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1 Statistical Learning

In the theoretical framework of statistical modeling, our objective is to examine the
relationship between a variable y and one or more variables X. Here, y represents the
outcome we seek to predict or explain, while the vector X comprises the explanatory or
predictor variables that inform our predictions of .

This relationship is theoretically expressed as:

y=10)+e

where:

= f(X) embodies the systematic information conveyed by X regarding y. This
function f is unknown and reflects the true underlying process that we aim to
understand.

= ¢ captures the random error, accounting for variations in y not explained by X,
with an expected value of zero.

Definition 1 (Statistical Model). A statistical model is a mathematical representation
of observed data. In the context of regression, we often describe the model as Y =
f(X) + ¢, whereY is the dependent variable, X is the independent variable, f is the
function that represents the systematic relationship between X andY, and € represents
the error term, capturing all other factors affecting Y that are not included in X .

Transitioning from this theoretical construct to empirical application, we collect a
dataset with n observations. Each observation i in the dataset comprises an actual
outcome y; and the corresponding values of variables X;. The practical challenge in
regression analysis lies in estimating a function f from the observed data that serves
as a surrogate for the true function f. This estimated function f is what we use to
predict new values of y based on observed X.
Accordingly, the estimated relationship is given by:

yi = f(X:) + €
where f(x;) is the predicted value of y based on the i-th observation’s values of X, and
€; is the estimation error for that observation.
Naturally, to evaluate how well the model describes the data, we can consider metrics
like the Mean Squared Error (MSE), which is computed as:

1 n
MSE = — > (yi — 4i)°

- ;( )
where g; represents the predicted value of the dependent variable for the i-th observa-
tion, given by the model as j; = f(x;).
The goal of the regression analysis is, therefore, to find the estimated function f that
minimizes the MSE, reflecting the closest approximation to the true function f that
generated the observed data. In linear regression, we model the relationship between
a dependent variable and one or more independent variables using a linear function:

y=XB+e
where:
= Yyis ann x 1 vector containing the observed values of the dependent variable.

» Xis an nx k matrix of the independent variables (predictors), with n observations
and k predictors.



» Bisak x 1 vector of unknown parameters (coefficients) to be estimated.

= €is an n x 1 vector of error terms, representing the differences between the
observed and predicted values.

Example. Suppose we have data from a gym recording the weight lifted and the
number of repetitions performed by three individuals on a particular machine:

Observation Weight Lifted (kg) Repetitions

1 50 15
2 60 12
3 70 9

First, we construct the dependent variable vector y, which contains the number of
repetitions:

15
y= |12
9
Next, we construct the independent variable matrix X. Since we are including an

intercept term, the first column consists of ones, and the second column contains the
weights lifted:

1 50
X=1]1 60
1 70

The parameter vector 3 contains the coefficients to be estimated:

6 — 60
B1
We also have the error term vector e€:
€1
€ = | €2
€3

Putting it all together, our linear regression model in matrix form becomes:

15 1 50 5 €1
12l = |1 60 [B°}+ €
9 1 70| LUt €3

Expanding the matrix equation, we obtain three linear equations:

152604'61 ><50+61
12:ﬁ0+ﬁ1 X 60 + e
9 =00+ 01 xX70+ €3

In this model:

= [y is the intercept term, representing the predicted number of repetitions when
the weight lifted is zero.

= [ is the slope coefficient, indicating how much the number of repetitions is
expected to decrease for each additional kilogram lifted.

= ¢; accounts for the variability in repetitions not explained by the weight lifted.
|

To estimate 5y and (31, we can use the Ordinary Least Squares (OLS) method, which
minimizes the sum of squared residuals (the differences between observed and predicted
values). The OLS estimates are calculated using:

B =(XX)"'Xy

By plugging in the values from our example, we can compute the estimates for 3y and
(1, allowing us to predict the number of repetitions based on the weight lifted.
Consider the problem of estimating the parameters 3 within a linear regression frame-
work, where the goal is to minimize the Mean Squared Error (MSE) given by:



MSE(3) = %(y —XB)'(y — X8)

To derive the OLS estimator, we look for the value of B that minimizes the MSE.
We start by setting the gradient of the MSE with respect to 3 equal to zero:

0 2, B
%MSE(/@) = —EX (y—X8)=0

Solving for 3 yields the normal equations:

X'X3 =Xy
If X'X is invertible, the OLS estimator 3 is given by:

B =(XX)"'Xy

This expression for 3 minimizes the MSE and is known as the OLS estimator.
The residuals of the model are defined as:

e=y-9

where:

= Y is the vector of observed values of the dependent variable.

