrito en la seccién anterior, para un estudio preciso de los cuerpos es
importante obtener la cantidad de luz recibida por intervalos limitados de longitudes
de onda. Una forma eficiente de realizar este trabajo es por medio de filtros de luz, los
cuales permiten seleccionar rangos de longitud de onda. Los cuerpos celestes emiten
luz en una gran banda de REM.

Al realizar observaciones astronémicas, muchas veces estamos interesados en deter-
minadas frecuencias de REM. Un sistema de filtros muy utilizado en la regién 6ptica
del espectro corresponde al sistema UBV. Cada letra corresponde a un filtro dis-
tinto: U para el ultravioleta, B para el azul, y V para el espectro visual (la Figura 4
muestra un grafico de los valores para el espectro de longitud de onda para cada filtro).

En este sentido definimos las magnitudes de cada filtro- i.e my (o simplemente
V') es la magnitud del filtro V- . Usando filtros de ancho de banda (como el UBV)
definimos el indice de color como la diferencia entre magnitudes en 2 colores, asi

B—V:mB—mV

define el indice de color B — V.
ahora podemos aplicar (1) para una misma estrella, donde obtenemos

B -V =mpg—my = —=25log(fg/fv) + cte

En este caso fx es el flujo promedio sobre todas las longitudes de onda para el
filtro X. La constante cte debe incluirse pues depende de la definiciéon de punto cero
utilizada para el sistema de colores. Asi por convencién decimos que el color B —V de
vega corresponde al valor 0,00. Para este sistema tenemos que el color B — V' del sol
corresponde a 0,67 por ejemplo.

Al momento de realizar el modelamiento matematico, es importante notar que las
magnitudes son esencialmente logaritmos del flujo, por lo que no es conveniente sumar
o restar flujos, si no, operar con magnitudes.

La Atmosfera

Sin duda la atmosfera ejerce un gran bien para la humanidad, nos provee de oxi-

geno y nos protege de elementos daninos como rayos X, la REM ultravioleta, rayos
cHdsmicos, ete... Sin embargo al momento de realizar observaciones astronémicas, esta
se transforma en un verdadero problema.
Complicaciones como nubes o contaminaciéon no son los mayores problemas, ya que
usualmente los telescopios son situados en lugares alejados de la civilizaciéon y con
cielos muy despejados, sin embargo, incluso en el lugar mas adecuado para realizar
observaciones existen muchos efectos perjudiciales debido a la atmoésfera (ref. [34]):
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Figura 4: Espectros de longitud de onda para distintos filtros. Obtenido de [42]

Limitacion del ancho de banda del espectro de REM

Difusion: Pérdida de resolucién de las imagenes de cuerpos celestes debido al
paso de la luz a través de la turbulencia atmosféfica.

La atmésfera incluso muy lejos de las luces de las ciudades brilla debido a procesos
atomicos en el aire. Esta luz emitida por el cielo, llamada Skyglow, es un gran
problema al observar objetos débiles, pues los fotones provenientes del Skyglow
producen ruido extra, lo que degrada la prediccion en las mediciones.

A excepcién del caso en que el telescopio apunte hacia el cenit ', la atmésfera se
comporta como un prisma débil, esparciendo la luz en espectros pequenos a lo
largo del circulo maximo que une al cenit y el objeto - el angulo que hace este
circulo con el circulo méaximo que pasa por el objeto y los polos celestes recibe el
nombre de dangulo paraldctico-. Este efecto es llamado Refraccion atmosférica.

Tomando en cuenta esto, existen fundamentalmente dos formas de hacer fotometria:
la  fotometria en todo el cielo y la fotometria diferencial. En la fotometria en todo
el cielo se compara el objeto que buscamos medir con estrellas medidas en distintas
partes del cielo, este tipo de fotometria requiere de un cielo absolutamente despejado.
Cuando nos encontramos con condiciones adecuadas para la fotometria de cielo com-
pleto (sin nubes ni polvo en la atmdsfera) decimos que tenemos un cielo fotométrico.

'El cenit es por definicién el vector normal a la superficie de la tierra
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Estas condiciones sin embargo no son muy usuales (alrededor del 40 % de las noches
para el VLT). Afortunadamente el segundo método puede ser realizado, usando cama-
ras CCD, en condiciones de nubes parciales en el cielo. Para la fotometria diferencial
comparamos el brillo del objeto desconocido (usualmente variable, como por ejemplo
una supernova) con el brillo de las estrellas en el mismo marco de una misma CCD.
Si una nube bloquea parte de la luz durante el tiempo de exposicién, este bloqueara a
ambos objetos. La habilidad de realizar fotometria diferencial es una gran ventaja para
las camaras CCD y es esta la técnica utilizada para los datos que se utilizan para este
trabajo.

Absorption (%)

100

50

A
BVRI J H K N Q
0 Longueur d'onde
[ 11 T T TTTTH 1 1T T
0,1 1 10 100 pm
Ultra-Violet Visible Infrarouge Moyen Infrarouge

proche infrarouge lointain

Figura 5: Absorcién atmosférica para distintos efectos de luz. Fuente: [10].

Flat field y la funcién de variacion del punto cero

Acercandonos a la génesis de este trabajo, y para finalizar este capitulo, nos con-
centraremos en un proceso fundamental en el trayecto de obtener una buena imagen
astronémica: el proceso de Flat Field.

¢ Star HIC 59206 (uncorrected image The Star HIC 59206 (AO corrected image)

(VLT KUEYEN + MACAO-VLTI) E (VLT KUEYEN + MACAO-VLTT)
. 1P Mk 350 s

Figura 6: Correccion de imagen para la estrella HIC 59206. Créditos ESO Press Release
12 de marzo, 2004.

Como hemos comentado a lo largo del capitulo, el proceso de observar el espacio
con telescopios de alto nivel tiene muchas piedras de tope. Al utilizar telescopios con
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camaras CCD, es necesario realizar permanentemente calibraciones, pues estos sufren
de defectos que alteran directamente la imagen, los cuales son gatillados por variaciones
en la sensibilidad pixel a pixel del CCD, vineteo del sistema éptico, suciedad sobre el
detector, etc.

El flat field, campo plano, o imagen de armonizacién de eficiencias de pixeles, es una
imagen que se obtiene observando una pantalla iluminada uniformemente (la cipula
del telescopio, el cielo en el crepusculo, etc). Si el sistema telescopio+instrumento fuese
”ideal” la imagen obtenida seria constante (con las variaciones naturales del ruido de
Poisson o shot noise). Sin embargo en la realidad esta lejos de ser constante, y es comin
tener variaciones que pueden ser tipicamente de alrededor de un 10 %. El campo plano
es ésta imagen, normalizada a un valor maximo de 1. Si dividimos dos imégenes de
campo plano entre si obtendremos un valor constante sin importar las variaciones al
interior de ellas. De la misma manera, si dividimos la imagen de un campo estelar por
una imagen de campo plano, el fondo de la imagen sera constante. Lo importante es
que no solo es fondo es constante, si no, y mas importante, la sensibilidad de cada pixel
pasa a ser constante. En esta imagen asi corregida la magnitud que medimos a una
estrella no dependerd en que lugar de la imagen se encuentra.

El proceso de realizar esta calibracion es llamado Flat fielding. En la practica exis-
ten algunos problemas relacionados al proceso de obtener una iluminacién uniforme
requerida para el flat field:

= Para campos de visién grandes, es dificil evitar gradientes en la iluminacion del
plano (especialmente para flat field realizados con el creptsculo).

= La dispersion de la luz, dentro del telescopio y los instrumentos, genera una
redistribucién incontrolable de la misma en el campo plano.

= Para instrumentos de reduccion focal, las multiples reflexiones en la 6ptica dentro
del telescopio producen una imagen fantasma en el flat field.

En consecuencia, en muchos casos la imagen de campo plano esta contaminad por
luz (que puede venir de reflejos al interior de la éptica). Estéd luz hace que esta imagen
de campo plano no sea exactamente una medida field de la variacién de sensibilidad en
el campo. Esto se traducird que la magnitud de una estrella medida en distintas partes
del detector varie. Esta variacion, que es independiente de la estrella que se utiliza para
medirla, es lo que llamaremos variacién de punto cero [38].

En la figura 7 podemos observar un diagrama que muestra cémo afectan los efec-
tos ocasionados por el procedimiento de Flat Fielding sobre las magnitudes estelares
obtenidas. Una explicacién detallada de lo anterior puede encontrarse en [2, 46].

