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Introduction
This chapter covers fundamental concepts in probability theory: independence, covari-
ance, and characteristic functions. These are crucial for understanding the relationships
between random variables, measuring how they vary together, and characterizing their
distributions. We will also see how these concepts apply to practical situations and
why they are important tools in statistics.

1 Independence
Independence is a foundational concept in probability, ensuring that the occurrence
of one event or the realization of one random variable provides no information about
another. This section introduces the mathematical definition of independence, provides
examples, and shows how to determine if two random variables are independent.

Definition 1 (Independence). Two random variables X and Y are said to be indepen-
dent if their joint probability mass function (or density function) can be expressed as
the product of their marginal distributions for all values of x and y:

pX,Y (x, y) = pX(x) · pY (y) (1)

This definition implies that, for independent random variables, the joint distribution
does not provide any additional information beyond what is provided by the individual
distributions.

Consider two independent coin tosses. Let X1 represent the outcome of the first coin
toss and X2 represent the outcome of the second coin toss, where Heads is represented
by 1 and Tails by 0. The joint probabilities are as follows:

X1 X2 Joint Probability pX1,X2(x1, x2) Product pX1(x1) · pX2(x2)
1 1 0.25 0.25
1 0 0.25 0.25
0 1 0.25 0.25
0 0 0.25 0.25

Table 1: Joint probabilities of two independent coin tosses

The table confirms that the joint probabilities are equal to the product of the individual
probabilities, which implies independence.
Independence between random variables can be visualized using scatter plots. When
two random variables are independent, the scatter plot shows no discernible pattern,
indicating that the realization of one variable does not influence the realization of the
other.

Proposition 2. If X and Y are independent random variables, then the expectation
of their product is the product of their expectations:

E[XY ] = E[X] · E[Y ] (2)

Proof. Let X and Y be independent random variables. By the definition of expectation
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Figure 1: Scatter plots: The left plot shows independent random variables, while the
right plot suggests a relationship between the variables.

and independence:

E[XY ] =
∑
x

∑
y

xy · pX,Y (x, y)

=
∑
x

∑
y

xy · pX(x)pY (y) (since X and Y are independent)

=

(∑
x

x · pX(x)

)
·

(∑
y

y · pY (y)

)
= E[X] · E[Y ]

This proves that the expectation of the product of independent random variables is the
product of their expectations.

Covariance is a measure of the joint variability of two random variables. It indicates
whether the two variables tend to increase or decrease together (positive covariance)
or if one increases when the other decreases (negative covariance).

Definition 3 (Covariance). The covariance between two random variables X and Y
is defined as follows:

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])] (3)

If X and Y are independent, their covariance is zero:

Cov(X,Y ) = 0 (4)

However, a covariance of zero does not necessarily imply independence. It simply
means that there is no linear relationship between the two variables.

Example. Consider the daily returns of two stocks, X and Y . Assume that the
expected returns are E[X] = 0.02 and E[Y ] = 0.03, and the expected product of the
returns is E[XY ] = 0.0008. The covariance is calculated as follows:

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 0.0008− (0.02× 0.03) = 0.0002 (5)



A positive covariance indicates that the two stocks tend to move in the same direction.
□

Characteristic functions provide an alternative way of describing the distribution of
a random variable. They have useful properties, such as uniquely determining the
distribution and simplifying the analysis of sums of independent random variables.
Definition 4 (Characteristic Function). The characteristic function of a random vari-
able X is defined as:

ϕX(t) = E
[
eitX

]
(6)

where i is the imaginary unit.
Characteristic functions have several important properties:

• They uniquely determine the probability distribution of a random variable.

