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Consider the probability as a measure of chance. For a discrete random variable X
taking values x1, x2, . . . , xk, the probability mass function assigns a probability to each
possible outcome xi. The sum of these probabilities over all possible values of X equals
one:

k∑
i=1

pX(xi) = 1.
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Figure 1: Poisson Distribution PMF for λ = 1

If you consider the figure above, each probability mass pX(xi) represents the area of
a rectangle with a width of ∆x = 1, which corresponds to the discrete nature of the
outcomes. Thus, the probability of each outcome is visualized as the height of each
bar in a histogram, where the area of each bar is simply pX(xi) · 1 = pX(xi). When
we sum these areas over all possible values of X, we obtain the total probability, which
equals 1. For the Poisson distribution with λ = 1, this can be expressed as:

∞∑
k=0

P (X = k) =

∞∑
k=0

e−1 · 1k

k!
= e−1

∞∑
k=0

1

k!
= e−1 · e = 1

In probability theory, the transition from a discrete to a continuous probability distri-
bution can be understood by considering a sequence of increasingly finer partitions of
the universe.

In the discrete case, we approximate the interval [a, b] by dividing it into n small
subintervals [xi, xi+1] of equal width ∆x = b−a

n . The probability of X falling within
the i-th interval can be approximated as:

pX(xi ≤ x < xi+1) ≈ f(xi) ·∆x

where f(xi) represents the probability density at point xi.

Consider the example of the Linear Congruential Generator, introduced in the previous
chapters. Recall that LCGs that satisfy particular properties generate a sequence of
random numbers between 0 and m − 1. To obtain a random number between 0 and
1, we simply divide the output of the LCG by m. This operation maps the range from
0 to m− 1 to the range from 0 to 1 (excluding 1).

Mathematically, this can be represented as:

Un+1 =
Xn+1

m

where Xn+1 is the output of the LCG and Un+1 is the corresponding random number
between 0 and 1.
Imagine mapping each outcome Xi to an interval on the real line [0, 1]. Specifically,
assign each outcome to a subinterval of width ∆x = 1

k :
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Figure 2: Mapping of random numbers from a large interval to a small interval.

Xi ↔
[
i− 1

k
,
i

k

)
, for i = 1, 2, . . . , k.

The total probability of X falling within [a, b] can be approximated by summing the
probabilities for each subinterval:

n∑
i=1

f(xi) ·∆x

As we increase the number of intervals n (and hence make each interval width ∆x
smaller), this sum becomes a better approximation of the total probability. In the limit
as n → ∞, the width ∆x → 0, and the sum converges to the integral of f(x) over
[a, b]:

lim
n→∞

n∑
i=1

f(xi) ·∆x =

∫ b

a

f(x) dx

This limit process shows that the sum of probabilities in the discrete case can be viewed
as an approximation to the integral in the continuous case. The integral

∫ b

a
f(x) dx

gives the exact probability of the continuous random variable X taking a value within
the interval [a, b].

Definition 1. A function f(x) is called a probability density function (pdf) of a
continuous random variable X if it satisfies the following properties:

• f(x) ≥ 0 for all x,

•
∫∞
−∞ f(x) dx = 1.

The probability that X falls within any interval [a, b] ⊆ R is then given by:

pX(a ≤ x ≤ b) =

∫ b

a

f(x) dx.

x

f(x)

x

f(x) dx

Definition:
A continuous uniform distribution on the interval [0, 1] is defined by its probability
density function (pdf):

fX(x) =

{
1 for 0 ≤ x ≤ 1,

0 otherwise.
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In the continuous limit:

• Each discrete outcome’s probability tends to zero, reflecting the uncountably
infinite outcomes in the continuous case.

• The probability density f(x) remains constant at 1, ensuring that the integral
over [0, 1] is 1:

∫ 1

0

f(x) dx =

∫ 1

0

1 dx = 1

A continuous random variable X follows a uniform distribution over the interval [a, b]
if it has the same probability density for all values within this interval. The pdf of a
uniformly distributed random variable X is given by:

f(x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.

