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Notation
= G: graph;
= V: node set of a graph;
= F: edge set of a graph;
= A: adjacency matrix of a network;
= d(u): degree of a node of a graph;
= d(u,v): distance between two generic nodes of a graph;
= D: diameter of a graph;
= [: average shortest path;
= G: random graph;
= G(N,p): Erdos-Renyi (ER) Model;
= (" largest connected component of a graph;
= peo: critical probability for emergence of a giant component in an ER graph;
» TI(k): probability that a new node connects to a node with degree k;

» dg: average degree of graph G;

Introduction

In today’s interconnected world, networks form the backbone of numerous intricate sys-
tems. From biological intricacies in organisms and deep-rooted ties in social interactions
to vast interdependencies in technological infrastructures, networks are omnipresent.
They offer a lens to view and comprehend the complex fabric of interactions that un-
derpin these systems. Given the importance and ubiquity of networks, understanding
their essential properties and behaviors becomes a cornerstone for many disciplines,
including sociology, computer science, economics, and epidemiology.

Static network models are crucial in this exploration. While dynamic network models
unveil the evolution of networks over time, static models freeze a network’s snapshot,
allowing us to delve deep into its structural properties. Through this lens, we gain
profound insights into the network’s organization, function, and behavior, even if it is
just for a moment in its vast timeline.

Central to the study of these models are a few pivotal concepts and phenomena that
have shaped our modern understanding of complex networks. The Erdos-Renyi Graphs,
a foundational model, illuminate the properties of purely stochastic systems. On the
other hand, the Preferential Attachment Model elucidates the rich-get-richer phenom-
ena often observed in multifarious real-world systems. Meanwhile, the Six Degrees
of Separation uncovers the astonishingly short paths within colossal networks, leading
to the famous small-world effect. Lastly, the Friendship Paradox offers an intriguing
glimpse into the realm of relative connectivity, revealing that most individuals often
have fewer friends than their friends, on average.

1 Network Basics

A network is a collection of interconnected entities, often represented mathematically
by a graph. In this book, however, we will use the terms interchangeably.



Definition 1 A Graph G is a collection of interconnected entities called Nodes (or
Vertices) and the relationships or connections between them, termed as Edges (or
Links). Each edge connects two nodes and indicates a relationship between them.

A first mathematical representation of the graph is thus: G = (V| E).

Example 1 Consider a simple network with 5 nodes and 6 edges:

V ={1,2,3,4,5} (1)

E={(1,2),(2,3),(1,3),(2,4),(3,4), (4,5)} )

()—2)
' .
—
Figure 1: Example network with 5 nodes and 6 edges.

After defining networks in terms of nodes and edges, an additional mathematical and
more summarized representation is essential for analysis. The adjacency matrix offers
a compact way to depict the relationships within a network.

Definition 2 The Adjacency Matrix A is a square matrix of size N x N where N is
the total number of nodes (Order of the network). Entry A, equals 1 if there is an
edge from node u to node v and 0 otherwise.

Example 2 The adjacency matrix for the network in the previous example is:

01 100
101 10
A=11 1 0 1 0
01 1 01
00 010

An adjacency matrix is a powerful tool for representing graphs because it encodes all the
information about connections between nodes in a systematic manner. The cell A,,
represents the edge from node u to node v. If A, = 1, then an edge exists; otherwise,
it is zero. This binary encoding simplifies complex relationships into a format easily
analyzed computationally.

2 Network Properties

Definition 3 A Shortest Path between two nodes u and v in a graph is a path that
has the minimum number of edges (in an unweighted graph) or the minimum sum of
edge weights (in a weighted graph) among all possible paths between w and v. The
length of this path is denoted as d(u,v).

Definition 4 The Diameter of a graph is the longest shortest path between any two
nodes in the graph. Formally, if d(u,v) is the shortest path between nodes u and v,
then the diameter D is defined as:

D = max d(u,v)
u, eV

Example 3 Consider the previous network example, where V. = {1,2,3,4,5} and

E={(1,2),(2,3),(1,3),(2,4),(3,4), (4,5)}.
The shortest paths between all pairs of nodes are:

» Shortest path from 1 to 2, 3, 4, 5 are 1, 1, 2, 3 respectively.
= Shortest path from 2 to 1, 3, 4, 5 are 1, 1, 1, 2 respectively.