• For independent random variables X and Y , the characteristic function of their
sum is the product of their individual characteristic functions:

ϕX+Y (t) = ϕX(t) · ϕY (t) (7)

Example (Characteristic Function of Independent Sum). Let X and Y be independent
random variables. The characteristic function of their sum can be computed as follows:

ϕX+Y (t) = E
[
eit(X+Y )

]
(8)

= E
[
eitXeitY

]
(9)

= E
[
eitX

]
· E
[
eitY

]
(10)

= ϕX(t) · ϕY (t) (11)

This property is particularly useful when analyzing the distribution of sums of indepen-
dent random variables. □

2 Conditional Probabilities
In the previous section, we discussed how to determine the independence of random
variables. But what if they are dependent? Often, information about one event can
help us understand another. For example, will I wear a jacket if it rains tomorrow?
Conditional probability allows us to update our knowledge based on new information,
helping us make better predictions about related events.
Definition 5 (Conditional Probability). Given two random variables X and Y with
pY (y) > 0, the conditional probability of X = x given Y = y is defined as:

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

Example (Weather and Clothing). Suppose we want to determine the probability that
a person will wear a jacket (X) depending on whether it is raining (Y ). Let Y = 1 if
it is raining and Y = 0 if it is not. Similarly, let X = 1 if the person wears a jacket
and X = 0 if they do not.
From historical data, we have the following information:

• Probability of rain: P (Y = 1) = 0.3

• Probability of wearing a jacket given rain: P (X = 1|Y = 1) = 0.9

• Probability of wearing a jacket given no rain: P (X = 1|Y = 0) = 0.2

Using the definition of conditional probability, we can find the probability that a person
wears a jacket when it is raining or not. □
Conditional probability provides a mathematical framework to assess the probability of
a random variable X given that another random variable Y has occurred. Understand-
ing this is particularly essential when X and Y are not independent, as the occurrence
of Y can significantly alter the probability landscape for X. In other words, when two
random variables are dependent, the probability of one variable taking a certain value
changes after we know that the other variable has taken a specific value.

A direct consequence of the definition of conditional probability is the Multiplication
Rule. It provides a foundational link between joint and conditional probabilities, allow-
ing for systematic computation of joint probabilities.



Theorem 6 (Multiplication Rule). Let X and Y be two random variables. The joint
probability pX,Y (x, y) can be expressed in terms of conditional probabilities as:

pX,Y (x, y) = pX|Y (x|y) · pY (y) = pY |X(y|x) · pX(x)

Example (Medical Test). Consider a medical test used to detect a certain disease. Let
X represent whether a person tests positive (X = 1) or negative (X = 0), and let Y
represent whether the person actually has the disease (Y = 1) or not (Y = 0).
Suppose we know the following:

• Probability that a person has the disease: P (Y = 1) = 0.01

• Probability of testing positive given the person has the disease: P (X = 1|Y =
1) = 0.95

• Probability of testing positive given the person does not have the disease (false
positive rate): P (X = 1|Y = 0) = 0.05

Using the multiplication rule, we can find the joint probability of a person testing
positive and having the disease. □

For many random variables X1, X2, . . . , Xn, the joint probability can be expressed as:

pX1,X2,...,Xn
(x1, x2, . . . , xn) =

n∏
i=1

pXi|X1,...,Xi−1
(xi|x1, . . . , xi−1)

This represents the product of the conditional probabilities of each random variable
occurring given the occurrence of all previous random variables.

Definition 7 (Marginal Probability). Given a joint probability distribution pX,Y (x, y),
the marginal probability pX(x) of any outcome x for the random variable X is obtained
by summing the joint probabilities over all possible outcomes y for Y . Mathematically,
the marginal probability pX(x) is given by:

pX(x) =
∑

y∈R(Y )

pX,Y (x, y)

where the sum is over all possible outcomes of the random variable Y .

The connection between marginal and conditional probabilities can be understood
through the law of total probability. The marginal probability pX(x) can be ex-
pressed in terms of conditional probabilities as follows:

pX(x) =
∑

y∈R(Y )

pX|Y (x|y) · pY (y)

This relationship demonstrates that the marginal probability of an outcome for a ran-
dom variable can be obtained by considering all the ways that outcome can occur,
weighted by the probability of each of those ways.

Example (Drawing Cards). Consider drawing two cards from a deck without replace-
ment. Let X represent the suit of the first card, and Y represent the suit of the second
card.
Let us codify the 4 suits of cards in real numbers, i.e.