= § is the vector of predicted values obtained from the model, given by § = X3.

The residuals represent the portion of the dependent variable that is not explained by
the model.

Note that the sum of the residuals is zero when the model includes an intercept term.
This occurs because the OLS estimation ensures that the total predicted values equal
the total observed values, resulting in the residuals summing to zero:

n n n n
Doe=D Wi=i) =3 yi=) =0
i=1 i=1 i=1 i=1
To evaluate the performance of a linear regression model, we often use the coefficient of
determination, denoted as R?. The R? value measures the proportion of the variance
in the dependent variable that is predictable from the independent variables.
The R? statistic is defined as:

SSres

2 _ _
B=1"5.

where:

» SSies = > (yi — 9:)? is the residual sum of squares, representing the unex-
plained variation after fitting the model.

= SSiot = >, (y;—7)? is the total sum of squares, representing the total variation
in the dependent variable.

= §=L3" 1y is the mean of the observed values.

The R? value can be interpreted as the fraction of the total variation in the dependent
variable that is explained by the model:

”? Explained Variation  SSio: — SSres

Total Variation SSiot

An R? value of 1 indicates that the regression predictions perfectly fit the data, meaning
the model explains all the variability in the dependent variable. An R? value of 0
indicates that the model does not explain any of the variability of the response data
around its mean.

Example (Regression Analysis of Gym Data with Multiple Variables). We analyze the
relationship between the number of repetitions performed on a "Chest Press" machine
and several factors such as weight lifted, age, and gender. Using synthetic data of 100
individuals, the dataset includes the following variables:

= Repetitions: The number of repetitions performed.



» Weight Level: The weight lifted in kilograms.
= Age: The age of the individual (in years).
= Gender: The gender of the individual (Male or Female).

To examine these relationships, we fit three models: a simple linear regression, gender-
specific regressions, and a multivariate regression.

We first examine the relationship between repetitions and weight level using a simple
linear regression:

Repetitions = By 4+ f1 x Weight Level + ¢

After fitting the model, we obtain the following estimates:

By =17.56, 31 = —0.091

The negative slope indicates that as the weight level increases, the number of repeti-
tions decreases, with a reduction of approximately 0.091 repetitions per kilogram. The
residual standard error for this model is 1.32, and the R? value is 0.415, indicating that
41.5% of the variability in repetitions is explained by the weight level. This relationship
is visualized in Figure .

Simple Linear Regression: Repetitions vs. Weight Level
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Figure 1: Simple Linear Regression: Repetitions vs. Weight Level. The regression line
highlights the negative association between weight level and repetitions.

To account for potential differences between genders, we fit separate linear regression
models for males and females:
Repetitions = By 4+ B1 x Weight Level + ¢

For males, the regression estimates are:

By =16.75, 1 = —0.091, MSE =1.03, R?=0.528

For females, the regression estimates are:

By =19.74, B =—0.111, MSE =0.775, R?=0.696

The results suggest that while weight level negatively affects repetitions for both gen-
ders, the effect is slightly stronger for females. Additionally, the R? value for females
(0.696) is higher than for males (0.528), indicating that weight level explains a greater
proportion of the variance in repetitions for females. These gender-specific relationships
are visualized in Figure D.

Finally, we incorporate additional predictors, such as age and gender, into a multivariate
regression model:

Repetitions = By + 51 x Weight Level 4+ 82 x Age + 5 x Gender (Male) + ¢



Gender-Specific Linear Regression: Repetitions vs. Weight Level
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Figure 2: Gender-Specific Linear Regression: Repetitions vs. Weight Level. The blue
line represents the male model, while the green line represents the female

model.

Here, Gender (Male) is a binary variable equal to 1 for males and 0 for females. The
estimated coefficients for the multivariate regression are:

By =20.11, B =—-0.101, PBo=—0.024, p3=—1.814
These results indicate that:

» Weight Level: Higher weights are associated with fewer repetitions (—0.101
repetitions per kilogram).

= Age: Older individuals perform slightly fewer repetitions (—0.024 repetitions per
year).

= Gender: Males perform approximately 1.814 fewer repetitions than females, hold-
ing other factors constant.