This means that for any two sub-intervals of equal length within the interval [a, b], the
probability that X falls into either sub-interval is the same.

Definition 2 (Cumulative Distribution Function for Continuous Random Variables).
Let X be a continuous random variable with pdf fX(x). The cumulative distribution
function of X is defined for every number x by the following integral:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt

where FX(x) represents the probability that the random variable X takes on a value
less than or equal to x.

Example (Cumulative Distribution Function of Continuous Uniform Distribution).
Consider a continuous random variable X that follows a uniform distribution over
the interval [a, b]. We previously defined its pdf as:

fX(x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.

The cdf of X, denoted FX(x), is defined as the integral of the pdf from the lower
bound of the distribution up to x:

FX(x) =

∫ x

−∞
f(t) dt

After calculating, we obtain:

FX(x) =


0 for x < a,
x−a
b−a for a ≤ x ≤ b,

1 for x > b.

This cdf indicates the probability that the random variable X will take a value less
than or equal to x. Note that FX(x) increases linearly from 0 to 1 as x ranges from
a to b, consistent with our intuition of the uniform distribution. □

Theorem 3. Let T be a continuous random variable with cumulative distribution
function (CDF) FT (t). Then the probability density function (PDF) fT (t) of T is
given by the derivative of the CDF with respect to t:

fT (t) =
d

dt
FT (t).



Proof. By definition, the cumulative distribution function FT (t) of a continuous ran-
dom variable T is given by

FT (t) = P (T ≤ t) =

∫ t

−∞
fT (x) dx.

To find the probability density function fT (t), we differentiate FT (t) with respect to
t. Applying the Fundamental Theorem of Calculus, we get

d

dt
FT (t) =

d

dt

∫ t

−∞
fT (x) dx = fT (t).

Thus, we have shown that
fT (t) =

d

dt
FT (t),

as required.

Continuous processes and discrete processes are both interconnected parts of the real
world. Let T represent the waiting time until the first Poisson event occurs. Since
we are dealing with time, T is a continuous random variable. Given a Poisson process
with rate λ, we want to find the probability that the first event happens after a certain
time t. This probability can be represented as:

pT (T > t) = p(no events occur in the interval [0, t]).

Since the Poisson process assumes independent events occurring at a rate λ, the prob-
ability of observing zero events in an interval of length t is given by the Poisson
distribution:

P (no events in [0, t]) = pX(x = 0) =
(λt)0e−λt

0!
= e−λt.

Thus, we have:
pT (T > t) = e−λt.

This represents the probability that the waiting time T exceeds t. To obtain the
probability density function (pdf) of T , we consider:

pT (t) = pT (T ≤ t) = 1− P (T > t) = 1− e−λt.

Now, differentiating FT (t) with respect to t gives us the pdf of T , which we denote as
fT (t):

fT (t) =
d

dt
FT (t) =

d

dt

(
1− e−λt

)
= λe−λt.

This pdf, fT (t) = λe−λt, defines the exponential distribution with rate parameter λ.

Definition 4 (Exponential Distribution (1)). A continuous random variable X follows
an Exponential distribution with a rate parameter λ > 0 if its pdf is given by:

fX(x) =

{
λe−λx for x ≥ 0,

0 for x < 0.

t

fT (t)

fT (t) = e−t

Figure 3: Probability Density Function of the Exponential Distribution with λ = 1

First, let’s verify that fX(x) is a valid pdf. For it to be a pdf, the integral over its
entire domain must be equal to 1.∫ ∞

−∞
f(x) dx =

∫ ∞

0

λe−λx dx



After integrating, we find that:∫ ∞

0

λe−λx dx = −e−λx
∣∣∣∞
0

= 0− (−1) = 1

Now, let’s find the cdf of X, denoted FX(x). The cdf is defined as the integral of the
PDF from the lower bound of the distribution up to x:

FX(x) =

∫ x

−∞
f(t) dt

After calculating, we obtain:

FX(x) =

{
0 for x < 0,

1− e−λx for x ≥ 0.