{Heart 7→ 1, Spades 7→ 2,Clubs 7→ 2,Diamonds 7→ 2, }

Suppose we know that the first card drawn is a heart (X = 1). We are interested in
the probability that the second card is also a heart (Y = 1).
The probability of drawing a heart on the first draw is P (X = 1) = 13

52 = 1
4 . After

drawing a heart, there are now 12 hearts left in a deck of 51 cards. Therefore, the
conditional probability of drawing a heart on the second draw, given that the first card
was a heart, is:

P (Y = 1|X = 1) =
12

51

Using the Multiplication Rule, the joint probability of drawing two hearts in a row is:

P (X = 1, Y = 1) = P (X = 1) · P (Y = 1|X = 1) =
1

4
· 12
51

=
12

204
=

1

17

Therefore, the probability of drawing two hearts in a row is approximately 5.88%. □



3 Bayes’ Theorem
Suppose you are trying to determine if a piece of fruit picked from a bag is an apple.
Your initial belief (prior probability) might be based on the overall percentage of apples
in the bag. However, when you touch the fruit and feel it’s round and smooth, you
can update your belief based on this new evidence. Bayes’ theorem provides a way to
combine these sources of information.

The interplay of events in a probabilistic framework is not always straightforward.
Often, we have evidence or observations and seek to update our understanding of a
particular event’s probability based on this new information. Bayes’ theorem offers a
mathematical means to achieve this. It allows us to reverse conditional probabilities,
turning our perspective from the probability of observing evidence given an event to
the probability of the event given the observed evidence.

Theorem 8 (Bayes’ Theorem). Given two random variables X and Y with pY (y) 6= 0,
the conditional probability pX|Y (x|y) is:

pX|Y (x|y) =
pY |X(y|x) · pX(x)

pY (y)

Where: pX|Y (x|y) is the posterior probability, pY |X(y|x) is the likelihood, pX(x) is
the prior probability, and pY (y) is the evidence.

Bayes’ theorem provides a way to compute a posterior probability. It relates the likeli-
hood of observing Y given X, the prior probability of X, and the total probability of
observing Y .
Starting from the Multiplication Theorem:

pX,Y (x, y) = pY |X(y|x) · pX(x)

Since pX,Y (x, y) = pY,X(y, x), we also have:

pY,X(y, x) = pX|Y (x|y) · pY (y)

Equating the two gives:

pX|Y (x|y) · pY (y) = pY |X(y|x) · pX(x)

Rearranging, we arrive at Bayes’ theorem:

pX|Y (x|y) =
pY |X(y|x) · pX(x)

pY (y)

Example. Imagine there’s a rare disease, and there’s a test for it. The disease affects
1% of the population, and the test is 99% accurate. If you test positive, what’s the
chance you actually have the disease?

Using Bayes’ theorem:

Let X be the random variable representing the presence (X = 1) of the disease. In case
the disease is not present it assumes a value 0. Let Y be the random variable represent-
ing the test result. Y = 1 for a positive test, while if the test is negative it is equal to 0.

We want to find: pX|Y (1|Y = 1), namely we want to understand what it is the
probability of the presence of the disease given a positive test.
Given:

• pX(1) = 0.01 (1% of the population has the disease)

• pY |X(Y = 1|X = 1) = 0.99 (The test is 99% accurate)

• pY (1) is the total positive testing probability.

pX|Y (1|Y = 1) =
pY |X(Y = 1|X = 1) · pX(1)

pY (1)

To find pY (1), namely the probability of a positive test, we consider the law of total
probability:

pY (1) = pY |X(1|X = 1) · pX(1) + pY |X(1|X = 0) · pX(0)



pY (1) = (0.99)(0.01) + (0.01)(0.99) = 0.0198

Plugging in the numbers:

pX|Y (1|Y = 1) =
(0.99)(0.01)

0.0198
≈ 0.5

So, even with a 99% accurate test, if you test positive, there’s only a 50% chance you
actually have the disease! □

Bayes’ theorem is foundational for the fields of Bayesian statistics and machine learn-
ing. It provides a mechanism to update our beliefs in light of new evidence, making
it central to numerous applications, from medical diagnostics to recommendation sys-
tems. The theorem reminds us of the importance of prior knowledge and illustrates
how, in a world filled with data, we can use this data to make more informed decisions
and predictions.

Bayes’ theorem forms the foundation of many NLP applications:

• Spam Filters: Bayesian classifiers can determine if an email is spam or not based
on the frequency of certain words.