The residual standard error for this model is 0.941, and the R? value is 0.706, meaning
that 70.6% of the variability in repetitions is explained by weight level, age, and gender.
The predictions from the multivariate regression model are visualized in Figure B.

Multivariate Regression: Repetitions vs. Weight Level
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Figure 3: Multivariate Regression: Repetitions vs. Weight Level. The regression line is
shown in red, indicating the combined effect of weight level, age, and gender.

To evaluate and compare the models, we summarize the Mean Squared Error (MSE)
and R? values in Table .



Model MSE R?

Simple Linear Regression 1.696 0.415
Male Regression 1.033 0.528
Female Regression 0.775 0.696
Multivariate Regression 0.851 0.706

Table 1: Model Performance Comparison. The multivariate model achieves the highest
R? value, indicating the best fit.

The multivariate model provides the best fit (R? = 0.706), demonstrating the im-
portance of including additional predictors such as age and gender. Gender-specific
models also perform well, particularly for females, where weight level explains a signif-
icant proportion of the variance in repetitions. These results underscore the value of
tailoring regression models to capture the effects of relevant predictors, which can help

gym trainers and managers design personalized training programs.
O

A high R? does not necessarily indicate that a regression model is appropriate, as it fails
to account for overfitting. Overfitting occurs when a model captures noise or random
variation in the data rather than meaningful patterns. This happens because adding
predictors reduces the residual sum of squares (SSyesidual) by solving the optimization

problem:
n

min Z (yi — (Bo + Przin + Pazio + -+ + 5p$ip))2 .
BosB1s--Bp —

As the number of predictors increases, the model has more flexibility to fit the data,
causing R? to always increase or remain constant, even if the additional predictors
do not contribute meaningful information. This property makes R? prone to favoring
overly complex models.

To address this limitation, the adjusted RZ? statistic is often used, which introduces a
penalty for adding predictors. It is defined as:

SSresiduaI/(n —Db— 1))
Ri =1- ,
2dj ( SStotaI/(n - ]-)

where n is the number of observations and p is the number of predictors. Unlike
R2, adjusted R? can decrease when irrelevant predictors are added, making it a more
robust measure for comparing models. While R? is useful for assessing the proportion
of variance explained, adjusted R? provides a better balance between model fit and
complexity.

Balancing the bias and variance is crucial in minimizing the MSE. Simpler models tend
to have high bias but low variance, while complex models can have low bias but high
variance. The irreducible error o2 is independent of the model and sets a lower bound
on the achievable MSE.

To analyze the sources of error in the Mean Squared Error (MSE), we assume the
observed outcomes y; can be expressed as:

yi = f(z:) + €,

where f(z;) is the true underlying function and ¢; is a noise term with E[e;] = 0 and
variance o2. Substituting this into the squared error term yields:

(yi — 9:)% = (f(2:) + e — fl@:)%
Expanding the square, we get:
(9 — 9:)° = (f(2:) = F(@:)” + 26:(f (@) = f(@)) + €]

Taking the expectation over the data, and noting that E[e;] = 0, the cross-product
term vanishes, simplifying to:

E (g — 90)%) = B [(f(2:) = f(2:))*] +E[eZ].

The first term, E {(f(wz) - f(a:z))ﬂ captures the model error and can be decomposed
further into bias and variance:

E |(f(x:) — f(@:))?] = Bias(f(2:))? + Variance(f (),



where:

Bias(f(2))” = (ELf(z)] ~ f(2)) . Variance(f(z) = E[f(x)°) ~ (E[f(z))])"

The second term, E[e?], represents the irreducible error, which is due to the noise €
inherent in the data:
Irreducible Error = o2.

Combining these components, the expected MSE can be written as:
E [(y; — §:)?] = Bias(f(x:))? + Variance(f(x;)) + o2.

This decomposition illustrates that the total error has three components: bias, vari-
ance, and irreducible error. Reducing MSE involves balancing bias and variance, as
simplifying a model increases bias while reducing variance, and overly complex models
increase variance but reduce bias. The irreducible error o2 cannot be reduced by any

model, as it reflects inherent randomness in the data.

2 Bootstrap

Bootstrap resampling is a non-parametric method used to estimate the sampling dis-
tribution of a statistic. It is particularly valuable when the theoretical distribution of
the statistic is unknown or difficult to derive. This technique involves repeatedly re-
sampling the data with replacement to generate a large number of bootstrap samples,
each of the same size as the original dataset. By calculating the statistic of interest
for each bootstrap sample, we can approximate its sampling distribution and compute
metrics such as standard errors, confidence intervals, and bias estimates.