This CDF gives us the probability that the random variable X will take a value less
than or equal to x. As x approaches infinity, FX(x) approaches 1, consistent with our
intuition of the Exponential distribution.

Generating Continuous Random Variables
We now need to understand how to generate continuous random variables using
with specific probability density functions. We’ll focus on inverse transform sampling
method, which we previously introduced in a basic form for discrete random variables

Theorem 5 (Inverse Transform Sampling). Let U be a uniform random variable in the
interval [0, 1], and let F−1

X (u) be the inverse function of FX(x), the cdf of X. Then
X = F−1

X (U) will have the PDF fX(x).

Proof. We need to prove that if U ∼ U(0, 1) and F (·) is a valid invertible cdf, then
X = F−1(U):

P (X ≤ x) = P (F−1
X (U) ≤ x)

= P (U ≤ FX(x))

= FU (FX(x))

= FX(x).

This theorem provides us a convenient way to generate random variables that follow
any given distribution, as long as we can compute its inverse cdf F−1

X (u).

Example (Exponential Distribution). The exponential distribution is commonly used
to model waiting times between events in a Poisson process. Its pdf is given by:

fX(x;λ) =

{
λe−λx for x ≥ 0,

0 otherwise.

The cdf is then:

FX(x;λ) =

{
1− e−λx for x ≥ 0,

0 otherwise.

To generate a random variable X that follows an exponential distribution with rate λ,
we can first generate a uniform random variable U in [0, 1], and then use the inverse
of the CDF:

X = F−1
X (U) = − 1

λ
ln(1− U)

□

By using the inverse transform sampling method, we can simulate any continuous
random variable, provided we can find the inverse of its cdf. This theorem provides a
straightforward way to generate numbers from an arbitrary probability distribution by
simulating uniformly distributed numbers and calculating the proper transformation.



Moments
.
The expectation of a random variable X, often denoted E[X], intuitively represents
the weighted average of all possible outcomes, where the weight corresponds to the
probability of each outcome.

For a discrete random variable, the mathematical expression for expectation is:

E[X] =
∑
x

x · pX(x)

For a continuous random variable, the integral replaces the sum:

E[X] =

∫
x · fX(x) dx

The expectation, or expected value, is a measure of central tendency, indicating the
average or "center" of a distribution. It is also known as the first moment about the
origin and serves as the foundation for defining higher-order moments, which describe
other characteristics of the distribution.

Definition 6. The k-th moment of a random variable X is defined as

E[Xk] =

∫ ∞

−∞
xk · fX(x) dx,

where fX(x) is the probability density function of X. Moments provide information
about the distribution’s shape, with the first moment giving the mean, the second
moment relating to variance, and higher moments describing aspects like skewness and
kurtosis.

Example. Let X follow an exponential distribution with rate parameter λ > 0, so that
X ∼ Exp(λ) and fX(x) = λe−λx for x ≥ 0. The k-th moment of X is given by

E[Xk] =

∫ ∞

0

xk · λe−λx dx.

To compute E[Xk], we use integration by parts or recognize this as a known integral
involving the gamma function. The result is

E[Xk] =
k!

λk
.

For example, the first moment (mean) of X is E[X] = 1
λ , and the second moment is

E[X2] = 2
λ2 . □

The variance, denoted by V[X] or V [X], measures how much a distribution deviates
from its mean. Variance is defined as the expected value of the squared deviation of
X from its mean E[X]. For a discrete random variable, the variance is given by

V[X] =
∑
x

(x− E[X])2 · pX(x),

while for a continuous random variable, the integral replaces the sum:

V[X] =

∫ ∞

−∞
(x− E[X])2 · fX(x) dx.

We can also express variance in an alternative form by expanding the squared term
(x− E[X])2:

V[X] = E[(X − E[X])2]

= E[X2 − 2X · E[X] + (E[X])2]

= E[X2]− 2E[X] · E[X] + (E[X])2

= E[X2]− (E[X])2.

Thus, the variance can be written as:

V[X] = E[X2]− (E[X])2.

This form of the variance formula is often useful for calculations, as it expresses the
variance in terms of the first two moments of X.