• Sentiment Analysis: Using Bayes’ theorem, algorithms can determine the sen-
timent of a given text (positive, negative, neutral) by analyzing the words used.

Example (Spam Email Classification). Consider an email filter that classifies emails as
spam or not spam based on certain words. Let S be the random variable representing
whether an email is spam (S = 1) or not (S = 0). Let W represent the presence of
certain words in the email.
Suppose we have:

• pS(1) = 0.4 (40% of emails are spam)

• pW |S(1|1) = 0.8 (Probability of certain words given the email is spam)

• pW |S(1|0) = 0.1 (Probability of certain words given the email is not spam)

We want to find the probability that an email is spam given that it contains these
words, i.e., pS|W (1|1).
Using Bayes’ theorem:

pS|W (1|1) =
pW |S(1|1) · pS(1)

pW (1)

To find pW (1):

pW (1) = pW |S(1|1) · pS(1) + pW |S(1|0) · pS(0)

pW (1) = (0.8)(0.4) + (0.1)(0.6) = 0.38

Therefore:
pS|W (1|1) = (0.8)(0.4)

0.38
≈ 0.842

So, given that the email contains certain words, there is an 84.2% chance that it is
spam. □

Bayes’ theorem finds applications in finance, especially in the area of risk management
and investment strategies. Bayesian models can help in predicting the likelihood of
certain economic conditions based on current and past data.

• Portfolio Management: Investors can update their beliefs about the expected
returns of assets based on new market information.

• Risk Assessment: Bayesian models can evaluate the risk of investments or loans
by considering both historical data and expert judgment.

Example (Market Sentiment). Suppose an investor wants to determine whether the
market is bullish (M = 1) or bearish (M = 0) based on recent news sentiment (N).
Let:

• pM (1) = 0.5 (Initial belief that the market is equally likely to be bullish or
bearish)

• pN |M (1|1) = 0.7 (Probability of positive news given a bullish market)



• pN |M (1|0) = 0.3 (Probability of positive news given a bearish market)

If the news is positive, we want to find the updated probability that the market is
bullish, i.e., pM |N (1|1).
Using Bayes’ theorem:

pM |N (1|1) =
pN |M (1|1) · pM (1)

pN (1)

To find pN (1):

pN (1) = pN |M (1|1) · pM (1) + pN |M (1|0) · pM (0)

pN (1) = (0.7)(0.5) + (0.3)(0.5) = 0.5

Therefore:
pM |N (1|1) = (0.7)(0.5)

0.5
= 0.7

So, given positive news, there is a 70% chance that the market is bullish. □

4 A brief introduction to Markov Chains
Markov Chains offer a mathematical framework to model systems that evolve from
one state to another over time. A typical representation for Markov Chains is a state
diagram, as shown in the Figure below.

S1

S2 S3

p1,2

p2,3

p3,1

Figure 2: Example of a Markov Chain with three states and transition probabilities.

In the figure, the circles represent the states of the system, and the arrows symbolize
the potential transitions between these states. The numbers adjacent to the arrows
indicate the respective probabilities for these transitions. Given two states i and j, the
probability of transition from state i to state j is equal to pij .
As we have traversed through various facets of probability, from the foundational con-
cepts to the applied, it is evident that this journey has prepared us for understanding
systems influenced by sequential randomness. In upcoming lectures, we will cap off
our discussion by diving into simulations, offering two comprehensive examples: forest
fire simulations and ant foraging simulations. These examples will serve as practical
applications of the probabilistic and stochastic concepts we have learned so far.

5 Basics of Markov Chains
One of the most fundamental and widely studied stochastic processes is the Markov
chain, named after the Russian mathematician Andrey Markov. This chain has a unique
property that distinguishes it from other stochastic processes.

Definition 9 (Markov Chain). A sequence of random variables {X0, X1, X2, . . .} is
said to be a Markov chain if, for any t ≥ 0 and any states x0, x1, . . . , xt , the
probability of the next state xt+1 depends only on the current state xt and not on the
sequence of states preceding it. Mathematically, this property can be expressed as:

P (Xt+1 = xt+1|X0 = x0, X1 = x1, . . . , Xt = xt) = P (Xt+1 = xt+1|Xt = xt)

This property is often referred to as the Markov property or memorylessness. In
simpler terms, the future state of a Markov chain depends only on its current state
and not on its past states.