= Shortest path from 3 to 1, 2, 4, 5 are 1, 1, 1, 2 respectively.



» Shortest path from 4 to 1, 2, 3, 5 are 2, 1, 1, 1 respectively.
= Shortest path from 5 to 1, 2, 3, 4 are 3, 2, 2, 1 respectively.

The diameter of this graph is the longest of these shortest paths, which in this case is
3 (from node 1 to node 5).

Knowing the shortest paths and diameters in a network has a wide range of practical
applications. For instance, in social networks, the diameter can provide insights into
how quickly information may spread across the network. In transportation networks,
identifying the shortest paths is crucial for optimizing travel routes. Understanding
these properties is integral for network resilience, efficiency, and information dissemi-
nation.

3 Graph Models

Random graphs are a foundational construct in the mathematical treatment of network
theory, offering researchers a framework for understanding the probabilistic interactions
within complex networks.

Definition 5 (Random Graph) A Random Graph G is a graph in which the presence
or absence of an edge between any two distinct nodes is determined by a probabilistic
rule.

Random graph models describe the probability distributions on the graph.
Among various random graph models, the Erdos-Renyi model stands out due to its
simplicity and foundational role in network theory.

Definition 6 (Erdos-Renyi Model) The Erdos-Renyi Model, denoted as G(N,p),
is defined as a random graph consisting of N nodes, where each potential edge between
distinct nodes u and v is included with probability p, independently of the other edges.

The probability of an edge forming between any two nodes u and v in the Erdos-Renyi
model G(N, p) is:
P(Edge between v and v) =p

Erdos-Renyi Graphs with n=25
p=0.5

Figure 2: Variations of Erdos-Renyi graphs with n = 25 nodes and varying p.

Definition 7 (Giant Connected Component) A Giant Connected Component in
a graph G is a connected component that includes a substantial fraction of the entire
set of nodes in the graph. In the Erdos-Renyi model G(N,p), a giant connected
component emerges when the edge probability p surpasses a critical value pc.

The critical probability pc for the emergence of a giant component in an Erdos-Renyi
graph G(N, p) is approximately:

__ log(N)
Pc = N

Experiment 1 (Empirical Estimation of pc) To empirically estimate the critical prob-
ability pc at which a giant connected component forms in an Erdos-Renyi graph
G(N,p), we will perform the following experiment:

1. Initialize N = 1000 nodes.

2. Vary p from 0 to 1 in increments of 0.01.



For each p, generate a random graph G(N, p).
Identify the largest connected component C' in G.
Record the size |C| of the largest connected component.

Plot |C| as a function of p.
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Observe the value of p where |C| starts to dramatically increase. This value is
an empirical estimate of p¢.

The Erdos-Renyi model, despite its simplistic assumptions, serves as a key reference
model in the realm of network theory. Its clear framework for randomness offers a foun-
dation for the study of more complex networks, making it a cornerstone in disciplines
such as computer science, biology, and social sciences.

The Preferential Attachment Model, popularized by Albert-Laszl6 Barabasi and Réka
Albert, is grounded in the adage "the rich get richer." Nodes are more likely to link
to nodes that already have many connections. This dynamic leads to "hubs" or nodes
with significantly higher connectivity than others.

Mathematically, the probability TI(k) that a new node connects to a node with k
connections is proportional to k.

Definition 8 The Degree d(u) of a node u represents the number of edges connected
to that node.

Definition 9 (Preferential Attachment Model) The Preferential Attachment Model
is a foundational concept often used to explain how real-world networks evolve to ex-
hibit a scale-free degree distribution. Proposed by Barabasi and Albert in 1999, this
model argues that networks grow by the principle of "the rich get richer," whereby new
nodes are more likely to connect to already well-connected nodes.

The central equation governing the Preferential Attachment Model is:

k.
Z’UGV d(’U)

where II(k) is the probability that a new node will connect to a node with degree k,
and the sum runs over all nodes v in the network.