Example. For an exponential random variable X ∼ Exp(λ), we know from the previous
example that E[X] = 1

λ and E[X2] = 2
λ2 . Using the variance formula, we can calculate

V[X] as follows:

V[X] = E[X2]− (E[X])2 =
2

λ2
−

(
1

λ

)2

=
2

λ2
− 1

λ2
=

1

λ2
.

Therefore, the variance of an exponential random variable with rate λ is V[X] =
1
λ2 . □

After understanding the expectation and variance of a random variable, it’s interesting
to explore another crucial aspect of its distribution: the skewness. Skewness provides
insight into the asymmetry of the probability distribution of a real-valued random
variable about its mean.

Definition 7. Skewness The skewness of a random variable X measures the degree
of asymmetry of its distribution around its mean. It is defined as the third standardized
moment:

γ1 =
E
[
(X − µ)3

]
σ3

where:

• µ = E[X] is the mean of X,

• σ2 = V(X) is the variance of X,

• E
[
(X − µ)3

]
is the third central moment of X.

• Positive Skewness (γ1 > 0): The right tail (higher values) of the distribution
is longer or fatter than the left tail. The bulk of the data is concentrated on the
left.

• Negative Skewness (γ1 < 0): The left tail (lower values) of the distribution is
longer or fatter than the right tail. The bulk of the data is concentrated on the
right.

• Zero Skewness (γ1 = 0): The distribution is perfectly symmetric around the
mean. While not all symmetric distributions have zero skewness, all perfectly
symmetric distributions do.

Example. Continuing with the Exponential distribution example, we will compute its
skewness.
Recall that for an Exponential distribution with rate parameter λ > 0:

fX(x) =

{
λ · e−λx for x ≥ 0,

0 otherwise.

We have already established that:

E[X] =
1

λ
, V(X) =

1

λ2
, and E[X3] =

6

λ3
.

Using the formula for the third central moment, we find:

E
[
(X − µ)3

]
= E[X3]− 3µE[X2] + 2µ3.

Substituting the values:

µ =
1

λ
, E[X2] =

2

λ2
, E[X3] =

6

λ3
,

we get:

E
[
(X − µ)3

]
=

6

λ3
− 3 · 1

λ
· 2

λ2
+ 2 ·

(
1

λ

)3

=
6

λ3
− 6

λ3
+

2

λ3

=
2

λ3
.

then,



γ1 =
E
[
(X − µ)3

]
σ3

=
2
λ3(

1
λ2

)3/2 =
2
λ3

1
λ3

= 2.

The Exponential distribution has a skewness of 2, indicating a moderate right skew.
This asymmetry is characteristic of the Exponential distribution, where the tail on the
right side is longer or fatter than the left side.

□

Skewness helps in understanding the shape of the distribution beyond its central ten-
dency and variability. While the expectation provides the "center" and variance mea-
sures the "spread," skewness reveals whether the distribution leans towards higher or
lower values relative to the mean.

Example (Uniform Distribution Skewness). Consider a continuous random variable X
that follows a uniform distribution over the interval [a, b]. We have already defined its
probability density function as:

fX(x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.

Let’s compute its skewness.

For a uniform distribution:

µ =
a+ b

2
, σ2 =

(b− a)2

12

The third central moment for a uniform distribution is:

E
[
(X − µ)3

]
= 0

then,

γ1 =
E
[
(X − µ)3

]
σ3

=
0(

(b−a)2

12

)3/2
= 0

The uniform distribution is perfectly symmetric around its mean µ. Due to this sym-
metry, the third central moment, which measures asymmetry, is zero.

The uniform distribution has a skewness of 0, indicating perfect symmetry around its
mean. This aligns with our understanding that the uniform distribution is symmetric,
with equal probability spread evenly across the interval [a, b]. □
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Figure 4: Comparison of Skewness in Different Distributions. The Uniform distribution
is symmetric (γ1 = 0), the Exponential distribution is positively skewed (γ1 =
2), and the Beta distribution shown here is symmetric.