Example (Random Walk). A Random walk is a classic example of a stochastic process
and is often used to describe systems or sequences of events where the next state
depends only on the current state and some random element. It can be visualized as
a path taken by a particle that moves in random directions.
The simplest random walk is the one-dimensional walk. At each step, the walker takes
a step either to the right (+1) or to the left (-1) with equal probability.

1. Start at position 0.

2. At each time step, flip a coin:
• If heads, move +1 step to the right.
• If tails, move -1 step to the left.

3. Record the position after each step.

4. Repeat for a desired number of steps.

The particle starts at position 0. At each step, it moves either one step to the right
(+1) or one step to the left (-1) with equal probability. The path appears quite random,
and the particle can drift far from the starting position but can also return close to its
starting position at various times.
A 2D random walk can be visualized on a grid or plane. At each step, the walker takes
a step either up, down, left, or right with equal probability.

1. Start at position (0, 0).

2. At each time step, randomly choose one of the four directions:
• Up: (+0,+1)

• Down: (+0,−1)

• Left: (−1,+0)

• Right: (+1,+0)

3. Record the position after each step.

4. Repeat for a desired number of steps.

In the 2D random walk, the particle moves in a plane, starting from the origin. It takes
steps in one of four possible directions: up, down, left, or right. The resulting path
is a series of connected line segments in the plane, illustrating the random journey of
the particle over time. The path is visualized using the ’Greys’ color map, where the
starting point is black and the ending point is white, representing the time progression.

□

Definition 10. For a Markov chain with N possible states, the N×N matrix P = [pij ]
where pij = P (Xt+1 = j|Xt = i) is called the Transition matrix .

Note that the rows of a transition matrix for a Markov chain must each sum to 1.

6 Characteristics of Markov Chains
1. Transition Probabilities: The probabilities of moving from one state to another

are called transition probabilities. They are typically represented in a matrix called
the transition matrix.

2. State Space: The set of all possible states that the chain can be in. This could
be a finite or countably infinite set. In this context, we will focus on a total
number of states equal to N .

3. Time Structure: Transitions occur at integer time steps. Specifically, you can
visualize them as the subscripts of the random variables: the generic time point
is the t-th.

Example (Infection Dynamics). Consider a population that can be in one of three
states: Susceptible (S), Infected (I), and Recovered (R). Individuals transition between
these states according to the following Markov chain.
The transition probabilities are defined as:

• β: The probability of a Susceptible individual becoming Infected.
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Figure 3: Example of a Markov Chain with three states and transition probabilities.

• γ: The probability of an Infected individual recovering and moving to the Recov-
ered state.

• σ: The probability of an Infected individual transitioning back to the Susceptible
state without recovering.

Given these probabilities, the transition matrix P for this Markov chain can be con-
structed as:

P =

1− β β 0
σ 1− σ − γ γ
0 0 1


Where the rows represent the current state and the columns represent the next state.
This Markov chain captures the essential dynamics of many infectious diseases. The
future state of each individual depends only on their current state, satisfying the Markov
property. For example, if a person is currently Infected, the probability that they will
be Recovered in the next time step is γ, irrespective of their past states. □

7 Chapman-Kolmogorov Theorem
Let P

(n)
ij be the probability that the system transitions from state i to state j in n

steps. Then:
P

(n)
ij = P (Xt+n = j|Xt = i) = (Pn)ij

Notes:

• P
(n)
ij can be found using the (i, j)th element of the matrix Pn.

• The potential paths from i to j in n steps are up to Nn−1 (N being the number
of states).

• Matrix multiplication of P by itself n times accumulates all transition probabili-
ties.

