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In previous lectures, we extensively studied random variables, particularly denoted as
X. As we transition into statistics, its essential to understand how these random
variables relate to the data we analyze.

Definition 1 (Data as Realizations). Given a random variable X, any observed value of
X is called a realization of X, denoted as x. When we have a sequence of independent
and identically distributed (i.i.d.) random variables, say X1, X2, . . . , Xn, the observed
values of these random variables constitute our data x1, x2, . . . , xn.

Figure 1: Weight stack showing progression in resistancemost workouts center around
a comfortable range, with fewer sets at the extremes, resembling a normal
distribution of effort.

Definition 2 (Dataset). A dataset is a collection of realizations from one or more
random variables. If these realizations are from i.i.d. random variables, then each real-
ization is an independent observation from the same underlying probability distribution.

Example (Realizations from Random Variables in a Study of Effort). Consider a study
examining the effort exerted by gym users across different weight machines. In this
study, each machine in the gym (e.g., chest press, leg press, lat pulldown) represents
a different column in our dataset. The variable X represents the amount of wear on
the weights, measured in millimeters in the worn zone of each weight plate on a given
machine.
For instance, lets focus on one specific machine, represented by the weight stack in the
image. Over time, as users select different weights on this machine, certain weights
experience more wear than others. This wear, measured in millimeters, reflects the
intensity and frequency of use at each weight level.
Suppose we observe the following wear data (in millimeters) for five weight levels on
this machine:

x1 = 2.3, x2 = 3.7, x3 = 1.8, x4 = 4.2, x5 = 3.1

These values represent the observations x1, x2, . . . , x5 of the random variables X1, X2, . . . , X5

for this machine, indicating the wear in millimeters on each weight.



Table 1: Wear observed at different weight levels on a gym machine
Weight Level (kg) Wear (mm)

10 1.5
20 2.4
30 3.1
40 3.8
50 4.5
60 4.0
70 3.6
80 2.9
90 2.2
100 1.8
110 1.2
120 0.9
130 0.5

This table represents a subset of the dataset, capturing the wear levels as realizations
of random variables corresponding to the weights on this particular machine. In a
broader analysis, data across multiple machines could provide insights into user effort
patterns and preferred weight ranges across the gym. □

Descriptive Methods
Statistics is the discipline that concerns the collection, organization, analysis, interpre-
tation, and presentation of data.

Definition 3 (Statistic). A statistic is any function of data that does not depend
on any unknown parameters. Formally, given random variables X1, X2, . . . , Xn rep-
resenting observations drawn from a population with joint probability distribution
f(x1, x2, . . . , xn; θ), where θ is an unknown parameter (or vector of parameters), a
statistic Tn is defined as:

Tn = g(X1, X2, . . . , Xn) (1)

where g is a known function that does not involve the parameter θ. The probability
distribution of T , induced by the joint distribution of the data, is called the sampling
distribution of the statistic.

Measures of central tendency and dispersion are foundational in statistics for summa-
rizing data.

Example (Mean). The mean, denoted as x̄, is the sum of all observations divided by
the number of observations:

x̄ =
1

n

n∑
i=1

xi

The mean provides a measure of the central tendency, representing the average value
of the data set.
x̄ represents the observed value of Tn = X̄ =

∑n
i=1 Xi. The mean of random variables

is a random variable as well, whose realization corresponds to x̄.
□

Example (Median). The median is the value that separates the higher half from the
lower half of a data sample. For a dataset with an odd number of observations, it is
the middle element, while for an even number of observations, it is the average of the
two middle elements:

median =

x(n+1
2 ), if n is odd

x
(n

2 )
+x

(n
2

+1)
2 , if n is even

The median is useful for understanding the central location of the data, especially
when the data has outliers or is skewed. As before, the median can be seen as the
realization of the related statistics, defined by considering random variables instead of
realizations. □



Example (Quantile). A quantile is a cutoff point dividing the range of a probability
distribution into continuous intervals with equal probabilities. The q-th quantile, de-
noted as Qq, is the value such that a proportion q of the data is less than or equal to
Qq. Quantiles generalize the concept of percentiles:

Qq = Pq×100

Common quantiles include:

• Quartiles: Divide data into four equal parts (q = 0.25, 0.50, 0.75).

• Deciles: Divide data into ten equal parts (q = 0.1, 0.2, . . . , 0.9).

• Percentiles: Divide data into one hundred equal parts (q = 0.01, 0.02, . . . , 0.99).

Quantiles are useful for summarizing the distribution of data, especially for understand-
ing its spread and skewness. □

Example (Variance). Variance measures how sampling random variables spread from
their expected mean.