En relacion a estos efectos, es que se hace necesario buscar una funcién que describa
sus consecuencias en la imagen, detectando la verdadera variacién punto cero, de esta
forma pudiendo corregirlos y obtener una imagen de calidad superior. La btisqueda de
esta funcién es el foco principal de esta memoria.
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Figura 7: Esquema de defectos producidos por el procedimiento de Flat Fielding. Fuen-
te: [2]
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Capitulo 3

Formulacion Matematica del problema

Exziste una opinion generalizada segun la cual la matemadtica es la
ciencia mas dificil cuando en realidad es la mads simple de todas. La
causa de esta paradoja reside en el hecho de que, precisamente por
su simplicidad, los razonamientos matemdticos equivocados quedan
a la vista. En una compleja cuestion de politica o arte, hay tantos
factores en juego y tantos desconocidos e inaparentes, que es muy
dificil distinguir lo verdadero de lo falso. El resultado es que cualquier
tonto se cree en condiciones de discutir sobre politica y arte -y en
verdad lo hace- mientras que mira la matemdatica desde una respetuosa
distancia.

Ernesto Sabato,

En base a la teoria fotométrica presentada en el capitulo anterior, buscamos una
formulacién matematica que nos permita modelar el comportamiento de las diferencias
de magnitudes producto de las limitaciones fisicas que el observar el firmamento presen-
ta. Concretamente, el objetivo consiste en corregir los errores en la imagen producidos
por el proceso de flat fielding o equivalentemente, encontrar la funcion de variacion
de punto cero (zero point variation), la cual llamaremos zp(z,y), para cada punto del
campo del telescopio (el cual podemos ver como un plano cartesiano). Notemos, por
lo expuesto en el capitulo anterior, que esta es una funcion que solamente depende de
las coordenadas espaciales (x,y), y no de la estrella observada, como es el caso de las
magnitudes estelares.

En la Figura 8 podemos ver una imagen tomada en el observatorio La Silla [13].
A partir de esta imagen, obtenemos datos fotométricos (descritos en el capitulo ante-
rior) y en base a ellos buscamos una formulacién matematica del error obtenido de la
correccion.
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Figura 8: Imagen tomada el 19 de mayo del 2011 en el observatorio La Silla

Aproximacién polinomial para funciones en 2 dimensiones

Con el objetivo de encontrar una aproximacién adecuada para zp(x,y), muchos
textos de fotometria (ver por ejemplo [41]) suponen que la variacién responde a un
comportamiento de polinomios en 2 dimensiones. De esta forma, podemos caracterizar
zp(x,y) escribiendo

zp(a:, Z/) = 51901(3573/) + b2902(957 Z/) +ee bnSOn(l', Z/) (2)

donde ¢;(x,y) corresponde a un polinomio de grado j.

Previo a la aproximacion de zp(z,y), se hace necesario revisar algunos resultados
sobre aproximaciénes polinomiales. Consideremos una funcién z(x, y) y m puntos en el
espacio con coordenadas {(x;,y;)}7,. Desde la caracterizacién (2) para los m puntos,
tenemos las m ecuaciones

Zp(%', yi) = 51901(%'7 yi) + 5290(%, yi) +-+ bn@n(%‘y yz) (3)

o escrito de forma matricial, obtenemos el sistema

Z =Ub

Asi, si la solucién b es tnica tenemos la funcién z(x, y) completamente determinada.
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DEFINICION 1 Decimos que un conjunto de polinomios {1, ..., on} €s linealmente in-
dependiente si para todo a = (aq, ...,a,) € R" se cumple que

Za,goj =0, — a; = 0,Va,.

Jj=1

TEOREMA 1 Para polinomios linealmente independientes o1, @, ..., pn, la solucion del
sistema (3)

2 (xi,y) = ij(pj(xi,yi), i={1,..,n}
=0

tiene una unica solucion.

Si bien este teorema es aplicable a sistemas con igual nimero de ecuaciones que
incégnitas (el cual no es nuestro caso de estudio), este resultado constituye un primer
paso hacia el modelamiento de zp(z,y). La demostracién se puede encontrar en [5].

Por otro lado, fotométricamente podemos suponer que la aproximaciéon que busca-
mos se comporta de forma polinomial. Matematicamente, este supuesto es justificado
por el teorema de Wierstrass para funciones continuas aunque zp(x,y) no tenga un
comportamiento polinomial

TEOREMA 2 Si f : R?2 — R es una funcién continua definida en un subconjunto
cerrado R? C R, entonces para cualquier € > 0 existe un polinomio p : R? — R tal que

4 ) — plz,y)|} <
(Jﬂ)éﬁp{‘f@ y) —p(z,y)|} <e

Una demostracién de este clasico teorema puede ser encontrada en [36, 35].

De esta forma, sustentados en lo anterior, se elegiran conjuntos de polinomios li-
nealmente independientes.

El modelo 1

La variacion del punto cero es una variacién de la magnitud estelar de las estre-
llas producto de la observacién. Esta hace que el valor fotométrico (medido) para el
telescopio sea distinto al valor real.

Asi, la variacion del punto cero se define, en una primera instancia, como

Zp(ZE, y) - m(x, y) —my (4)
donde
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Figura 9: Ejemplo de conjunto de polinomios linealmente independientes p : R? — R

» m(z,y) corresponde a la magnitud fotométrica registrada por el telescopio para
la estrella que se encuentra en el punto (z,y) € R .

= m; corresponde a la magnitud real de la estrella i (la cuél es desconocida).

Notemos que el valor para el brillo de la estrella m; no depende del punto (z,y) si
no de la estrella propiamente tal y éste es desconocido. Como se comento en el capitulo
anterior, sélo en casos excepcionales se conoce este valor, el cual es dado por catélogo.
Sin embargo, buscamos un método de correccion para poder aplicarlo a observaciones
de estrellas que seguramente no pertenecen al grupo de estrellas estandar, por lo que
para cada una este valor es desconocido.

Asi, considerando la aproximacién polinomial descrita en la seccién anterior, se
tiene

wp(z,y) = m(z,y) —m; = Z bigs(x,y). (5)

Con el objetivo de obtener un sistema de ecuaciones que permita obtener valores
apropiados para los coeficientes b; sin involucrar los valores de las magnitudes reales
para las estrellas, F. Selman [39] basa su modelo en la siguiente idea:

Al obtener una imagen con una cantidad razonable de densidad estelar y pequenos
desfases entre exposiciones, cualquier error en el procedimiento Flat Field se vera re-
flejado en una diferencia de magnitudes estelares registradas para la misma estrella en
diferentes coordenadas en la imagen.

2La cordenada (z,y) corresponde a la posicién de la estrella en el campo de visién del telescépio,
considerando que el campo de visién (la imagen) completo corresponde a [—1,1] x [—1,1]
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Figura 10: Representacion cartesiana del campo de estrellas y su valor de magnitud

fotométrica.

Consideremos imagenes desfasadas espacialmente de los mismos ciimulos de estre-
llas y supongamos que la imagen original corresponde al tiempo ¢ = 0 y la imagen
desfasada corresponde al tiempo ¢ = 1. Denotemos por (z;., ;) al par ordenado co-
rrespondiente a las coordenadas de la estrella ¢ en la imagen ¢ (ver Figura 11). De esta

forma, por (5) obtenemos

Zp(%h ym) - Zp(%',o, yi,O)

tenemos

donde

w1(z1,1,91,1)—%1(21,0,41,0)
i (22,1,92,1) — i (22,0,92,0)

A=

M =

= m(xi,la yz‘,1> - m(xi,Oa yi,O)

= br(er(in, vin) — Pe(wio, vio)),
k=1

M = Ab

m(x1,1,y1,1)—m(21,0,Y1,0)
m(x2,1,y2,1)—m(x2,0,42,0)

m(x'm,l7y’m,l)7m(x'm,07y7n,0) mx1

w2(r1,1,91,1)—92(21,0,¥1,0)
p2(x2,1,y2,1)—p2(22,0,¥2,0)

©i(@Tm,1,Ym,1) = @i (Tm,0,Ym,0) ©2(Tm,1,Ym,1)—=P2(Tm,0,¥m,0)

0.4

>

= m(l'i,la yi,l) —m; — (m(%oy yi,o) —m;)

m(xe i, ypi): magnitud

de la estrella ¢ en

el momento

parat=1,2,...

(6)

donde tenemos m ecuaciones, para las cuales, reescribiendo (6) de forma matricial,

(7)

nx1

en(x1,1,41,1)—¢n(1,0,91,0)
on(22,1,¥2,1)—¢n (22,0,92,0)

‘pn(zm,l7ym,1)_4pn(xm,0aym,0) mxn
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Tenemos entonces un sistema lineal, donde A, M son conocidos, y b es el vector de
coeficientes a encontrar.

Star positions Star positions

e
+
*

+
4
+

Figura 11: Representacion de un subconjunto de un cimulo de estrellas tomado en 2
imagenes con desfase.

Observemos, para todo 1 < j < n, j es el grado del polinomio ¢;, y m es el nimero
de estrellas observadas, por lo que es importante notar’ que n << m. De modo que nos
encontramos con un sistema lineal sobreparametrizado, donde la solucién corresponde
a la dada por el problema de optimizacién descrito a continuacién.