Another representation of this concept, considering any times s < t < u, is given by:

Pij(s, u) =

N∑
k=1

Pik(s, t) · Pkj(t, u) (12)

Example (Financial Market Dynamics with Chapman-Kolmogorov Equations). Con-
sider the previously discussed financial market model.
The possible market states are N = 3 (k = 1 refers to a Bull market, k = 2 for a Bear
market, and k = 3 for Stagnant market).
If we’re interested in the probability of transitioning from a Bull market to a Bear
market over five steps, P 5, we can employ the Chapman-Kolmogorov equation. Using
our already computed matrices P 2 and P 3, the equation becomes:

(P 5)12 =

3∑
k=1

(P 2)1k · (P 3)k3 (13)



Using the above equation, we find that:

(P 5)12 ≈ 0.3526

This methodology not only simplifies computations but also offers insights into multi-
step transitions in financial markets, enabling better predictive models. □

8 Limit Distribution: Irreducibility, Aperiodicity, and
Ergodicity

Markov Chains, with their inherent ability to model complex stochastic systems, have
significant applications across various domains, from finance and meteorology to social
sciences. One of the most pivotal inquiries in the realm of Markov Chains pertains to
their long-term behavior. Specifically, will the system stabilize into a steady state or
equilibrium? This section delves into the notions that underpin this behavior, including
the limit distribution and the properties of irreducibility, aperiodicity, and ergodicity.

Definition 11 (Limit Distribution). A distribution π is called a limit distribution for
a Markov Chain if

lim
n→∞

Pij(0, n) = πj

for every state i. The limit distribution provides insights into the enduring behavior of
the system and is inherently linked to the properties discussed below.

The distribution π encapsulates the stable or steady-state probabilities associated with
each state as the number of transitions grows indefinitely large. For a finite Markov
Chain, the cumulative sum of all elements of π equals 1, emphasizing that π is a
probability distribution.

Example (Convergence of P to π). For the given transition matrix P , let’s inspect its
powers:
For P 5: 0.34296 0.35264 0.3044

0.34664 0.33984 0.31352
0.33752 0.3648 0.29768


For P 10: 0.34260 0.35183 0.30557

0.34251 0.35210 0.30539
0.34268 0.35159 0.30573


For P 20: 0.34259 0.35185 0.30556

0.34259 0.35185 0.30556
0.34259 0.35185 0.30556


By the time we examine P 50 and P 100, the matrix has stabilized to:0.34259 0.35185 0.30556

0.34259 0.35185 0.30556
0.34259 0.35185 0.30556


From the matrices above, we discern a clear trend: as we raise P to higher powers,
the rows of the matrix are converging to the limit distribution π. This showcases the
theoretical underpinning that, given certain conditions, the Markov Chain will stabilize
to a unique long-term distribution. □

Definition 12. A Markov Chain is irreducible if it is possible to traverse from any
state to any other state within a finite number of steps. Formally, for any states
i, j ∈ {1, ..., N}, there exists n ≥ 1 such that P (n)

ij > 0.

Irreducibility plays a paramount role in systems like social networks, ensuring the flow
of information across the entire network.

Definition 13. A state of a Markov Chain exhibits aperiodicity if it doesn’t revisit
itself in a fixed pattern. Formally, a state i is aperiodic if the greatest common divisor
of the set of steps n at which it returns to itself is one: gcd{n : P

(n)
ii > 0} = 1.

Aperiodicity is crucial in financial models to avoid deterministic cyclical behaviors,
ensuring the model captures the nuances of real-world dynamics.



Definition 14. A Markov Chain is termed ergodic if it embodies both irreducibility
and aperiodicity. Ergodicity ensures the existence of a unique limit distribution π.

Example (Board Game Dynamics). Consider a simplified board game where players
move across a linear track of 10 spaces based on dice rolls. The goal is to reach the
10th space, but there’s a catch: the 4th and 7th spaces contain portals. Landing on
the 4th space sends the player back to the 1st space, while the 7th space propels the
player directly to the 10th space.
In this scenario, we can model the game as a Markov Chain, where each space on the
board is a state. Transition probabilities depend on dice roll outcomes and the portal
mechanics. For instance, if a player is on the 3rd space, there’s a 1