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Once the variance is evaluated in observed data, it expresses an indication of how
spread out the values are around the mean.

□

Example (Standard Deviation). The standard deviation σ is the square root of the
variance:

σ =
√
σ2

This measure provides a sense of the spread or dispersion of the distribution, expressed
in the same units as the data itself. □

Example (Range). The range is the difference between the largest and smallest values
in a dataset:

range = max(xi)−min(xi), i = 1, ...n

The range gives a quick sense of the spread of the data, showing the extent of variation
in the dataset. □

Example (Covariance). Let us consider the situation in which both the random vari-
ables X and Y are observed n times. In this case, the covariance between the two can
be found as follows:

1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

Covariance indicates whether two variables tend to increase or decrease simultaneously.
A positive covariance indicates that the variables increase together, while a negative
covariance indicates an inverse relationship. The covariance between their realizations,
denoted as σXY , measures the degree to which the two variables vary together.

□

Example (Histogram). A histogram is a graphical representation of the frequency
distribution of numerical data, dividing the data range into intervals, or bins. For
continuous data, the histogram h(x) can be mathematically defined as:

h(x) =

n∑
i=1

I(x ∈ bink)

where I(x ∈ bink) is an indicator function that takes the value:

I(x ∈ bink) =

{
1, if x falls into bin k

0, otherwise

Histograms provide a visual summary of the distribution of a dataset, with the height
of each bar representing the frequency of values within each bin.

□
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Example (Density Plot). A density plot is a smoothed version of the histogram that
provides a continuous estimation of the data distribution, particularly useful for visu-
alizing the shape of distributions without the granularity of discrete bins. The density
function δ(x) is calculated using kernel density estimation, defined as follows:

δ(x) =
1

nm

n∑
i=1

K

(
x− xi

m

)
where K is a kernel function (e.g., Gaussian) and m is the bandwidth parameter that
controls the smoothness of the estimate. Density plots reveal the underlying structure
of the data more clearly than histograms. □

Although it may be less obvious, both the histogram and the density plot are still ex-
amples of statistics. While we introduced them as functions of the observed data, they
are, in principle, functions of the sampling random variabless X1, ..., Xn, as defined in
1. This discussion may be performed for box and violin plots.
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Example (Box Plot). A box plot summarizes data using five key statistics: the min-
imum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum. The
interquartile range (IQR), defined as Q3 − Q1, highlights the spread of the central
50% of the data. Box plots are useful for identifying central tendency, dispersion, and
potential outliers. □

Example (Violin Plot). A violin plot combines a box plot with a density plot, showing
both summary statistics and the distribution shape. Violin plots are particularly valuable
when comparing the distribution shapes across different groups, as they provide insights
into the spread and concentration of data points in various ranges. □

For a visual comparison, the figure below illustrates data represented in three differ-
ent ways: as individual data points (dot plot), as a box plot, and as a violin plot.
Each representation provides a unique perspective on the data, allowing for analysis of
individual values, summary statistics, and overall distribution shape.



Figure 2: Data represented as data points, box plots, and violin plots for two datasets.

In this figure:

• Data Points (Dot Plot): This representation shows individual observations for
each dataset, providing a detailed view of the distribution.

• Box Plot: The box plot summarizes central tendency and spread using the
median, quartiles, and range, and also highlights potential outliers.

• Violin Plot: This plot combines a box plot with a kernel density estimate,
showing both summary statistics and the distribution shape for each dataset.

These visualization techniques are useful tools for exploratory data analysis, but each
has limitations. Box plots, for example, can obscure underlying differences in data dis-
tributions by focusing solely on summary statistics, as seen when two distinct datasets
produce identical box plots. Violin plots reveal distribution shapes but may be mis-
leading with small samples, while dot plots show individual values but can become
cluttered with large datasets. Therefore, selecting appropriate visualization methods is
crucial; combining multiple techniques can provide a more comprehensive view, helping
researchers avoid the pitfalls of relying on any single method.