Minimos Cuadrados Ordinarios (MCO)

Con el objetivo de obtener una solucién al problema (7) se desarrollard una pri-
mera aproximacion por medio del llamado método de minimos cuadrados. Para ello
consideremos previamente la siguiente definicién

DEFINICION 2 Se define la p-norma para x € R" como

lzlly = (21l + |zaf? + - - + [2a?) 2, (8)

[2]loo = méx |a;].
i=1,...,n

)

Ademds definimos la p-norma para matrices, como

[ Az]]
|All, = sup 5—+F
=20 ||z
En la Figura 12 podemos ver geometricamente el comportamiento de las tres normas
mas utilizadas.

3n es usualmente un niimero entre 3 y 20, en cambio, m del orden de los 12000
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Figura 12: Interpretacién Geométrica de las tres normas més utilizadas. (Fuente: [23]).

De este modo, una primera aproximacién natural [39] a la solucién de este problema,
consiste en abordar el problema de optimizacion

min ||Ab — M||3 9)

beRn"

de donde se obtiene la bien conocida solucién de minimos cuadrados *

b= (ATA)AT M. (10)

Una interesante forma de probar este resultado sigue del siguiente teorema.

TEOREMA 3 Sea A una matriz real de mxn y M un vector de mx 1, entonces be R®,

dado por (10), satisface X
AT(M — Ab) =0

y por lo tanto, para cualquier vector x € R™, se tiene
M — Ab|, < ||M — Az,

Este resultado corresponde al Teorema 5.7.1 de [5] y su prueba es directa.

OBSERVACION: Notemos que la matriz A7 A es una matriz pequena de n x n. Para
que esta matriz sea invertible es necesario que las columnas de A’ A sean linealmente
independientes. Por ello consideremos ademas el siguiente teorema.

TEOREMA 4 El rango de AT A es igual al rango de A.

La demostracién viene directamente del hecho de que ATAz = 0 si y solamente si
Ax = 0.

De este modo, para que las columnas de AT A sean linealmente independientes es
necesario y suficiente que las columnas de A sean linealmente independientes. Con-
siderando que A es una matriz de m X n y que m >> n, tenemos que es altamente

4Notar que esta solucién se tiene para A matriz de rango completo, el cual corresponde a nuestro
caso.
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probable que asi sea. No obstante, si bien la matriz A” A es probablemente invertible, el
sistema puede de alguna manera estar mal condicionado, en el sentido de que cambios
pequenos en la matriz M pueden generar grandes cambios en la solucién b. En rela-
cién a lo anterior, es importante asegurar qué tan fiable puede llegar a ser una solucion
obtenida en nuestro sistema. El andlisis de este tdpico se encuentra en el Capitulo 4.

En la Figura 13, podemos ver la aproximacién de grado 10, mediante el modelo
descrito utilizando polinomios de Chebysheb para los datos obtenidos de la obser-
vacién correspondiente a la Figura 8. Este método resulta bastante til para cielos
fotométricos, sin embargo el método no contempla posibles variaciones atmosféricas
que pudieran generarse entre exposiciones, por lo que en noches sin cielo fotométrico
el modelo podria atribuirle las variaciones atmosféricas a los errores de flat fielding, lo
que nos llevaria a resultados erréneos. Es por eso que se hace necesario perfeccionar
el modelo contemplando dichas variaciones. En la siguiente seccion se propone una
modificacién, generando un nuevo modelo que subsana dicha dificultad.

Figura 13: Aproximacién polinomial de grado 10

El nuevo modelo

Como se describe en [39], el modelo anterior fue exitosamente testeado en varios
casos, sin embargo no considera las variaciones atmosféricas entre exposiciones. Esto
hace que el modelo no sea robusto a todos los casos, pues requiere de un cielo fo-
tométrico, condiciones que no siempre se tienen. Para remediar esto, se hace necesario
considerar una componente adicional, que modela la presencia de perturbaciones at-
mosféricas entre observaciones.

Considerando la dimensién angular del campo del instrumento en comparacion con
la escala de variacién de la transmisién atmosférica [37], geométricamente no es extrano
pensar que esta componente (atmosférica) es constante en todo el plano, por lo que sélo
depende del tiempo y no de la ubicacion espacial. Considerando esto, replanteamos el
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modelo (4) de la forma

2D(Tig, Yir) = M(Xig, Yir) — My + 0y (11)

donde é; corresponde a la componente correspondiente a las variaciones en la atmésfe-
ra, la cual no depende de la posicién, ni de la estrella, si no sélo del momento ¢ en que
fue tomada la imagen.

Asi, de forma analoga al desarrollo previo tenemos

2p(xin, Yin) — 20(Tip, Yio) = m(zi1,Yi1) — mi + 61 — (m(@i0, ¥i0) — mi + 6o)

12
=m(Ti1,Yi1) — m(Tio, Yio) + 01 — do. (12)

Una posible forma de abordar este problema es eliminando las variables descono-
cidas d; y ¢ restando la ecuacién (12) para 2 estrellas ¢, j distintas. De este modo
tenemos

Zp(l“i,l,yi,l) - zp(xw, yi,O) - (Zp(fj,h ?/j,l) - Zp(xjﬂv yj,o)) =
= m(Ii,h yi,l) - m(Ii,07 yi,O) + 01— 0 — (m(%‘,h yj,l) - m(%‘,oa yj,O) + 0y — 50) =

=m(zi1, Y1) — m(Ti0,Yio) — (M(z51,Y51) — m(x0,y50)) (13)

De esta forma, utilizando nuevamente la aproximacion polinomial obtenemos el
sistema

m(xz’,la yi,1) - m(%,m yz’,o) - (m(xj,h yj,1) - m<=rj,07 yj,o)) =
l

= Zbk(%(%,h Yi1) — ou(Ti0, Yio) — (Pr(@i1,¥51) — wr(®50,¥50)))  (14)
k=1

donde nuevamente nos queda un modelo de la forma

M = Ab (15)

Con M y A conocidas. Notemos que la dimensién de M y A depende del niimero de
pares de estrellas que se tomen en las diferencias (14). Tomar todos los pares posibles
de estrellas no es conveniente pues la matriz A tendria n? filas, lo que incrementaria
radicalmente el costo computacional de todo el proceso.

Existen ademés dos razones fisicas adicionales para filtrar el niimero de pares de
estrellas, estas razones se explican en los siguientes criterios utilizados simultaneamente
en la seleccion de estrellas:

» En la Figura 15 se puede ver una relacién entre el error de medicién (el cual es
dado por el procedimiento fotométrico descrito en el capitulo 2) asociado a la
magnitud estelar de cada estrella. Ahi podemos ver que existe una relaciéon entre
ambas variables. Esto tiene sentido fisico, basado en la idea que estrellas menos
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brillantes (magnitudes mas grandes) entregan datos menos precisos. En base a
esto, se filtraron estrellas por orden de magnitudes, dejando de lado las estrellas
muy poco brillantes, es decir, estrellas con una magnitud muy grande. Esto con
el objetivo de disminuir el ruido en nuestro conjunto de datos.

= El segundo filtro se aplico en base a pares de estrellas, dejando solamente las
estrellas con 6rdenes de magnitudes cercanos. Este filtro se aplicé en base a la
idea que al restar estrellas con magnitudes muy distintas, una de las dos se torna
despreciable en cuando a la otra generando nada més que ruido adicional al
restarlas.

Antes de revisar la implementacion de los métodos consideremos la siguiente obser-
vacion: En el caso del primer modelo, al realizar la diferencia de magnitudes inevitable-
mente se pierde informacion sobre el término constante del polinomio, sin embargo al
ser precisamente constante, no depende del punto en el plano y la diferencia se iguala a
cero, por lo que no presenta inconveniente. Para el caso del segundo modelo este hecho
si tiene consecuencias, pues no solo se pierde informacion para el coeficiente constante
si no que también para todos los coeficientes que acompanan a términos lineales. Para
aclarar este hecho consideremos el polinomio de segundo grado °

p(z,y) = a1 + asx + azy + aqzy + asz? + agy’.

Al realizar las restas para la ecuacién (14) nos queda

p(zi1:Yia) — p(@i0, Yio) — (P(Tix, ¥in) — p(Ti0, Yip)) =
= a1 + agTi1 + A3Yi1 + aTiaYin + asT; | + a6y
— (a1 + asxip + asyip + aax;oyio + a5$?,0 + a6yi2,o)
— (a1 + azwj1 + asy;1 + asxj1y51 + G5I§,1 + G6y32',1
— (a1 + a0 + asy;o + asT;oyj0 + as@’io + a6yj2-,o))
= ax(@in — Tip — (Tj1 — 250)) + as(¥in — Yio — (Yj1 — Yj0)) + tos
(16)
donde tos denota los términos de orden superior. Ahora, notemos que
Tig — Tio — (T1 — Tj0) = Tig — x50 — (Ti0 — Tj0)
pero como la distancia entre la estrella ¢ y la estrella j no depende de t tenemos que

Ti1 — Tj1 = Ti0 — Tj0

)

por lo que

Ti1 — Tjo — (%’,1 - xj,O) =0
y de forma andloga,

Yin — Yio — (Yj1 — Yj0) = 0.

5Para cualquier grado superior el hecho se extiende de forma directa.