Central Limit Theorem
The Central Limit Theorem (CLT) is a fundamental result in probability theory and
statistics. It states that the sum of a large number of independent and identically
distributed (i.i.d.) random variables, each with finite mean and variance, tends to be
normally distributed, regardless of the original distribution of the variables.

Definition 8. A continuous random variable X is said to follow a normal distribution
with mean µ and variance σ2 if its probability density function (PDF) is given by

fX(x) =
1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
,

where −∞ < x < ∞, −∞ < µ < ∞, and σ > 0. This is denoted by X ∼ N (µ, σ2).

The normal distribution is one of the most important distributions in probability and
statistics due to the Central Limit Theorem, which states that the sum of many inde-
pendent, identically distributed random variables tends to follow a normal distribution
regardless of the original distribution.

Lemma 9. Let Z ∼ N (0, 1). Then the characteristic function φZ(t) of Z is given by

φZ(t) = E[eitZ ] = exp
(
− t2

2

)
.

Proof. By definition, the characteristic function φZ(t) is

φZ(t) = E[eitZ ] =

∫ ∞

−∞
eitz · fZ(z) dz.

Since Z ∼ N (0, 1), we substitute the PDF of Z:

φZ(t) =

∫ ∞

−∞
eitz

1√
2π

exp
(
−z2

2

)
dz.

To simplify this integral, we complete the square in the exponent. Note that

itz − z2

2
= −1

2

(
z2 − 2itz

)
= −1

2
(z − it)

2
+

t2

2
.

Thus,
φZ(t) = exp

(
− t2

2

)∫ ∞

−∞

1√
2π

exp
(
−1

2
(z − it)

2

)
dz.

The remaining integral is the integral of a normal density with mean it and variance
1, which integrates to 1. Therefore,

φZ(t) = exp
(
− t2

2

)
.

This completes the proof.

With this, we are ready to present one of main results in probability theory and statistics

Theorem 10 (Central Limit Theorem). Let X1, X2, . . . , Xn be a sequence of indepen-
dent and identically distributed random variables with mean µ and variance σ2, both
finite. Define the standardized sum:

Zn =

∑n
i=1 Xi − nµ

σ
√
n

Then, as n → ∞,
Zn

d−→ N (0, 1)

where N (0, 1) denotes the standard normal distribution.

To understand this theorem, let’s analyze the characteristics of this result.



Aggregation of Random Effects

When summing many independent random variables, each contributing its own ran-
domness, individual irregularities tend to "average out," leading to predictable overall
behavior.

Consider n i.i.d. random variables X1, X2, . . . , Xn, each with mean µ and variance
σ2.

Sn = X1 +X2 + · · ·+Xn

E[Sn] = nµ

V(Sn) = nσ2

To analyze the behavior as n grows, we standardize the sum:

Zn =
Sn − nµ

σ
√
n

As n increases, the standardized sum Zn becomes more stable. The "aggregation" of
individual random effects leads to a reduction in relative fluctuations, making Zn less
influenced by the variability of any single Xi.

Symmetry Through Averaging

As more variables are added, the influence of any single variable diminishes. This av-
eraging effect induces symmetry in the distribution of the sum.

Define the standardized individual variables:

Yi =
Xi − µ

σ

Thus, the standardized sum can be expressed as:

Zn =
1√
n

n∑
i=1

Yi

Each Yi has:

E[Yi] = 0, V(Yi) = 1

The Law of Large Numbers ensures that:

1

n

n∑
i=1

Yi
a.s.−−→ 0 as n → ∞

If the original distribution of Yi is skewed, the sum
∑

Yi tends to balance out the
skewness as positive and negative deviations cancel each other out. The skewness of
Zn diminishes as n increases:

Skewness(Zn) =
E[Z3

n]

(V(Zn))3/2
=

γ√
n
→ 0 as n → ∞

Where γ is the third central moment of Yi.

The distribution of Zn becomes increasingly symmetric around zero as n grows, re-
gardless of the original distribution’s symmetry. This emerging symmetry is a crucial
step toward the normal distribution’s characteristic bell shape.