This results in a scale-free network, characterized by a power-law degree distribu-
tion.

The Preferential Attachment Model provides a basis for understanding how highly
connected "hubs" emerge in networks. These hubs play a critical role in the network's
overall structure and resilience, often dominating processes like information spread or
failure propagation.

II(k) = P(Edge between new node and u with d(u) = k) =

Preferential Attachment Graphs with n=25

m=1 m=5 m=20

Figure 3: Three variations of the Erdos-Renyi graph with N = 25 nodes and edge
probabilities p = 0.2,0.5,0.8.

4 Social Networks Analysis

Online social networks have become an integral part of our daily lives. Platforms like
Twitter, Facebook, and Instagram have millions of users who are constantly connecting,



forming both weak and strong ties. These networks evolve dynamically, with users
adding friends based on existing connections or sometimes even at random.

To study the structure and evolution of these networks, we turn to graph theory.
Consider an initial scenario where a new social platform is launched and the first 100
users join, forming connections at random. This can be represented using the Erdos-
Renyi model G(N, p), where N is the number of users and p is the probability that a
pair of users form a connection.

After this initial phase, as the platform gains popularity, users start joining influenced
by their friends or by existing popular users. This is where the Preferential Attachment
Model comes into play. New users are more likely to connect to popular users, causing
them to gain even more connections.

To simulate this scenario:

1. Start with the Erdos-Renyi model, G(100,0.05), representing the initial 100
users.

2. As more users join, they form connections based on the Preferential Attachment
Model. For simplicity, let's assume each new user forms connections with 5
existing users, and we add 900 new users this way.

Mathematically, the probability II(k) for a new user to connect to an existing user with

k connections is given by:
k

Zm’nV d(U)
By combining the Erdos-Renyi and Preferential Attachment models, we get a repre-
sentation of an online social network. Analyzing this combined network can provide

insights such as the average path length between users, which is indicative of the
"small-world" phenomenon seen in real-world networks.

(k) =

4.1 Friendship Paradox

The Friendship Paradox can be mathematically described by the skewed degree distri-
butions often observed in social networks. Let N be the total number of nodes in the
graph, and let d(v;) be the degree of the i*" node. The average degree dg is calculated
as:

_ 1 X
do = N;d(vi)

However, the probability of selecting a person (or node) as a friend increases with the
number of friends that person has. When you randomly pick an edge, you are more
likely to land on a node with a higher degree. The average degree of a node reached
through a random edge dfiends is:

Zil\il d(vi)Q
Y d(v)

Due to the squared term in the numerator, dgiengs Will generally be greater than dg,
thus confirming the Friendship Paradox.

The Friendship Paradox has practical implications in real-world networks, such as social
media platforms. The majority of users typically have fewer followers than those they
follow, a statistical trend that has significant applications in viral marketing strategies
and information dissemination.

dfriends =

Example 4 In the simulation experiment, we can calculate the degree distribution of
the final network. On Figure 5 we see that most nodes are not connected but that
there is a cluster of highly connected nodes (influencers).

4.2 Six Degrees of Separation

The Six Degrees of Separation can be understood in terms of "shortest paths" in a
graph. Given a graph G = (V, E), the average shortest path L is calculated as:

2
L= m;d(u,v)

where d(u,v) represents the shortest distance between nodes u and v.



Initial Erdos-Renyi Graph with n=100, p=0.05

(a) Initial Erdos-Renyi Network

Graph after Preferential Attachment of 900 new nodes with m=5

(b) After Preferential Attachment

Figure 4: Comparison of the initial Erdos-Renyi network with the evolved network post
preferential attachment. These graphs provide a visual representation of the
growth and evolution of connections as the network matures.

Degree Distribution of Combined Graph
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Figure 5: Degree distribution of the combined graph.



In many real-world networks, especially social networks, it has been observed that L is
much smaller than the network size N, exhibiting the 'small-world’ property.

The Six Degrees of Separation posits that any two individuals are, on average, separated
by at most six social connections, leading to the idea of a "small world". Originating
from a short story by Frigyes Karinthy and later buttressed by experiments like that of
Stanley Milgram, it underscores the compactness of social networks.
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