34




*

i

De aqui concluimos que el segundo método genera una pérdida de informacién en cuan-
to a los términos lineales de los polinomios. Sin embargo, los teoremas 1 y 2 de todas
formas aseguran una buena aproximaciéon con polinomios linealmente independientes
sin términos lineales.
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Implementacion

En la Figura 14 podemos observar un diagrama general  del procedimiento de
obtencién de zp(x,y). Este sigue bésicamente los siguientes pasos:

1.

Desde la imagen obtenida por el telescépio se efectiia el procedimiento de foto-
metria descrito en el Capitulo 1.

. A partir de este procedimiento obtienen datos {(z;+,yir), m(is, Yir), 1} corres-

pondientes a posiciones de las estrellas i = {1,2,...,n} en los momentos t =
{0,1}, magnitudes fotométricas obtenidas para cada estrella en cada momen-
to, y la identificacién de cada estrella. Ademas se obtienen los errores asociados
a la medicion de cada estrella, los que se obtienen mediante el mismo proceso
fotométrico.

. A partir de estos datos fotométricos, se efectiia el mapeo por medio de la base

de funciones {w;(z,y)}j—; con el que se genera la matriz A y se realizan las
diferencias de las magnitudes fotométricas a utilizar, generando el vector M por
medio de (7).

Luego, se obtiene la solucién b de coeficientes (por el momento, mediante MCO).

Finalmente, con estos coeficientes se obtiene una aproximacion a la funcién de
variacion de punto cero.

[Imagen Interestelaa

Fotometria

Datos Fotometricos

o(,y)

A M

Minimizacién de residuos

coe ficientes

Plot

Figura 14: Diagrama del procedimiento de obtencién de variacion del punto cero.

6Notar que este diagrama es tanto para el método 1 como el método 2, estos difieren en la forma en

que se generan A y M, pero funcionan con el mismo procedimiento, el cual se describe en el diagrama

14.
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aE magnitudes vs error (data1)

0.7

0.6

0.5 °

10 1 12 13 14 15 16 17 18 19
magnitudes

Figura 15: Relacién de magnitudes estelares versus el error de medicién entregado por
fotometria. Cada punto corresponde a una estrella de la Figura 8.

En base al procedimiento descrito utilizando M y A dados por el método 2, y los
filtros senalados anteriormente, se obtuvieron las aproximaciénes polinomiales para el
conjunto de estrellas test, imagen correspondiente a un cielo fotométrico en donde el
método 1 es efectivo.

Se procedié a implementar dicho algoritmo por medio de paquetes cientificos pyt-
hon [12, 26]. Para bajo grados polinomiales se obtubieron resultados satisfactorios, en
el sentido de que los coeficientes de la funcién de variaciéon de punto cero que entrega el
método 2 son los mismos que los entregados por el método 1 los cuales fueron validados
en trabajos anteriores [39]. Sin embargo, a medida que se aumenta el grado aparecen
tendencias ajenas a lo esperado. Este comportamiento fue previsto en observaciones
anteriores y es abordado en el siguiente capitulo.

En la Figura 16 podemos observar una aproximacion de grado 5 por medio de ambos
métodos. En dicha aproximacion se obtuvieron coeficientes similares para el polinomio
reproduciendo para el método 2 los mismos niveles de correccion previamente obtenidos
en [39]. Este hecho satisface las expectativas pues logra una correccién adecuada con un
modelo mas general, el cual permite ser aplicado a cielos con variaciones atmosféricas,
lo que previamente no era posible.
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Figura 16: Aproximacién de grado 5 mediante el primer método (a la izquierda), y el
método de diferencias de diferencias (a la derecha) para los datos de la Figura 8.
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Capitulo 4

Condicionamiento del sistema

Nobody wants to read anyone else’s formulas.

Finman’s Law,

Si bien el método de minimos cuadrados ordinario da buenos resultados, en muchos
casos este método no es robusto. Esto es debido a que muchas veces el sistema puede
estar mal condicionado, en el sentido de que cambios muy pequenos en la matriz de
diseno pueden entregar soluciones muy diferentes. Tomando en cuenta que trabajamos
con magnitudes fotométricas, las cuales estan constantemente afectadas a errores de
medicion, se hace necesario implementar un método que subsane estas dificultades.

DEFINICION 3 Decimos que, para una matriz de rango completo A de m X n y un
vector b € R™, el problema

min ||Ab — M||3 (17)

beR™

estda bien condicionado en el sentido de Tikhonov si:

1. La solucion b € R™ existe;
2. La solucion es unica;

3. Variaciones infinitamente pequenas en M conducen a variaciones infinitamente
pequenas en la solucion b.

observacion: Las condiciones 1y 2 se cumplen siempre que la matriz A sea de rango
completo [16].
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El numero de condicionamiento
Motivacion

Como se comenta en el capitulo anterior, si bien la matriz A del sistema (9) es
de rango completo, es importante saber en alguna medida ”que tan cerca de no ser
de rango completo” estd. Concretamente, interesados en resolver el sistema Ab = M
queremos estudiar como afecta la solucién si se perturban los datos ingresados (input)
Ay M. Turing [45] introdujo el llamado numero de condicion, el cudl da una idea
formal de la sensibilidad de un sistema respecto a sus datos de entrada.

Formalizacion

Para las normas matriciales y vectoriales descritas en el capitulo anterior tenemos
la siguiente propiedad [16] la cual utilizaremos en el teorema principal de esta seccién

LEMA 1 Para cualquier vector x # 0, matriz A y cualquier norma | - ||,, tenemos

1A, < [[Allp - 1l

Volviendo a nuestro problema original, consideremos el sistema

Ab = M.

En nuestro caso, como en muchos otros casos de ingenieria, los coeficientes del
vector M se encuentran sujetos a errores (pues estos corresponden a mediciones fo-
tométricas de las magnitudes estelares). Teniendo en cuenta esto es de esperar que
nuestro método considere dichos errores, es decir, que cambios pequenos en el vector
M reflejen pequenios cambios en la solucién del problema b (que en nuestro caso corres-
ponden a los coeficientes de la aproximacién polinomial). De otra forma no podemos
confiar en nuestra solucién.

Para esto Turing [45] en 1947 definié el nimero de condicién. La definicién de este
numero, para el caso de matrices cuadradas no singulares, viene formalmente motivada
por el siguiente teorema .

TEOREMA 5 Consideremos el sistema de ecuaciones lineales

Ab=M
Si llamamos M al error de medicion en M y 0b la perturbacion en la solucion de (D)
entonces 5b SM
H Hp < ’ip(A> H HP7 VA c IMInxn7 VM c R™
161l M
Donde k,(A) = ||A]l,-|A7Y|, corresponde al numero de condicionamiento de la matriz
A.

"Este teorema es una adaptacién al teorema presentado por Turing para nuestro caso en particular
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Demostracion: Por definicion tenemos que
A(b+0b) =M + oM
como b es la solucion del sistema de ecuaciones lineales Ab = M entonces
A-6b=6M = 6b=A"'-5M.
Tomando norma en ambos lados y usando el Lema 1,
16b]l, = |A™" - oM ||, < A7, [[0M],
Por otro lado

Ab=M <= ||All, - [Ibll, > 1M, <= [Ibll, = [M]], - [|IA™]],

Entonces se tiene que el error relativo

1061,
101,

lo que prueba el resultado. [

oMy _ ) 1901

1M]l, [ M,

<IAll, - 1A7]l,

Notemos que este resultado es precisamente lo que nos da el control de cuando
estamos dispuestos a ceder en relacion a la solucion de nuestro problema, en el sentido
de que tenemos una cota para el error de nuestra solucion en base al nimero de con-
dicionamiento de la matriz A y lo errores del vector M. Asi, decimos que un sistema
estd bien condicionado si su nimero de condicion es suficientemente pequeno para que
la cota dada por el teorema anterior entregue variaciones razonables en la solucién.
En caso contrario (niimero de condicién muy grande) decimos que el sistema estd mal
condicionado.

En este sentido se hace necesario tener controlado el nimero de condicién de las
matrices con las que trabajamos, ya que esto nos da una idea de que error estamos
cometiendo en nuestra estimacion.

Para el caso de sistemas sobredeterminados (la matriz A ya no es cuadrada), el re-
sultado se extiende de forma natural, haciendo uso de la pseudoinversa Moore-Penrose
27, 30] definida como ®

Al = (ATA) AT,

De esta forma, extendemos (a matrices rectangulares) la definicién al niimero de
condicién [18] como

rp(A) = [IAll, - 11 A"l

8Notar que la solucién del problema de minimos cuadrados utilizada en el capitulo anterior corres-
ponde precisamente a b = AT M.
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OBSERVACIONES:

Notemos que el nimero de condicién k,(-) depende de la norma a utilizar. Para el
caso abordado hasta este momento (minimos cuadrados) tenemos que el nimero de
condicién corresponde ([16]) a

- 0'1(14)
RQ(A) = o‘n(A)

donde 1(A) y 0,(A) son los valores singulares mayor y menor de la matriz A,
respectivamente.