6 chance they’ll land
on the 4th space (and be sent back to the 1st space) in the next move.
The game’s dynamics are both irreducible and aperiodic. It’s irreducible because a
player can move from any space to any other space (either directly or indirectly through
dice rolls and portals). It’s aperiodic because, while a player may revisit certain spaces
multiple times due to the portals, there’s no fixed pattern or cycle length for revisiting
a specific space.
As players play this game repeatedly, we might be interested in the long-term prob-
abilities or limit distribution of a player occupying each space. This distribution will
reveal insights like the likelihood of players getting caught in the portal trap at the 4th
space or the average number of turns to reach the 10th space. Ergodicity assures us
that this distribution will stabilize over time, no matter the starting position. □

In the absence of ergodicity, a Markov Chain might produce vastly divergent outcomes
over different simulation runs, complicating predictions and risk assessments. Thus,
understanding these attributes is not merely academic; they underpin practical appli-
cations across various sectors, playing a crucial role in our understanding of complex
systems.

9 Modeling Real-World Processes
9.1 Forest Fire Simulation
The dynamics of forest fires play a pivotal role in ecosystem conservation and the
safety of communities adjacent to wooded regions. These fires, influenced by various
environmental and situational factors, exhibit intricate patterns of spread, making pre-
dictions daunting. However, using mathematical models, especially Markov Chains, we
can unravel the stochastic behavior underlying forest fires.
In the Forest Fire Simulation Model, the forest is depicted as a two-dimensional grid,
where each cell represents a specific section of the forest. These cells can adopt one
of four states: Grass (‘G‘), Tree (‘T‘), Burning (‘B‘), or Empty (‘E‘) which indicates
a previously burned area. As the grid evolves in discrete time intervals, the system’s
behavior aligns with a Markov Chain model, where the subsequent state of each cell
hinges exclusively on its present state and the states of its immediate neighbors.
Mathematically, if G denotes the grid and SC represents the state of a specific cell C,
then:

SC ∈ {Grass,Tree,Burning,Empty}

The transitions between these states adhere to probabilistic rules:

• A Grass cell has a probability pgrowth to metamorphose into a Tree.

• A Tree cell ignites, becoming a Burning cell, if neighboring cells are ablaze,
governed by a probability pignite.

• Occasionally, a Grass cell might spontaneously combust due to rare events like
lightning, a phenomenon represented by pspontaneous.

• Post-combustion, a Burning cell invariably transforms into an Empty cell, sym-
bolizing the aftermath of the fire.

These rules can be encapsulated within a transition function T , which outlines the
state of a cell at time t + 1 contingent upon its and its neighbors’ states at time t.
This adherence to the Markov property underscores the essence of our model, wherein
transitions are strictly influenced by the present state of affairs.

Experiment 1. Our simulation experiment aims to emulate the progression and even-
tual aftermath of a wildfire in a forest. The grid is initialized with a certain distribution
of Grass and Trees, with a few cells set to the Burning state to simulate the fire’s



ignition points. As the simulation progresses, the fire spreads according to the afore-
mentioned probabilistic rules, affecting neighboring cells and altering the landscape.
Over time, the fire exhausts available fuel (Grass and Trees) and transforms cells into
the Empty state, representing burned regions. The simulation provides valuable in-
sights into how fires spread, the efficacy of natural barriers, and potential strategies to
contain or mitigate wildfires.

A salient advantage of construing this simulation within the Markov Chain paradigm
is the capability to prognosticate the forest’s evolution over time. By discerning the
steady-state probabilities, we can extrapolate vital data, such as the perennial likelihood
of a particular cell being in any given state. Such probabilistic insights are instrumental
for forest management strategies, from determining reforestation zones to instituting
firebreaks and marshaling firefighting assets.
Additionally, the adaptability of the model shines through its parameters. Probabilities
like pgrowth and pignite can be calibrated to mirror real-world observations or tweaked to
simulate myriad scenarios, enhancing the model’s versatility.

Figure 4: 12 snapshots in the forest fire simulation, showing the dynamic spread and
aftermath of the fire.

In summation, Markov Chains furnish a potent methodology for simulating and de-
ciphering the multifaceted dynamics of forest fires. Harnessing their mathematical
prowess, we can derive insights into the trajectories of wildfires, optimize resource
deployment, and conceive strategies to curtail the ravages of these natural calamities.