Multivariate Regression of Repetitions on Weight Level by Gender (Chest Press)
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Figure 4: Bootstrap Distribution of MSE for Multivariate Model. The blue line indi-
cates the observed model MSE, while the red and green lines represent the
95% confidence interval bounds.

Given an original dataset of size n, the bootstrap procedure is as follows:

1. Randomly draw n observations with replacement from the dataset to create a
bootstrap sample X, where b indexes the bootstrap sample.

2. Compute the statistic of interest 0 for the bootstrap sample:
0; =s(Xy), b=1,2,...,B

Here, s(-) represents the function used to compute the statistic, such as the mean,
median, or MSE, and B is the total number of bootstrap samples (commonly
1000 or more).

3. Use the B bootstrap replicates {07, 03,...,605} to estimate the sampling distri-
bution of 6.

This approach has several advantages:

= It is simple to implement and does not require strong distributional assumptions
about the data.



= It can be applied to virtually any statistic, including those for which analytical
derivations are challenging.

= It provides a direct way to compute measures of uncertainty such as standard
errors and confidence intervals.

To illustrate, consider estimating the standard error of a statistic 6 using bootstrap
replicates. The bootstrap standard error (SE) is given by:

1 = —\ 2
SE0) = \| 5= > (05 — )

b=1

where 6% is the mean of the bootstrap replicates.
Confidence intervals for 6 can also be constructed from the bootstrap replicates. For
a (1 — a) x 100% confidence interval, the bootstrap percentiles are used:

Cl1_a)yx100% = (9@/2)7 92‘17(1/2))

whtere 9(*a/2) and 92‘1701/2) are the lower and upper percentiles of the bootstrap repli-
cates.

Example: Bootstrap Estimation of MSE for a Multivariate Model In our analy-
sis of gym data, we applied the bootstrap method to estimate the sampling distribution
of the Mean Squared Error (MSE) for the multivariate regression model. The original
dataset consists of 100 observations, and the multivariate model predicts repetitions
based on weight level, age, and gender.

Using B = 1000 bootstrap samples, we computed the MSE for each sample to generate
a bootstrap distribution. From this distribution, we calculated the standard error and
constructed a 95% confidence interval. The results are summarized in Table D.

Metric Value

Multivariate Model MSE ~ 1.71

Bootstrap MSE SE 0.17
Bootstrap 95% Cl Lower  1.36
Bootstrap 95% Cl Upper  2.02

Table 2: Summary of MSE and Bootstrap Estimates for Multivariate Model.

Figure B shows the bootstrap distribution of MSE, where the observed model MSE
(1.71) is marked by a blue line, and the red and green lines represent the bounds of
the 95% confidence interval.

To further interpret these results, Figure B illustrates the multivariate regression pre-
dictions against the original observations, highlighting gender-specific trends for repe-
titions as a function of weight level.

These results highlight the reliability of the multivariate model’'s performance. The
narrow confidence interval (1.36,2.02) suggests stability across different data samples,
supporting the robustness of the model's predictions. Moreover, the visualization un-
derscores the model's ability to capture the distinct effects of weight, age, and gender
on repetitions.

3 Monte Carlo Estimation

Monte Carlo methods are a broad class of algorithms that rely on random sampling
to obtain numerical results. One of the most classic applications of these methods is
Monte Carlo integration.

Imagine you wish to find the area under a curve defined by a function f(z) over an
interval [a,b]. Traditional numerical integration methods, like the trapezoidal rule or
Simpson’s rule, divide the interval into small sub-intervals and approximate the area
under the curve using geometric shapes. In contrast, Monte Carlo integration estimates
this integral by taking random samples.

The process is as follows:

1. Define a rectangle that contains the region you wish to integrate. This rectangle
should span from a to b in the x-direction and from 0 to a value M which is
greater than the maximum value of f(x) on the interval in the y-direction.



Bootstrap Distribution of MSE for Multivariate Model
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Figure 5: Multivariate Regression of Repetitions on Weight Level, Age, and Gender.
The trends for males and females are shown separately, reflecting gender-
specific effects in the predictions.

2. Generate a large number of random points inside this rectangle.
3. Count the number of points that fall below the curve f(z).