(18)

En general para otras normas (en el capitulo siguiente se abordara el caso de la

minimizacién con la norma || - ||;) podemos encontrar algunas otras caracterizaciones,
como por ejemplo la desarrollada en [21], donde tenemos que para la norma || - ||,
1 o [1AAl

kp(A)  (A+AeNre) ||All,

donde definimos N RC' como al conjunto de todas las matrices que no son de rango
completo.

Esta caracterizacién muestra que k,(A) mide la distancia (relativa a la norma ||-||,)
de A al conjunto NRC'. Esta es precisamente la motivacién explicada al principio de
este capitulo, en donde, si bien la matriz es de rango completo, ella puede arrojar
errores similares a matrices en NRC, de acuerdo a su ” cercania ” con dicho conjunto
de matrices. Para una caracterizacion a normas mas generales se puede consultar [31].

Si bien lo anterior muestra caracterizaciones distintas a (18) para otro tipo de
normas, muchas veces esta definicién es suficiente. Esto se basa en el hecho de que
para espacios de dimension finita (R™) todas las normas son equivalentes. Asi, tenemos
como ejemplo las siguientes tres relaciones

%RQ(A) < k1(A) < nky(A) (19)
oe(4) < Ra(4) < mri(4) (20)
%m(A) < Kioo(A) < MR (A). (21)

En particular la ecuacién (19) da una relacién de las normas con las que se aborda
el problema en este trabajo.

Continuando con el analisis de nuestros datos test, se computé el nimero de con-
dicion para las distintas matrices correspondientes a polinomios de grados entre 5 y
15 para el primer modelo presentado (modelo 1) y para el modelo que contempla las
variaciones atmosféricas (modelo 2). Un grafico del comportamiento del niimero de con-
dicién versus el grado del polinomio se puede apreciar en la Figura 17. Aca podemos
observar lo que se suponia previamente:
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1. El niimero de condiciéon aumenta con el grado del polinomio;

2. El ntimero de condicién para el modelo de diferencias de diferencias es mucho
mayor al del primer modelo.

Estos hechos se relacionan totalmente con los resultados mencionados en el capitulo
anterior, donde se obtubieron curvas sin sentido fisico para polinomios de orden mayor.

Curva grado de polinomio vs N de condicion
1600 T T T

1400~ -

[e]
12001 Modelo 1 _

Modelo 2

1000~ -

800~ *

Numero de condicion

600~ *

400 .

200~ - |

o= I el AR | | |
5 6 7 8 9 10 1" 12 13 14 15
Grado del polinomio

Figura 17: Grafico del Nimero de Condiciéon vs grado de polinomio para ambos mo-
delos. Aca podemos ver el sistema se malcondiciona notablemente mas rapido para el
modelo 2.

Regularizacion por medio de valores singulares truncados

Con el objetivo de subsanar el problema de condicionamiento previamente detecta-
do, se analiza la naturaleza de dicho mal condicionamiento. Del ntimero de condicién
dado por la ecuacién (18) podemos observar que para valores muy pequenos del menor
valor singular en relaciéon al mayor valor singular, el sistema se mal condiciona. En
base a esta idea revisaremos resultados previos para luego establecer un método de
regularizacién consistente. El desarrollo de este método se basa en la (bien conocida)
descomposicion en valores singulares. En lo que sigue se verdn resultados necesarios
para obtener un método regularizador para nuestro problema en particular. Una vision
introductoria pero més completa del tema se puede encontrar en [43].
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TEOREMA 6 Si A es una matriz real de m x n, entonces’ existen matrices ortogonales

U =[u,..uy,] € R™™ y V = vy,...,v,] € R

tales que

UTAV = diag(oy, ..., 0,) € R™™, p =min{m,n}
donde oy > ... > 0, > 0.

La demostracién de este teorema puede ser encontrada en [16].

De esta forma, tenemos que para A € R™ " la matriz obtenida en (15) (o en
(7) dependiendo del modelo a utilizar), la descomposicién en valores singulares (SVD)
tiene la forma

A=UxVT =3 wow!

7

(22)
con U = [ug, ..., Uy € RV = (vy,...,v,) € R"™™ matrices ortonormales, y

Y. = diag(oy, ...,0,), para o1 > ... > 0, > 0 valores singulares de A.

Del mismo modo, la expresion para la pseudo-inversa corresponde a

Rango(A)=n

Al = Z vio; tul

i=1

Notemos que para el caso de matriz cuadrada e invertible se tiene AT = A~!, por
lo que este desarrollo contempla sistemas cuadrados con matrices no singulares.

Luego, podemos escribir la solucién de MCO obtenida en el capitulo anterior como

Rango(A)=n
u; M
b=AM = Ly 23

De aqui podemos observar la influencia que tienen los valores singulares en la so-
lucion del sistema para el método de minimos cuadrados. En el caso de que la matriz
no tenga rango completo (y por lo tanto no tenga rango completo), la solucién simple-
mente estd dada por la sumatoria (23) hasta el nimero del rango, es decir, realizando
la suma sobre todos los valores singulares mayores que cero. Sin embargo, como se co-
mentd en el capitulo anterior, en la practica la matriz A es de rango completo, aunque
en muchos casos es numéricamente ”cercana” a no serlo (mal condicionada), es decir
re < n donde r. es la cantidad de valores singulares mayores que ¢, para e pequenio'’.
Por el anélisis previo, esta situacién inevitablemente conlleva a dificultades numéricas.
Notemos que si tomamos norma en ambos lados de la ecuacién (23) tenemos (utilizando
la ortonormalidad de los vectores v;) que

9Denotamos al conjunto de las matrices reales de tamafio m x n como R™*"
10Notemos que por (18) el sistema estd bien condicionado si 7. = n para e grande.
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Rango(A)=n

pE= > (MY 4

i=1

por lo tanto, para o; muy pequenos ||bl|o es muy grande, a menos que M se en-
cuentre cercano a ser linealmente dependiente a las columnas de A, o formalmente,
que los tltimos n — r. coeficientes u? M satisfagan

lul’ M| < o;. (25)

Sin embargo, para vectores M con presencia de errores (como es nuestro caso), es
muy poco probable que esto se satisfaga, y la solucién b es por lo tanto dominada por
los dltimos n — r. componentes de la descomposicién SVD utilizada para (23).

En base a estas ideas, en [20] y principalmente en [47] se propone un método de
regularizacion considerando las matrices

k=7

A = Z wov; (26)
i=1

es decir, reemplazando los valores o1, ..., 0, por ceros. Esta sustitucion es respal-
dada por el siguiente teorema (concecuencia directa del Teorema 2.5.3 de [16])

TEOREMA 7 Sea My, el conjunto de todas las matrices de rango k, y sea A la matriz
de nuestro sistema lineal definida en (22). Entonces la matriz Ay definida en (20) es
solucion del problema

i |14 - 7] (27)

Es logico ademés pensar en la eleccion de k como k = r¢, esto pues k < r. conduce

a una pérdida de la informacién asociada a valores singulares grandes, y si k& > r.

incluimos valores singulares pequenos, los cuales por lo visto durante este capitulo, se
traducen en un mal condicionamiento del sistema.

Asi, como consecuencia del anélisis desarrollado en este capitulo, se propone un
método de regularizacion como una forma de abordar la problematica asociada a la
implementacion del segundo modelo aplicado a la correcciéon fotométrica. Este se ba-
sa en la sustitucién numérica de A por la ecuacién (26), obteniendo asi la solucién
alternativa

Te TM
b=l =3 "y, (28)

0’.
i=1 !
Este método es conocido como descomposicién en valores singulares truncados''.
Una vision global de éste y otros métodos de regularizacién, en especial los llamados

métodos de Tikhonov, aplicados a sistemas sobredeterminados puede ser encontrada
en [19].

T3 eleccién de € usualmente se escoge en relacién a los valores singulares del sistema en particular.
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Aplicacién

En base a la teoria descrita se implementaron los algoritmos correspondientes al
método 2. La figura 18 muestra las aproximaciones polinomiales de la funcién de varia-
cién de punto cero correspondiente a polinomios de grados entre 3 y 14. A simple vista
podemos ver un comportamiento natural para algunos polinomios, no obstante existen
en muchos casos comportamientos incongruentes en las esquinas, tal como habiamos
apreciado en la figura 13. Este tipo de comportamientos se traducen concretamente en
incrementos inusuales en algin coeficiente de la aproximacion polinomial, es decir en la
solucién del problema de optimizacién (9) gatillados en muchos casos por la presencia
de outliers propios de la naturaleza de los datos fotométricos. Este tépico se aborda en
el siguiente capitulo.