Data Exploratory Analysis

Imagine you want to deepen our understanding of human effort in a gym environment.
The gym administrators, recognizing the value of data-driven insights, decide to support
this goal by collecting detailed data on equipment usage, user demographics, and
session characteristics. By analyzing this data, we aim to uncover patterns in gym
usage, examine how different factors contribute to user effort, and explore potential
areas for optimizing user experience and equipment maintenance.
Exploratory Data Analysis (EDA) is an approach for summarizing and visualizing key
characteristics of data, transforming raw data into meaningful insights. EDA allows us
to understand data distributions, relationships among variables, and potential trends
or anomalies that might inform further investigation or modeling.
Dataset Overview:
The dataset includes records for different gym sessions across various machines, cap-
turing user demographics, session details, and performance metrics. A sample of the
dataset is shown below:



ID Type User Age Gender Duration Weight Reps Freq.
1 Chest 101 25 M 20 min 40 12 120
2 Leg 102 30 F 15 min 60 15 90
3 Lat 101 25 M 10 min 50 10 60
4 Shoulder 103 28 F 12 min 30 8 45
5 Row 104 40 M 25 min 50 20 110

Table 2: Sample entries from the gym equipment dataset

This table provides a snapshot of session details, including age, gender, session du-
ration, weight level, repetitions, and frequency of use. This structure enables us to
analyze factors influencing user effort.

Descriptive Statistics:
To gain a deeper understanding, we calculate descriptive statistics for the weight levels
used on the "Chest Press" machine, broken down by gender:

Gender Count Mean Std Dev Min 25% Median 75% Max
F 11 52.45 14.56 36 41.5 47 61.5 82
M 7 49.86 17.88 28 38 50 59 77

Table 3: Descriptive statistics of weight levels used on the Chest Press machine by
gender

The statistics reveal that females and males both tend to use similar average weight
levels on the "Chest Press" machine, with means around 50 kg. However, females show
a slightly narrower range (36-82 kg), while males display a broader distribution (28-77
kg). This suggests that while weight preferences for this machine are similar across
genders, individual variation may be slightly higher among male users.
Correlation Analysis:
The following pairplot and violin plot further illustrate relationships within the data:

Figure 3: Pairplot showing relationships among session duration, weight level, and rep-
etitions, colored by machine type

The pairplot reveals clustering by machine type and a negative trend between weight
level and repetitions, particularly for high-weight sessions on machines like the Chest
Press and Leg Press.



Figure 4: Violin plot of weight levels by machine type, with gender as color coding

The violin plot highlights differences in weight level distributions by machine type,
with gender distinctions. Males generally select higher weights across machines, while
females show a slightly narrower distribution. The Row Machine and Leg Press show
the highest weights overall, indicating their use in more intense sessions.
This exploratory analysis provides insights into gym usage patterns and the relation-
ships among session characteristics. Understanding these patterns may help in guiding
equipment maintenance needs, optimizing user experience, and tailoring recommenda-
tions based on user demographics.

Statistical Learning
In the theoretical framework of statistical modeling, our objective is to examine the
relationship between a dependent variable Y and one (or more) independent variables
X.
Here, Y represents the outcome we seek to predict or explain, while the vector X
comprises the explanatory or predictor variables that inform our predictions of Y .
This relationship is theoretically expressed as:

Y = f(X) + ϵ

where:

• f(X) embodies the systematic information conveyed by X regarding Y . This
function f is unknown and reflects the true underlying process that we aim to
understand.

• ϵ captures the random error, accounting for variations in Y not explained by X,
with an expected value of zero.

Definition 4 (Statistical Model). A statistical model is a mathematical representation
of observed data. In the context of regression, we often describe the model as Y =
f(X) + ϵ, where Y is the dependent variable, X is the independent variable, f is the
function that represents the systematic relationship between X and Y , and ϵ represents
the error term, capturing all other factors affecting Y that are not included in X.

Transitioning from this theoretical construct to empirical application, we collect a
dataset with n observations. Each observation i in the dataset comprises an actual
outcome yi and the corresponding values of independent variables xi. The practical
challenge in regression analysis lies in estimating a function f̂ from the observed data
that serves as a surrogate for the true function f . This estimated function f̂ is what
we use to predict new values of y based on observed x.
Accordingly, the estimated relationship is given by:

yi = f̂(xi) + ei

where f̂(xi) is the predicted value of y based on the i-th observation’s values of x, and
ei is the estimation error for that observation.
Naturally, to evaluate how well the model describes the data, we can consider metrics
like the Mean Squared Error (MSE), which is computed as:



MSE =
1

n

n∑
i=1

e2i =
1

n

n∑
i=1

(yi − ŷi)
2

where:

• ŷi represents the predicted value of the dependent variable for the i-th observa-
tion, given by the model as ŷi = f̂(xi).

The goal of the regression analysis is, therefore, to find the estimated function f̂ that
minimizes the MSE, reflecting the closest approximation to the true function f that
generated the observed data.