4. The ratio of the number of points below the curve to the total number of points,
multiplied by the area of the rectangle, gives an estimate of the integral.

Mathematically, the estimate I for the integral of f(x) over [a,b] is:
I (Number of points below f(z)

x Area of rectangle
Total number of points > &

The expectation of a random variable offers a theoretical average or "center of mass"
for its distribution. A natural question arises: if we sample repeatedly from this distri-
bution, how closely does the sample average approximate this theoretical expectation?
The Law of Large Numbers provides an answer, guaranteeing that, under specific
conditions, the sample average converges to the theoretical expectation as the number
of samples increases. This law underpins the intuitive notion that as we collect more
independent observations, their average tends towards the true mean of the distribution.

Theorem 2 (Law of Large Numbers). Let X, Xo,...,X,, be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables with a finite expectation
denoted by E[X;]. Then, as n approaches infinity, the sample average converges to
the expected value:

n

1
n n—o00
i=1
In practical terms, the average outcome from a large number of trials will approximate

the expected value, and this approximation improves with more trials.

Building on the Law of Large Numbers, Monte Carlo Integration approximates integrals
by averaging function values at randomly chosen points.

Theorem 3 (Fundamental theorem of Monte Carlo Integration). Consider a real-valued
function f(x) defined over a domain D. The Monte Carlo estimate for the integral

Ip f(x)dx is:
1 N
v 2 f@i),
i=1

where x; are random samples drawn uniformly from D. As N approaches infinity,
and under certain conditions, this estimate converges to the true value of the integral,
thanks to the Law of Large Numbers.

Monte Carlo Integration can be approached using indicator random variables, especially
useful when the domain of integration, D, is complex or irregularly shaped. This
method leverages random sampling and probability to provide an estimate for the
integral.

The methodology is:



1. Random Sampling: Draw a random point (u1,us2) uniformly from a larger
domain R that encompasses D.

2. Indicator Variable: Define a binary random variable I as:

I 1 ifup < f(uz2) and (ug,uz) € D
~ |0 otherwise

This variable I is 1 if the point (uj,us) lies below the curve of f within D, and
0 otherwise.

3. Compute the Proportion: After drawing N random points, compute the pro-
portion p of points for which I = 1. This proportion estimates the ratio of the
area under f in D to the area of R.

4. Estimate the Integral: The integral of f over D is approximately p x |R|.
The expectation of the indicator random variable I is given by:

E[I] = P((u1,uz) is under f and in D)

This expectation is essentially the proportion of the area under f within D relative to
R:

_Area under fin D

B[]
|R|
The Monte Carlo estimate for this expectation, after IV trials, is:
1N
P= Z; I;

where I; is the value of I for the i-th random sample. Thus, the Monte Carlo estimate
for the integral of f over D becomes:

px|R|

By the Law of Large Numbers, as N grows larger, p converges to E[I], making our
integral estimate increasingly accurate.

Monte Carlo Integration can be applied to various problems, one of the most illustrative
being the estimation of the mathematical constant .

Example (Estimation of 7w using Monte Carlo). Consider a unit circle inscribed in a

unit square. If we uniformly sample random points within this square, the probability

that a point lies inside the circle is equal to the ratio of the area of the circle to the

area of the square. Given that the area of the unit circle is w and the area of the unit
s

square is 1, this ratio is T

Let's define an indicator random variable I:

[ {1 if the point is inside the unit circle

0 otherwise

After drawing IV random points in the square, the proportion p of points for which
I = 1 approximates the ratio of the area of the circle to the square. Therefore, an
estimate of 7 is given by:

T4XD

This method leverages the geometric interpretation of 7 and the probabilistic founda-
tions of Monte Carlo to provide an estimate. As N grows larger, the estimate becomes
more accurate due to the Law of Large Numbers.

O

Example. Consider the function f(z) = 22 over the interval [0,1]. The actual value
of this integral is % Using Monte Carlo integration, we can estimate this value.

As seen in the figure, the blue curve represents the function f(x) = z2. The green
dots represent the random points that fall below the curve, and the red dots represent
the points that fall above the curve. Through this method, we estimated the value
of the integral to be approximately 0.3349, which is close to the actual value of % ~

0.3333. O



Monte Carlo Estimation of T

1.00 AL e PP TR I
Al 5 AR it S 7 i"%‘i;‘f:.

oY

0.751

0.501

0.25

> 0.00

—-0.25¢}

—-0.50¢}

—-0.75}

-1.00 -

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
X

Figure 6: Monte Carlo Estimation of w. Blue dots represent random points inside the
unit circle, while red dots represent points outside the circle but inside the
unit square.