Figura 18: Aproximaciones de grados 3 a 14 mediante el método de diferencias de
diferencias para los datos test (imagen 8). En la esquina superior izquierda se encuentra
la aproximacion polinomial de grado 3, a su derecha la aproximacién de grado 4 y
asi sucesivamente hasta la aproximacion de grado 14 en la esquina inferior derecha.
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Capitulo 5

Minimizacion para la norma [

Todo lo que se funda en la fuerza es frdagil y denota la ausencia de
1Mgento

Charles Fourier,

Los métodos anteriormente implementados, con el norte de reducir los residuos,
buscan solucionar el problema

s _ 2
min [|Ab — MiJ; (29)

En este capitulo, se propone como alternativa reducir los residuos en el sentido de
la norma [y, es decir, utilizar la solucion del problema

min ||Ab — M||;. (30)
beRn™

Motivacion

Si bien el método de minimos cuadrados en general es 1til en problemas sobrede-
terminados (incluyendo este), en muchos casos la solucién obtenida por (30) es prefe-
rible. Podemos ver, por ejemplo en la Figura 13, donde la solucién para (29) da una
aproximacién polinomial que presenta un comportamiento inusual alrededor del pun-
to (z,y) = (—1,—1). Claramente este comportamiento no tiene ningin sentido fisico
(fotométrico).

Los datos fotémetricos estan afectos a una variedad de errores tales como, rayos
cHésmicos, defectos en el silicio que dana alguno de los foto receptores, transientes
electrénicos, reflecciones internas, imagenes fantasmas de estrellas brillantes que afec-
tan la medicion de solo algunas estrellas, etc. Todas estas fuentes de errores impli-
caran que toda lista de mediciones fotométricas contendran un niimero significativo de
outliers, los que afectan directamente la estimacion de los parametros de la funcién de
variacién del punto cero.
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Una alternativa para solucionar problemas de outliers es precisamente minimizar
en relacién a la norma l;. Para ver esto consideremos A = [ay, as,as, ..., a,)T donde
a; es un vector fila en R, y M = [M;, My, ..., M,,]7 € R™. Asi, por la ecuacién (8),
tenemos

HAb — MHl = ’<a1,b> — Ml‘ + ’<Cl2,b> — MQ‘ + ...+ ’<Clm,b> — Mm‘ (31)

|Ab — M2 = ({a1,b) — M1)% + ({az, b) — M)? + ... + ({am, b) — M)?  (32)

Si para algin j, M, es oulier, podemos suponer que |{a;,z) — M;| >> 1 lo que
implica [{a;,z) — M;| << ({(a;,x) — M;)*. Podemos ver entonces que el modelo (29)
se ve mas afectado que el modelo (30) debido a su cardcter cuadratico. Una visioén es-
tadistica de este hecho se puede encontrar en [24]. Una representacién gréfica se puede
ver en las Figuras 19 y 20 tomadas de [11] y [9] respectivamente.

Tomando en cuenta ademas, que los datos fotométricos estan sujetos a errores, y

¢

seguramente cuentan con ouliers, se propone implementar el modelo (30).
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Figura 19: Linea punteada para norma
[ y linea continua minimos cuadrados.
Los puntos blancos representan los da-
tos. (imédgen tomada de [11])

Figura 20: Aproximaciéon mediante los
2 métodos distintos. Los puntos negros

representan los datos. (imdgen tomada
de [9])

Definiciones y resultados previos

DEFINICION 4 Decimos que la funcién f: R" — R es una funcidn conveza si

flax 4+ (1 —a)y) < af(z) + (1 —a)f(y),
PROPOSICION 1 La funcion
fR" — R
z — f(b) = bl

Vo, y € R".
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es una funcion convexa.

Demostraciéon: Por desigualdad triangular y linealidad de la norma

flaz+(1-ay)) = [lez+(1-a)yly < aflzi+(A-a)lylh = af(z)+(1-a)fly) O

De esta forma, considerando que el andlisis aqui planteado tiene como objetivo la
norma [, consideraremos en lo que resta del capitulo que f es una funcién convexa
para todos los resultados, a menos de que se mencione lo contrario.

DEFINICION 5 Decimos que el vector g € R™ es un subgradiente de f : R™ — R en
by € R™ si para todo b € R™

f(0) = f(bo) + (g0 — bo) (33)

Observacién: Si f es convexa y diferenciable entonces su gradiente en b es el sub-
gradiente. Sin embargo, el subgradiente puede existir aunque la funcién f no sea dife-
renciable como se muestra en la Figura 21.

f(b)

f(o1) +gf (b — bl)“
| A) + (o 2)

- S(es) + g5 (b—s)

2 i
T P !

b1 . bs

Figura 21: En el punto b; la funcién f es diferenciable y su subgradiente es igual a su
gradiente. En el punto by la funcién no es diferenciable y tiene muchos subgradientes.
(imagen obtenida de [7]).

DEFINICION 6 El conjunto de todos los subgradientes de f en b es llamado el subdi-
ferencial de f en b, y es denotado como Of(b).

Veamos un ejemplo de nuestro problema para el caso b € R.

EJEMPLO 1 Consideremos la norma ly en una dimension, es decir f(b) = |b|. Clara-
mente para b # 0 el subgradiente es inico Of(b) = sign(b) = %. Para b =0 tenemos

que el subdiferencial son todos los g que cumplen |b| > g|b|, para cualquier b € R, de
este modo Of(0) = [—1,1] (ver Figura 22).
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TEOREMA 8 Si f es convera y b € R", entonces Of(b) es un conjunto no vacio y
acotado.

La demostracion se puede encontrar en [7].

f@) = [s] of(v)

Figura 22: Figura tomada de [7]

DEFINICION 7 f : R"™ — R se dice coerciva si

lim  f(b) = +o0
16l —=+00
PROPOSICION 2 Para cualquier matriz A de rango completo, la funcién
f:R" — R
b — f(b) = [[Ab— My

es una funcion coerciva.

La demostracion viene directamente de la definicién de coercividad al separar
||Ab — M]||; en una suma de valores positivos, hacer una coordenada tender al infi-
nito considendo la norma || - || "%

De este modo, tenemos las herramientas para demostrar que el problema (30) siem-
pre tiene solucion:

TEOREMA 9 Sea f : R® — R wuna funcion continua y coerciva, entonces existe un
punto b* € R™ que minimiza f, i.e, f(b*) = lr)n]%;n f(b).
E n

Demostracion: El resultado es consecuencia directa del teorema de Weierstrass-
Hilbert-Tonelli (ver por ejemplo Teorema 1.2.1 en [1]) O

Luego el problema (30) siempre tiene solucion.

De este modo, estamos interesados en aplicar un método capaz de llegar lo mas
cercano posible a la solucién de (30) para cualquier matriz rectangular A y vector

2Tomar en cuenta que en R” todas las normas son equivalentes, para mas detalles sobre este hecho
consultar [36]
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M. En vista de que nos encontramos con una funciéon no diferenciable, no es posible
aplicar métodos estandar de optimizacion numérica, tales como maximo descenso, gra-
diente conjugado, etc. De este modo, buscamos alternativas a estos métodos que nos
lleven a soluciones satisfactorias. Con este objetivo se estableceran dos resultados que
motivaran los métodos implementados en la siguiente seccién.

PROPOSICION 3 (Adaptacion del Teorema de Moreau-Rockafellar) Si f1, fo son fun-
ciones convezas, entonces

Ve e R, 3fy(b) + 0fa(b) = (f1 + fo)(b)

Demostracién: Ver [33].

PROPOSICION 4 Un vector b* € R™ es un minimo de f : R™ — R siy sdlo si 0 € 9 f(b*)

Demostracién: Ver [7].

Generalizacion del método de maximo descenso a la norma [4

Como se coment6 anteriormente, debido a que la funcién f(b) = [|b||; no es diferen-
ciable, no podemos obtener la solucién del problema (30) de forma explicita, por lo que
buscamos un método iterativo que permita encontrar una solucién para el problema.

Un método ampliamente utilizado de bisqueda de minimos para funciones dife-
renciables corresponde al método de maximo descenso, el cual consiste en realizar la
iteracién

VA = b — N V() (34)

donde ° es obtenido de algtin criterio dependiendo del problema (en el caso convexo
con gradiente lipschitz el método converge independientemente del valor inicial), se
elige una sucecién Ay y un criterio de parada. En la Figura 23 podemos ver graficamente
el comportamiento de las iteraciones por medio del método de maximo descenso.
Una alterativa a més eficiente ([3]) a (34) consiste en el método proximal

VA = b — N V(0. (35)

Si bien este método es exitoso en muchas ocaciones, por la naturaleza de este caso
en particular no fué posible encontrar una expresién analitica a la ecuacién (35), por lo
que seria necesario realizar una subrutina numérica para solucionar esa ecuacién. Con
el objetivo de mantener el algoritmo lo mas simple posible se decidié no implementar
el método proximal.

Una generalizacion a funciones convexas no diferenciables consiste naturalmente en
utilizar la iteracién
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Figura 23: Método iterativo de méaximo descenso de minimizacién de la funcién f(b).

B = b — Ao (0F) (36)
donde g(b*) € Of(b*).