Estimation
In the case of linear regression, f(X) is a linear function of the independent variables
X, as follows:

Y = Xβ + ϵ

Once we observe the realizations of the random variables, we obtain:

yi = x⊤i β + ei, i = 1, ..., n

We can express this relationship, for all the observations, by expressing the matrix form
of the residuals, as:

e = y− Xβ = y− ŷ

where:

• y be the n× 1 vector of observed dependent variable values [y1, y2, . . . , yn]
⊤,

• X be the n× k matrix of predictor variables, where each row x⊤i corresponds to
the i-th observation.
REMARK: If our statistical model includes an intercept term (i.e., β0 is the first
element of β), then the first element of each vector x⊤i is 1. Consequently, the
first column of X consists entirely of 1s.

• β be the k × 1 vector of coefficients to be estimated.

Consider the problem of estimating the parameters β within a linear regression frame-
work, where the goal is to minimize the Mean Squared Error, that, in matrix form, is
given by:

MSE(β) = 1

n
(y− Xβ)⊤(y− Xβ)

To derive the Ordinary Least Squares (OLS) estimator, we look for the value of β that
minimizes the MSE.
We start by setting the gradient of the MSE with respect to β equal to zero:

S(β) =
∂

∂β
MSE(β) = − 2

n
X⊤(y− Xβ) = 0

Solving for β yields the normal equations:

X⊤Xβ = X⊤y

If X⊤X is invertible, we can isolate β, allowing us to express the OLS estimator in
closed form:

β̂ = max
β

MSE(β) = (X⊤X)−1X⊤y

This expression for β minimizes the MSE and is known as the OLS estimator.
Residuals of the model e are defined as portion of the dependent variable that is not
explained by the model. They are a crucial diagnostic tool in regression analysis, as
they allow us to assess the validity of the model assumptions such as homoschedasticity
(constant variance of the error terms) and the absence of autocorrelation (the error
terms are not correlated with each other).
It is also important to check the normality of the residuals, as the OLS method relies
on the assumption that the error terms are normally distributed. This can be done
using various statistical tests and graphical methods such as a Q-Q plot.



Theorem 5. The sum of the OLS residuals is zero, i.e., 1⊤e = 0 where 1 is a vector
of ones.

Proof. Given the OLS estimator β̂ = (X⊤X)−1X⊤y, the predicted values can be written
as ŷ = Xβ̂. Hence, the residuals are:

e = y− ŷ = y− X(X⊤X)−1X⊤y

By definition of the OLS estimator, X⊤(y− Xβ̂) = 0. This implies that:

X⊤e = 0

Considering that X includes a column of ones (the intercept term), this leads to:

1⊤e = 0

which proves that the sum of the OLS residuals is zero.

Example (Repetitions and Weight Level Regression Analysis). Consider a gym dataset
focused on the "Chest Press" machine, which includes attributes like weight level,
repetitions, age, and gender. To understand the relationship between weight level and
repetitions, we start with a simple linear regression and then introduce more complexity
to improve the model.
Simple Linear Regression
The initial model examines the influence of weight level on the number of repetitions
performed:

Repetitions = β0 + β1 × Weight Level + ε (2)
where β0 is the y-intercept, β1 is the slope (indicating the effect of weight on repeti-
tions), and ε represents the error term. β0 and β1 compose vector β.
The fitted model parameters are:

β̂0 = 18.36 (Intercept)
β̂1 = −0.077 (Slope)

The negative slope indicates that higher weight levels are associated with fewer rep-
etitions. The goodness-of-fit is assessed with R2 ≈ 0.27, suggesting a moderate
relationship. The MSE for this model is 1.91.

Figure 5: Simple Linear Regression of Repetitions on Weight Level for the Chest Press
machine.

Gender-specific Regression
To account for potential differences in repetitions between genders, we fit separate
linear regression models for male and female users:

Repetitions = β0 + β1 × Weight Level + ε (3)

Separate models for each gender provide the following parameters:

Male Model: β̂0 = 17.92, β̂1 = −0.065

Female Model: β̂0 = 18.74, β̂1 = −0.083



The slopes indicate that weight affects repetitions similarly for both genders, with a
slightly stronger negative effect for females. The average MSE for the gender-specific
models is 1.74.

Figure 6: Gender-specific Linear Regression of Repetitions on Weight Level for the
Chest Press machine. Red line represents male model, green line represents
female model.

Multivariate Regression
Finally, we incorporate additional variables, such as age and gender, into a multivariate
regression model:

Repetitions = β0 + β1 × Weight Level + β2 × Age + β3 × Gender (M) + ε (4)

where β3 is an indicator variable for gender (1 for male, 0 for female). The MSE for this
multivariate model is 1.71. In this case the true vector of parameters β is composed
by βk, k = 0, 1, 2, 3.
Comparison of Model Performance
The MSE values for each model are summarized below:

Model MSE
Simple Linear Regression 1.91

Gender-specific Regression 1.74
Multivariate Regression 1.71

Table 4: MSE for Repetitions Prediction on Chest Press by Model Type.