Emergence of the Bell Curve

The normal distribution (bell curve) is inherently symmetric and arises naturally when
multiple independent random factors contribute to a single outcome.

The characteristic function of Zn is given by:

ϕZn
(t) = E

[
eitZn

]
= E

[
e
itSn−nµ

σ
√

n

]
Expanding Sn:



ϕZn(t) = e
−it nµ

σ
√

n

n∏
i=1

ϕYi

(
t√
n

)
Assuming Yi has finite moments, expand ϕYi

(t) around t = 0:

ϕYi

(
t√
n

)
≈ 1− t2

2n
+ o

(
1

n

)
Taking the product:

n∏
i=1

(
1− t2

2n

)
≈

(
1− t2

2n

)n

≈ e−t2/2 as n → ∞

Then,

ϕZn
(t) ≈ e−t2/2

The characteristic function e−t2/2 uniquely corresponds to the standard normal distri-
bution N (0, 1).

As n increases, the characteristic function of Zn converges to that of the normal
distribution, indicating that Zn approaches N (0, 1).

Universal Attraction

Regardless of the original distribution of the individual variables (provided they have
finite mean and variance), their sum tends to exhibit normal behavior as the number
of variables grows.

As demonstrated earlier, the characteristic function of Zn converges to that of N (0, 1),
regardless of the form of ϕYi

(t), provided that Yi has finite mean and variance.

A more generalized condition ensuring CLT holds, even for non-identically distributed
variables, is the Lindeberg-Feller condition. It states that no single variable dominates
the sum, ensuring the CLT’s applicability beyond identical distributions.

Role of Independence:

Independence ensures that individual random fluctuations cancel out when aggregated,
preventing any single Xi from skewing the overall distribution.

The universal attraction of the normal distribution means that the CLT is remarkably
powerful and widely applicable. It explains the ubiquity of the normal distribution in
natural phenomena, finance, engineering, and more, as it arises from the collective
behavior of numerous small, independent random effects.



Experiments
Imagine a gambler tossing dice at a casino. The outcomes of individual dice rolls are
random, but what about the average outcome over a series of rolls? Interestingly,
this average tends to behave in a very predictable manner as the number of dice
increases, thanks to a fundamental result in probability theory known as the Central
Limit Theorem (CLT).
In previous discussions, we delved into how the average outcome of multiple dice rolls
doesn’t follow a uniform distribution. For example, when you roll 10 dice, the sum of
35 is much more likely to occur than a sum of 10. We’ll now extend this experiment
to understand how these averages behave as the number of dice rolls increases.
Experiment 1 (Distribution of Dice Roll Averages). Objective: To investigate how the
distribution of the averages of dice rolls changes as the number of dice rolls increases.
Procedure:

• Set N = 10, 000 trials for the experiment.

• Let M = {1, 2, 5, 10, 100, 1000} represent different dice counts.

• For each m ∈ M :
1. Initialize an array for storing averages.
2. For i = 1, . . . , N :

– Roll m dice.
– Compute and store the average.

• Plot the distributions for each m.
Observation: The distribution narrows and assumes a symmetric shape as m increases.

Figure 5: Histogram of Dice Roll Averages with M = 1 and Overlaid Normal Distribu-
tion

The CLT mathematically formalizes the phenomenon we observed in the dice experi-
ment.
Experiment 2 (Conformance to Normal Distribution). Objective: To verify that the
average of a large number of dice rolls approximates a normal distribution, in line with
the Central Limit Theorem.
Procedure:

1. Use the averages obtained from the previous experiment where M = 1000.

2. Calculate µ and σ of these averages.

3. Plot a histogram of the averages and overlay it with a normal distribution curve
parameterized by µ and σ.

Insight: The histogram closely matches the overlaid normal distribution, substantiating
the Central Limit Theorem and reinforcing its applicability to gambling scenarios.
Given that µ = 3.5 and σ2 = 2.92 for this dice game, one can transform the sample
means into Z-scores using

Z =
X − µ

σ√
n

Plotting these Z-scores should result in a distribution that approximates a standard
normal distribution P (Z = z) = 1√

2π
e−

z2

2 .