Para adaptar este método a nuestro caso, es necesario obtener el subdiferencial de
f(b) = ||Ab — M||; para b € R"™. El calculo de éste sigue directamente del siguiente
resultado ([7]) :

PROPOSICION 5 Sea f:R"™ — R conveza, y sea h(b) = f(Ab— M), entonces Oh(b) =
ATOf(Ab— M).

Con esto, solo basta obtener el subdiferencial de f(b) = ||b||;. Notemos que este es
simplemente una generalizacion del Ejemplo 1 a més dimensiones.

Asi, la funcién f(b) = ||b]|y = |b1] + |b2| + ... + |bn| es diferenciable en
D={beR"b#0,Yi=1,2,...n}

y su subdiferencial corresponde a

sign(by) Toi]

9 sign(bz) &
f(b)=Vf(b)= : =1 Vb e D.

sign(by) o

Para b € D¢ tenemos que, de la misma manera que en el ejemplo 1, para b; = 0

0f(b) = {glllgllc < 1,97 = [Ibll1}
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Por lo tanto, si definimos f;(b) como la coordenada i-ésima del vector f(b),

| sign(b;) sib; #0
9fih) _{ [—1,1] sib;=0

Buscamos entonces algin g(b) € df(b) que nos permita realizar el método (36).

Asi, considerando las Proposiciones 3 y 4 se hace natural proponer
| sign(b;) sib; #0
9(b) = { 0 sixz; =0.

Por lo tanto

g(b) = (sign(bs))iz, (37)
donde podemos ver claramente que g(b) € 9f(b).

Parametros y algoritmo a utilizar

Buscamos de alguna manera extender los métodos éxitosos de optimizacién dife-
renciable para el caso no diferenciable, sin embargo, como se comenta en [14], esta
transicién no es directa, si no mas bien depende de cada caso, es decir, de la funcién a
minimizar. Wolfe [49] por ejemplo, da algunos ejemplos donde la extensién directa al
método de maximo descenso falla.

Shor [40] demuestra que el paso constante Ay = A no converge, incluso para nuestro
caso particular mas simple donde = € R, es decir, f(b) = |b|. El propone el uso de una
secuencia de pasos que satisfaga

d =00, A —0 (38)
k=0

donde si esta probada la convergencia [40]. Como es comin en estos métodos ite-
rativos, coloquialmente pueden ocurrir dos casos que es de interés evitar:

= Que el paso actual sea demasiado pequeno, lo que causaria que el método converja
muy lento;

= Que el paso sea demasiado grande, lo que generaria demasiada ocilacién, provo-
cando nuevamente que el método converja lento.

En la Figura 24 se pueden ver las primeras 35000 iteraciones para la norma ||Ab —
M||;, para una matriz A de 13250 x 9 y un vector M de 13250 coordenadas. Esta
iteracién muestra dos comportamientos simultaneos, por un lado observamos un de-
crecimiento cada vez mas paulatino de la norma, y por otro lado, a menor escala (en el
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1|Ab-M|,

2.382 2.3825 2.383 2.3835 2.384
iteracion

J1Ab-MJl,

[ 0.5 1 1.5 2 25 3
iteracion o

Figura 24: Grafico del valor de ||Ab — M||; a lo largo de las iteraciones para un paso
Ak =7

recuadro menor) vemos un oscilamiento permanente en las iteraciones. Esta simulacién
muestra los dos problemas antes mencionados. Para ella se utilizo A\, = %

Para ver por otro lado el comportamiento para un paso constante Ay = A, se rea-
lizaron iteraciones para distintas constantes, mostrando un comportamiento similar

pero a distintas escalas (ver Figura 25).

Estos dos ejemplos reflejan el comportamiento general para la funciéon que esta-
mos tratando. A grandes rasgos el comportamiento para pasos grandes corresponde en
principio a una rapida convergencia pero luego a mucha oscilacién, lo que conduce a
convergencia lenta. Para pasos mas pequenos las iteraciones no oscilan, pero avanzan
muy lento.

Asi, analizando nuestra funcién en particular f(b) = ||Ab — M]||;, consideremos la
siguiente condicién.

CONDICION 1 La secuencia {bg, bxi1, bpyo} cumple f(VFT1) > f(b%) y f(O*T1) < f(b¥F2).

Después de varias pruebas vimos heuristicamente que el comportamiento natural
para esta funcion en particular responde a una buena tasa de convergencia para pasos
constantes suficientemente grandes, hasta el momento dado por la condicién anterior
donde la funcién objetivo comienza a oscilar. De esta forma, se propone implementar
el algoritmo 1, el cual consiste concretamente en mantener un paso constante hasta
que la funcién objetivo comienza a oscilar, en ese momento se disminuye el paso, para
continuar el algoritmo hasta su nueva oscilacion y asi sucesivamente. Notemos que,
debido a que estamos trabajando con una sucesién armoénica (1/k) este paso cumple
las condiciones de Shor (38) para convergencia del método.
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Figura 25: Gréfico del valor de ||Ab — M]||; a lo largo de las iteraciones para distintos
pasos constantes, las curvas azul y verde corresponden a valores de A mas grandes
donde podemos ver que en un principio desciende mas rapido el valor de la funcién
objetivo, pero con mucha oscilaciéon. Para las curvas negro, amarillo y burdeo no vemos
oscilacion, pero vemos un decrecimiento cada vez mas lento.

Require: A, M, \, K, xq, k=0
while k¥ < K do
bk = bk,1 — )\ATsz'gn(Abk,l — M) 3
if Condicién 1 then
=2
k
end if
end while

Criterio de parada

Usualmente un criterio de parada natural para el método de maximo descenso es

V(0" < e (39)

dado que, para una funcién diferenciable, el mfnimo se cumple para V f(b*) = 0, y
el gradiente decrece de forma continua. Sin embargo para nuestro caso este criterio no
aplica. Pensemos por ejemplo en el caso mas simple f(b) = |b], el cual tiene su minimo
en b = 0. En este caso |V f(b*)| = 1 para cualquier b # 0, por lo que no tiene sentido
establecer una condicién como (39). Para funciones no diferenciables la eleccién del
criterio no es trivial.

Una posibilidad consiste en establecer como criterio
[F(OF) = FOOEY)] < e
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Notemos que del algoritmo 1, y por la forma de f(b) un criterio similar corresponde
a parar cuando se cumpla

)\k<5

para algun ¢ establecido.

Es claro ademds que mientras menor sea el valor de ) mas cercana es la solucion al
minimo. Sin embargo este valor estd limitado por la capacidad computacional.

El Algoritmo 1 se implementd exitosamente, obteniendo soluciones més cercanas al
minimo a medida que § es mas pequeno o que la cantidad de iteraciones es mayor y la
calidad de la soluciéon esta estrechamente ligado con el tiempo de ejecucion. Conside-
rando que la implementacion esta pensada para correccién de imagenes astrondémicas,
las cuales se toman muchas veces por noche, es fundamental que la correccién comple-
ta sea instantanea. Por ello no es posible una implementaciéon con mucho tiempo de
ejecucion. Luego, se desarrolla la siguiente idea, mejorando radicalmente el tiempo de
ejecucion y la calidad de la solucion.

Alternativa geométrica

Consideremos nuevamente el sistema (30). Observemos que

||Ab—M||1=Z|<Gi,b>—Mi| (40)
i=1
para a; los vectores fila de la matriz A y M; la cordenada i-ésima del vector M.

Esta suma tiene una importante interpretacion geométrica. En la figura 26 pode-
mos observar un caso donde b € R y m = 5. El valor de ||Ab — M]||; corresponde a la
curva superior roja, y los valores |{a;, b) — M;| a las funciones inferiores. Acd podemos
ver geométricamente a qué corresponde la ecuacién (10).

De esta ecuacién vemos que la funcién f(b) = ||Ab — M]||; es una funcién lineal
por trozos. Tenemos ademds que la funciéon cambia de gradiente en los puntos donde
|{(a;,b) —m;| = 0 para algin i. De aqui se establece el siguiente teorema.

TEOREMA 10 Si b* € R™ es un minimo de f(b) = ||[Ab — M||;, entonces |{a;,b*) —
M;| =0 para al menos m valores de i.

Demostracién: f(b) = ||[Ab— M||; es una funcién lineal (y diferenciable) por trozos
donde el gradiente cambia en los puntos donde |{a;, by — M;| = 0. Si |{a;,b) — M;| #0
para una cantidad de valores de ¢ mayor a n — m entonces existe un subespacio lineal
y una vecindad V' de b* donde f(b*) > f(b) para algin b € V. Por lo tanto f(b*) no es
minimo.

EJEMPLO 2 Para el caso b € R? los subespacios |{a;,b) — M;| = 0 corresponden a
rectas . Podemos ver en la figura 27 la forma de los valores |{a;,b) — M;| donde

IBPara el caso b € R estos espacios corresponden a puntos, para el caso b € R> corresponden a
planos, y asi sucesivamente.
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140

120 — —

100 — —

Figura 26: Suma de 5 funciones de valores absolutos

para esta figura tenemos que a; = (—2,1)7 y b = —2. Para este caso el subespacio
|{a;,b) — M;| = 0 corresponde a la recta by = 2b; — 2.