This analysis shows that while the simple model provides a baseline understanding,
incorporating gender and additional variables in the multivariate model slightly improves
fit. Each approach provides insights into gym usage patterns, helping gym managers
tailor equipment recommendations based on user attributes. □

Error Measurement
The MSE is a key metric for evaluating an estimator f̂ when predicting outcome Y
for new inputs X. For simplicity of notation, let us consider a single random input X,
though the discussion extends naturally to the multivariate case X.
The MSE of an estimator f̂(·) is defined as the expected value of the squared difference
between the true output Y and the predicted value f̂(X):

MSE(f̂) = E
[
(Y − f̂(X))2

]
(5)

To analyze the sources of error, we expand Y as f(X) + ϵ, where f(X) is the true
function and ϵ is the noise term. The squared error term then becomes:

(Y − f̂(X))2 = (f(X) + ϵ− f̂(X))2

= (f(X)− f̂(X))2 + 2ϵ(f(X)− f̂(X)) + ϵ2

Since we work under the following assumptions:



• The error term is unbiased, E[ϵ] = 0.

• ϵ is independent of f̂(X).

The MSE simplifies:

E
[
(Y − f̂(X))2

]
= E

[
(f(X)− f̂(X))2

]
+ E[ϵ2] (6)

The term E
[
(f(X)− f̂(X))2

]
decomposes further into the bias and variance of the

estimator:
E
[
(f(X)− f̂(X))2

]
= Bias(f̂(X))2 + Variance(f̂(X)) (7)

where:

Bias(f̂(X))2 = (E[f̂(X)]− f(X))2

Variance(f̂(X)) = E[f̂(X)2]− (E[f̂(X)])2

The irreducible error, given by the variance of the noise ϵ, represents the portion of
error that no model can reduce:

Irreducible Error = E[ϵ2] = E[ϵ2]− E[ϵ]2 = V [ϵ] = σ2
ϵ (8)

Thus, the expected MSE decomposes into:

E
[
(Y − f̂(X))2

]
= Bias(f̂(X))2 + Variance(f̂(X)) + Irreducible Error (9)

This decomposition illustrates a fundamental tradeoff between bias and variance. Sim-
plifying a model may introduce bias, while overly complex models may lead to high
variance, especially when fitting data too closely. Minimizing MSE involves balancing
bias and variance while acknowledging irreducible error.

Bootstrap Techniques
Bootstrap resampling is a powerful method for estimating the sampling distribution of
a statistic. By repeatedly drawing samples with replacement from the original dataset,
bootstrap resampling allows us to approximate the distribution of an estimator and
compute metrics like confidence intervals and standard errors.
Given a dataset of size n, the bootstrap method involves drawing n observations with
replacement to form a new sample. For each bootstrap sample X∗

b , we calculate the
statistic of interest θ∗b :

θ∗b = g(X∗
b ), b = 1, 2, . . . , B (10)

where g(·) represents the statistic, and B is the number of bootstrap samples (often
1000 or more).
For example, to estimate the MSE of our multivariate model, we resample the data
and refit the model for each bootstrap sample. This provides a distribution of MSE
values from which we can compute the standard error:

SE(MSE) ≈

√√√√ 1

B − 1

B∑
b=1

(MSEb − MSE)2 (11)

To construct a (1−α)× 100% confidence interval for the MSE, we use the percentiles
of the bootstrap replicates:

CI(1−α)×100% =
(
MSE(α/2),MSE(1−α/2)

)
(12)

In our analysis, we computed the following values for the MSE from 1000 bootstrap
samples:
These results highlight the stability and reliability of the multivariate model’s perfor-
mance across different data samples, as seen from the bootstrap estimates. The mul-
tivariate model effectively balances bias and variance, minimizing MSE and providing
robust predictions for repetitions based on weight, age, and gender.



Metric Value
Multivariate Model MSE 1.71

Bootstrap MSE SE 0.17
Bootstrap 95% CI Lower 1.36
Bootstrap 95% CI Upper 2.02

Table 5: Summary of MSE and Bootstrap Estimates for Multivariate Model.

Figure 7: Multivariate Regression of Repetitions on Weight Level, Age, and Gender
with Observations and Gender-Specific Trends.

Figure 8: Bootstrap Distribution of MSE for Multivariate Model. Red and green lines
represent the 95% confidence interval bounds, while the blue line indicates
the observed model MSE.