Monte Carlo Integration of f(x) = x2 over [0,1]
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Figure 7: Monte Carlo Integration of f(x) = 2% over [0,1]. Green dots represent points

below the curve, and red dots represent points above the curve.

4 Stochastic Dynamics Inference

Stochastic reaction systems are dynamical processes where a number of agents, par-
ticles, or nodes interact in a stochastic way through reactions, generating different
configurations for the studied system over time. These systems include applications
such as protein dynamics, gene expression, ecological systems, kinetic systems, com-
partmental models, and actor-oriented systems, among others.

In many of these applications, statistical methods for the inference of kinetic rates
dynamics are crucial. Kinetic systems can be mathematically modeled as Poisson pro-
cesses, like the ones seen in lecture 6.



Before delving into the complexities of reaction systems, it's essential to understand
the basics of combinatorics, which plays a critical role in these systems. Combinatorics,
the branch of mathematics dealing with combinations and arrangements of objects, is
fundamental in calculating reaction rates and understanding reaction dynamics.

Consider a simple scenario where we have a set of distinct objects, and we want
to determine how many different ways we can arrange or select these objects. The
principles of combinatorics allow us to calculate these possibilities. For example, if
we have n different objects and want to choose r of them, the number of different
combinations we can form is given by the binomial coefficient, denoted as (:f) This

coefficient is calculated as:
n\ n!
r)  rl(n—r)

where n! (n factorial) is the product of all positive integers up to n. This combinatorial
calculation is crucial in reaction systems, particularly when determining reaction rates
and the number of possible interactions between different molecular species.

4.1 Generating Continuous Random Variables

Generating continuous random variables with specific probability distributions is a fun-
damental task in simulations and modeling. Two commonly used methods for this
purpose are the Inverse Transform Sampling and Rejection Sampling techniques. Ad-
ditionally, generating samples from the Normal Distribution is of paramount importance
due to its ubiquitous presence in statistical modeling and the Central Limit Theorem.
These methods rely on uniform random variables and mathematical transformations to
generate samples from a desired distribution.

Inverse Transform Sampling

The inverse transform sampling method is a straightforward technique for generat-
ing random variables when the cumulative distribution function (CDF) of the desired
distribution is invertible.

Theorem 4 (Inverse Transform Sampling). Let U be a uniform random variable in the
interval [0,1], and let F;*(u) be the inverse function of Fx (z), the CDF of X. Then
X = F'(U) will have the PDF fx ().

Proof. Let U ~ U(0,1) and Fx(x) be the CDF of a random variable X. The proof
follows from:

Thus, X = F'(U) follows the desired distribution. O

This theorem provides a practical method to simulate random variables from a given
distribution by transforming a uniform random variable using the inverse CDF.

Example: Generating an Exponential Random Variable The exponential distri-
bution, frequently used to model waiting times in Poisson processes, has the probability
density function (PDF):

Ae ™ if x>0,

0 otherwise.

Ix (x5 M) :{

Its CDF is:
1—e ™ ifz>0,

0 otherwise.

Fx(.’b;)\) = {

To generate a random variable X with this distribution, we:

1. Draw a uniform random variable U ~ U(0, 1).



2. Compute the inverse CDF transformation:
1 1
X=F; U)= Y In(1 —-0).

This procedure ensures that X samples follow the exponential distribution. The sim-
plicity of this method makes it highly effective when F)}l(u) is analytically computable.

Rejection Sampling

When the CDF of a distribution is not invertible or the inverse is computationally ex-
pensive to calculate, rejection sampling provides an alternative approach. This method
generates random samples by comparing points against the target probability density
function.