En la Figura 28 vemos el valor f(b) = ||Ab — M||1 para la matriz

11 4
A=| -2 1|, M=|-2
1 0 -9

es decir, para la suma de las funciones

f1(b) = |by + by — 4| (41)
fa(b) = | — 2by + by + 2| (42)
f3(b) = [b1 + 9| (43)

En la figura derecha vemos una wvista del plano v — y, donde observamos que el
minimo se encuentra en la interseccion de las rectas fr =0 y fo =0, es decir el punto
x* satisface

fi(07) = f2(b") =0
Donde se cumple el Teorema 10.

Luego se propone un nuevo mecanismo de busqueda eficiente de minimos, basado
en las siguientes ideas

» Bl método de maximo descenso modificado encuentra cercanas al minimo. A
medida que mayor tiempo computacional se disponga al proceso mayor sera la
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Figura 27: Funcién | — 2b; + by + 2|

cercania a la solucion, sin embargo buscamos un algoritmo que utilize la menor
cantidad de tiempo posible, pues se trata de una correccién que se efectuara para
muchas observaciones astronémicas por noche.

= Sitenemos una solucién relativamente cercana al minimo, entonces por el teorema
10 deberiamos tener al menos m ecuaciones |{(a;, b) — m;| cercanas a cero;

= Por el teorema 10, la soluciéon éptima satisface un subsistema cuadrado
Ab = M,
donde A es una matriz cuadrada de m x m y M un vector de m cordenadas *;
= La cantidad de combinaciones de m ecuaciones entre las n posibilidades corres-
ponde a (:1) Considerando que n es del orden de 13000 y m alrededor de 9,
este nimero es demasiado grande '°. No existe computador que calcule todas las
posibilidades para encontrar el minimo en tiempo razonable;

» Una vez que tenemos una solucién b# cercana al minimo, podemos evaluar las
m ecuaciones |{a;,b") — M;| y ordenarlas de menor a mayor obteniendo las mas
cercanas a Cero;

» Asi, podemos tener una cantidad razonable de sub-sistemas (de muchas menos
coordenadas) priorizando las filas de A tales que |{a;,b*) — m;| es cercano al

4Notar que m el el grado del polinomio, que por lo general es 7,9, 11, es decir es un sistema muy
pequeno y facil de calcular
15 (13000) = 11,4176 * 10%!

60



*

i

AARANAANN

NN

AU
TR
MM

LLARERRRRNAAN
WY
AAAAAN

ARANNY
IARANANY

AARANNY
ALRARY

AIRAANN
IARANNY

ARRANN

\

NN
TR
JLLLARAANY

AMANY

=2

=

Figura 28: Ejemplo de una funcién f(b) = ||Ab — M||;.

cero. De este modo solucionamos el sistema por medio de SVD y las técnicas

descritas en el Capitulo 4, para cada uno de estos sub-sistemas, quedandonos
con la solucién de menor norma.

En base a estas ideas se construye el siguiente algoritmo

Algorithm 1 Método de maximo descenso ampliado

Require: A, M, \,s,l,k=0
- Obtener b* por medio del algoritmo 1. Sujeto a una condicién restrictiva de
iteraciones (procurando poco tiempo de ejecucion) ;
- Ordenar las filas de la matriz Ab* — M de menor a mayor y almacenar los indices

correspondientes a las filas ordenadas en el vector J;
for i=s:1 do

- Definimos la sub-matriz de A que toma las filas de A correspondientes a los
primeros i valores de J como A™;

- Definimos el sub-vector de M que toma las coordenadas de M correspondientes
a los primeros i valores de J como M

- Resolvemos el sub-sistema A70 = M~ por medio de SVD;
- Guardamos ||A7b — M™||;
end for

- Entregamos el valor de b que tiene menor norma |[[A™b — M™||;
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Continuando con las simulaciones realizadas a lo largo de esta tesis, entre los tests
que se realizaron, podemos destacar dos casos distintos:

El primero corresponde a la figura 29, donde podemos ver una comparacion entre
la minimizacién de minimos cuadrados y la minimizacién para la norma || - ||;. Aca
podemos apreciar soluciones similares, pero con el problema de outlier subsanado.

Figura 29: Aproximacion de grado 5 para datos tomados el 19-5-2011. A la izquierda
se encuentra la soluciéon de minimos cuadrados y a la derecha la solucién por medio de
minimizar la norma [,

Para el segundo caso, se utilizdé una imagen con cielo fotométrico, es decir sin varia-
ciones atmosféricas. En este caso es de esperar que la solucion obtenida por el método
uno refleje las mismas caracteristicas que para el método dos, pues el modelo sim-
plemente hace que el valor correspondiente a la componente atmosférica desaparezca
0; = 0. Podemos ver en la Figura 30 una comparacion de los tres métodos implemen-
tados: El método anterior (método uno) en la parte superior, el método desarrollado
en capitulos anteriores (con la componente atmosférica) y los algoritmos desarrollados
en este capitulo para el método dos (también con la componente atmosférica anadida).
Aca podemos ver, en las escalas de los gréaficos, como en la tercera figura la gréafica
ya no dispara su escala, manteniendo la escala obtenida exitosamente por el primer
método pero con la ventaja de que tiene la componente atmosférica anadida, lo que lo
hace responder de mejor forma a los requerimientos fisicos del problema, y considera
un modelamiento matematico mas completo.
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Figura 30: Comparacién para los 3 métodos con datos de cielo fotométrico. Aca pode-
mos ver como la minimizacién de norma [; subsana (observar la escala de los graficos)
los problemas detectados previamente. Los graficos son realizados con diferentes soft-
wares, pues el primero corresponde a un grafico antiguo utilizado para comparar, pero
es importante notar en las escalas de los gréficos, la cual muestra en el segundo gréfico
un problema de escala, que como se vié a lo largo de la tesis responde a un mal con-
dicionamiento del segundo método implementado y a problemas de outliers. Si bien
este método no responde precisamente para polinomios de orden alto es necesario de
implementar para subsanar problemas de la atmdsfera. En el tercer grafico se puede
ver una mejora en la escala, sin los problemas del método dos y, a diferencia del primer

A

Imagen obtenida exitosamente por el
primer método [39]. Este método fun-
ciona bien para cielos fotométricos.

Imdgen obtenida segun el modelo 2.
Aca el modelo sufre del mal condiciona-
miento producto del propio modelo para
grados mas elevados (este es un polino-
mio que incluye términos x°y°). Notar
que la escala de la grdfica cambia a mas

del 200 %.

Superficie obtenida mediante el algo-
ritmo 1. Podemos comprobar con la
primera imdagen como subsana las di-
ficultades del método obteniendo solu-
ciones concordantes, con los coeficien-
tes de los polinomios similares. Notar
que las escalas para ambas (esta grifica
comparada con la primera) son simila-
res.

grafico, anadiendo la componente atmosférica.
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Capitulo 6

Conclusiones

Solo en el celeste cielo, donde pone los ojos el poeta.

Richard Bach, Juan salvador gaviota

Si bien el método desarrollado en [39] resulta til para cielos fotométricos, es necesa-
rio generalizar el modelo para observaciones en cielos no tan éptimos. En este contexto
se trabajo con un modelo mas completo que considera la componente atmosférica en
la que las observaciones pueden ver afectada su fotometria. Si bien el nuevo modelo
resulta explicar de mejor forma el fenémeno fisico, matematicamente presenta incon-
venientes relacionados a un peor condicionamiento. Una primera solucién consistié en
aplicar métodos de regularizacion al sistema, como los son los métodos de valores sin-
gulares truncados.

Los datos ademas estan muy afectos a outliers, por la naturaleza de las mediciones.
Se experiment6 con una mimimizaciéon para la norma /; en lugar de utilizar minimos
cuadrados ordinarios. Para esta nueva técnica se obtuvieron mejores resultados, ob-
teniendo curvas mas suaves y menos afectas a los ruidos propios de los datos. Sin
embargo, el método de maximo descenso generalizado cuenta con un tiempo de ejecu-
ciéon mayor al aceptado. Para subsanar esto se disené un método alternativo tomando
provecho de las condiciones geométricas particulares de la funcién ||Ab — M]|;.

De esta forma, se construyé un método de poco costo computacional que permite
obtener aproximaciones a la variacién del punto cero para cielos fotométricos capaces
de reducir la descalibracion producto del procedimiento de Flat Fielding en alrededor
de un 10 % [39]. Este nivel constituye los mas altos indices de correccién que se habian
logrado en [2, 39, 46|, logrando ahora que el método sea implementable a cualquier
tipo de cielo.

En conclusién, en base al desarrollo de herramientas matematicas se construyé una
generalizacion a métodos de correccién fotométrica pudiendo replicar los resultados
anteriores [39, 2, 39, 46] pero ahora capaz de ser aplicado a cielos con variaciones
atmosféricas.
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