9.2 Agent-Based Models
Agent-Based Modeling (ABM) is a computational method used to model and analyze
systems composed of individual agents interacting with each other and possibly with
their environment. Each agent is typically defined by a set of characteristics and
rules governing its behavior. Over time, these individual interactions can lead to the
emergence of complex system-wide patterns and behaviors.
In an ABM, agents are often represented as entities with:

• States: Described by variables that can change over time, e.g., position, velocity,
health status.

• Behaviors: Rules or strategies that determine how an agent will act based on
its current state and the state of its surroundings.

The environment in which agents operate can be represented as a grid or a network,
with agents moving between and interacting within these discrete spaces.
The dynamics of an ABM can often be described by a set of equations. Let Si(t)
represent the state of agent i at time t. The behavior of agent i can then be represented
as:

Si(t+ 1) = f(Si(t), Ni(t))

where:

• f is a function describing the agent’s behavior.



• Ni(t) represents the neighborhood or set of agents that agent i interacts with
at time t.

The agents’ behaviors and interactions lead to emergent properties of the system,
which can be analyzed at the macro level.
The power of ABM lies in its ability to simulate individual behaviors to observe emergent
macro-level outcomes. Traditional modeling techniques, such as differential equations,
often describe systems at an aggregate level, making it difficult to capture localized in-
teractions and heterogeneity. ABM, on the other hand, provides a bottom-up approach,
making it particularly suited for systems where individual behaviors play a critical role
in shaping collective dynamics.

Example. Ant Foraging Simulation
Consider a grid where ants search for food. The grid has cells representing either food,
the nest, pheromones left by other ants, or empty cells. Each ant is an agent with the
following behaviors:

1. If an ant finds food, it picks it up and returns to the nest.

2. If an ant carrying food encounters another ant, it deposits pheromones to signal
the presence of food.

3. Ants follow pheromone trails to locate food sources more efficiently.

We provide a computational model to simulate the foraging behavior of ants. The
ants’ movements are influenced by their environment, primarily the presence of food
and pheromones. This document formalizes the rules governing these behaviors based
on the provided R code.
Let G be the grid where each cell (i, j) represents a position in the 2D space, and A
be the set of ants. Each ant a ∈ A has a state Sa defined as follows:

Sa = {X,Y, F}

Where:

• X,Y are the coordinates of the ant on the grid.

• F is a boolean flag indicating whether the ant is carrying food (F = 1) or not
(F = 0).

The state of an ant at time t+ 1 is given by:

Sa,t+1 = P (Sa,t)

Where P is the transition function defined as:

T (Sa) =


(X +∆x, Y +∆y, 1) if ant is at food source and F = 0

(X +∆x, Y +∆y, 0) if ant is at nest and F = 1

(X +∆x, Y +∆y, F ) otherwise

∆x and ∆y are random variables that represent the ant’s movement in each time step.
Ants move based on their current state, previous state, and the state of the cells around
them. The movement can be represented as:

M(at, at−1, N(at)) → at+1

where at is the ant’s current state at time t, at−1 is the previous state, N(at) denotes
the neighboring cells’ states, and at+1 is the resulting state in the next time step.
The primary factor affecting the ants’ movement is the presence of pheromones. Let’s
denote pheromones as Ph1 and Ph2. The transition probabilities associated with these
pheromones are:

P (grass → Ph1) = pgrasstopher1

P (Ph1 → Ph2) = ppher1topher2

P (Ph2 → grass) = ppher2tograss

P (grass → P2) = pgrasstopher2

When an ant, not carrying food, moves to a cell with food, it picks up the food. This
can be represented as:



F (at, food) → (at+1, carry)

where F is the function governing food pickup, at is the ant’s current state, and ‘carry‘
indicates the ant is now carrying food.
Ants carrying food, when they move and are not at the nest or on a food source, drop
a pheromone. This can be represented as:

P (at, carry) → P1

Over time, pheromones on the grid undergo transitions:

Ph1 → Ph2 with probability ppher1topher2

Ph2 → grass with probability ppher2tograss

The randomness in ant movement is influenced by transition probabilities. Given a
certain probability p, an ant will transition from state x to state y. This is represented
by:

P (x, y, p) =

{
y with probability p

x otherwise

The simulation environment, including the ant positions, food sources, and nest, is
initialized. The grid contains various entities: grass, ants, nest, and food. □
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