Theorem 5 (Rejection Sampling with Uniform Distribution). Let f(x) be a non-
negative and bounded PDF defined on a domain D such that 0 < f(x) < M for all
x € D, where M is the maximum value of f(x). Samples from f(x) can be generated
as follows:

1. Generate X ~ Uniform(D) andY ~ U(0, M).

2. IfY < f(X), accept X as a sample from f(x). Otherwise, reject X and repeat.

Intuition and Acceptance Probability Rejection sampling works by constructing a
bounding rectangle over the target distribution f(x) using the uniform distribution. Ac-
cepted points (X,Y) lie below the curve y = f(z), ensuring that the resulting samples
follow the desired distribution. The probability of accepting a sample is proportional
to the ratio of the area under f(z) to the area of the bounding rectangle:

Area under f(x)
P(Accept = .
(Acceptance) Area of bounding rectangle

Example: Rejection Sampling for a Custom Distribution Consider a distribution
f(x) oc 22 on [0, 1], normalized to form a valid PDF:

f(gc):?>ac27 0<z<l1.

Using M = 3 (the maximum value of f(x)) and a uniform proposal distribution over
[0, 1], the rejection sampling steps are:

1. Generate X ~ U(0,1) and Y ~ U(0, M).
2. Accept X if Y < f(X) = 3X?; otherwise, reject and repeat.

This method generalizes to other distributions where direct sampling is not feasible.

Sampling from the Normal Distribution

The normal distribution, characterized by its bell-shaped probability density function,
is one of the most important distributions in statistics due to its occurrence in natural
phenomena and its central role in the Central Limit Theorem. Generating samples from
a normal distribution is fundamental in simulations, statistical modeling, and various
applications in engineering and the sciences. Several methods have been developed to
achieve this, each leveraging different mathematical principles.

Properties of the Normal Distribution The normal distribution is defined by its
mean p and variance o, with the probability density function (PDF) given by:

f(alp,o®) =

Key properties include symmetry around the mean, the empirical rule (68-95-99.7),
and its role as the limiting distribution under the Central Limit Theorem.



Box-Muller Transform

The Box-Muller Transform is a widely used method for generating pairs of indepen-
dent standard normal random variables from two independent uniform random vari-
ables. This method leverages polar coordinates and the properties of exponential and
trigonometric functions.

Theorem 6 (Box-Muller Transform). Let Uy and Us be independent uniform random
variables on (0, 1]. Then the transformations

Z1 =/ —=2InU; - cos(2nUs),
o=+ —2 n U, 'Siﬂ(27TU2),

yield two independent standard normal random variables Z1 and Z.
Derivation and Intuition The Box-Muller Transform utilizes the transformation from
Cartesian to polar coordinates. By expressing the uniform variables in polar form and

applying the properties of the exponential and trigonometric functions, the resulting
variables adhere to the standard normal distribution.

Generating Normal Samples To generate a normal random variable with mean g
and standard deviation o, the standard normal variables Z; and Z5 obtained from the
Box-Muller Transform can be scaled and shifted:

X:M+Uzlv

Y:M+UZ2.

This process ensures that X and Y follow the desired normal distribution.

Central Limit Theorem-Based Sampling

The Central Limit Theorem (CLT) states that the sum of a large number of independent
and identically distributed random variables, each with finite mean and variance, will
approximate a normal distribution regardless of the original distribution of the variables.
This property can be exploited to generate normal random variables.

Methodology To generate a normal random variable using the CLT:

1. Generate n independent and identically distributed uniform random variables
Uy,Us, ..., U, on (0,1).

2. Compute their sum:
Sp = _Ui.
i=1

3. Normalize the sum to have mean y and variance o%:

Sy 2
Viz

As n becomes large, Z approaches a standard normal distribution N (0, 1). For practical
purposes, moderate values of n (e.g., n = 12) can provide reasonable approximations.

7 =

4.2 Reaction Systems

The system under study is characterized by a set of reactions occurring over time from
0 to T'. These reactions involve various compartments or states in the system, each
with its distinct dynamics.

Each reaction in the system is associated with a waiting time T;, which follows an
exponential distribution:

T; ~ Exp(A\;) fori=1,2,...

Here, \; is the rate parameter of the i-th reaction.
The count C indicates the number of occurrences of a particular event in a time interval
At:



C = # of occurrences in At

For instance, the probability of no occurrences (i.e., C' = 0) within At is:

P(C=0)=1—(1—e 2
The probability of exactly one occurrence in At is:

o oaar, AAY!

And for reaction ¢, the count C; follows a Poisson distribution:

C; ~ Poisson (6;)

where 6; is given by:

This equation models the frequency of each reaction, considering the current state
Y (t) of the system.
With the knowledge of C;, we update the system states as follows:

AY(t)=Y(t+At) -Y(t)=VTC

This expression calculates the change in state variables, AY(¢), based on the reactions
that occurred.

Given observed data Y at specific time points, we aim to estimate the rate parameters
A that best describe the system dynamics. The dynamics can be represented as:

AY (£) = X (DA +1(t)

Here, X (t) is the matrix capturing the influence of each reaction, and 7(t) represents
the error term.

The residuals 7 are the difference between observed and predicted changes in state
variables:

n=AY — X\

The objective is to minimize the sum of squared residuals, ¥1%, which is equivalent
to minimizing n”'n. By differentiating with respect to A and setting the derivative to
zero, we find the optimal A:

9 s\ o

Solving this equation yields the estimated rate parameters A
A= (XTX)'XxTAY

This optimized \ provides the best-fit parameters for our model, describing the under-
lying dynamics of the system.

Stoichiometry in reaction systems examines the quantitative relationships between reac-
tants and products in chemical reactions. Consider a system with r different reactants
and p different products involved in a series of reactions.

Each reaction can be described by an equation. For the j-th reaction, the equation is:

r P
Zkini 2y Zsijpi- (1)
i—1 i=1

Here, R; represents the i-th reactant and P; represents the i-th product. The co-
efficients k;; and s;; are the stoichiometric coefficients for reactants and products,
respectively, in the j-th reaction.



Example (Basic Predator-Prey Model). Consider a simplified ecological model with
two types of organisms: predators (denoted as P) and prey (denoted as Q). The
dynamics of this system are captured by the following reactions, each with its associated
rate:

Q Brepro 2Q (Prey reproduction at rate Brepro)7 (2)
P+Q Pored, o p (Predation and predator reproduction at rate Spred), 3)

P 2=y (Predator death at rate Bueath). )

We define the reactants and products for each reaction as follows:
» Reactants: R={Q,P, P+ Q},
» Products: P = {2Q,2P,0}.
When does something happen:
ATp_,p ~ Exp(Bdeath),

ATpig—2p ~ Exp(Bpred)s
ATQ_QQ ~ EXP(Brepro)-

About reaction in At time:
» P — (: will have happened approx 283qeath At times,
» P+ Q — 2P: 68predAt,
= Q = 2Q: 3BreproAl.

We expect to see

E[YP(At)] = YP<O) =+ 65predAt - 25deathAta
E[Yo(At)] = Yq(0) + 3Brepro At — 68prea At.

We actually saw at At = 2:

Now we want to know what we expect to happen at 2 + At:

R1 : 4BreproAt times,
Ry : 208prea At times,
R3 : 5B4eath At times.

So we expect to see

E[YP(2 + At)] =5+ 206predAt - 5BdeathAt»
E[YQ (2 + At)] =4+ 3/8reproAt - 205predAt-

We actually see

What are the most likely values for Brepror Bpred: Bdeath !
We saw 3 x 2 values of the states:
First interval:

5~2 -+ 65pred -2 — 2ﬂdeath N 27
4~3+ 35rep'° -2 - 6ﬁpred - 2.

Second interval:

8~ 5+ 2Oﬁpred ‘2 - 5ﬁrepro ' 27
1l~4+ 5Brepro -2 — QOﬁprEd 2.



This leads to the matrix equation:

To estimate the model parameters (Brepro, Bpreds Bdeath), We

3 0
1| |6
3 40

-3 10

12
—12
—10
—40

—4
0 ﬁrepro
0 Bpred +
ﬂdeath
0

from two intervals, forming the following matrix equation:

3 0
1| |6
3 0

-3 10

12
—12
40
—40

—4
0 ﬁrepro
~10 /Bpred +
0 Bdeath

The least squares estimate 3 is calculated as § = (X7 X)~1XTY . Using this formula,
the estimated values are:

Brepro ~ 0.36,
Bored = 0.155,
Baeath ~ 0.235.

To further assess the reliability of these estimates, a bootstrap analysis was performed.
The table below provides the descriptive statistics for each bootstrapped beta coeffi-

cient:

Statistic Brepro Bpred ﬁdeath
Mean -0.344 | -0.095 | -0.809
Std 1.083 | 0.332 | 1.221
Min -2.100 | -0.450 | -2.100
25% -0.733 | -0.450 | -2.100
50% 0.360 | 0.155 | -0.050
75% 0.633 | 0.233 | 0.235
Max 0.633 | 0.233 | 0.633

Table 3: Descriptive statistics for each bootstrapped beta coefficient.
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