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Making informed decisions is a ubiquitous aspect of life, confronting us with questions
such as

= "Does a new drug improve health outcomes?"
= "Is a suspect guilty of a crime?"
= "Do environmental factors contribute to disease?"

= "Has a chess grandmaster player engaged in cheating?"

To address these varied queries, a robust statistical framework is essential. Hypothesis
testing is the cornerstone of this framework, offering a systematic approach to drawing
conclusions from data. This lecture will explore the principles and applications of
hypothesis testing, demonstrating its critical role in deciphering data to make informed
decisions.

In this exploration, we will see how hypothesis testing acts as a logical tool, akin to a
statistical tautology, enabling us to validate or invalidate hypotheses based on empirical
evidence. The allegory of Plato’s Cave serves as a metaphor for this process, where just
like deciphering shadows to uncover a hidden reality, we use data to reveal underlying
truths.

1 Hypothesis testing

Statistical hypothesis testing is a key technique of frequentist statistical inference.
In order to understand what hypothesis testing means, we describe an analogy. A
statistical test procedure is comparable to a criminal trial; a defendant is considered
innocent as long as his guilt is not proven. The prosecutor tries to prove the guilt
of the defendant. Only when there is enough incriminating evidence the defendant is
convicted.

1.1 Modus tollens

The modus tollens is the Latin name for a valid argument form and rule of inference.
It means “the way that denies by denying”. It is the inference that

1. if P= @, i.e. if P implies Q,



2. and the second premise, Q, is false,
3. then it can be logically concluded that P must be false.

For example, we know that if it rains, that then the streets are wet. When we look
outside, we see that the streets are dry, so therefore we can conclude that it doesn't
rain. The argumentation used in hypothesis testing is something like a modus tollens.
The only thing is that we are not completely certain about the truth or falsehood of
P = @ anymore. We explain this in the following sections.

1.2 Null and alternative hypotheses

At the start of the procedure, there are two hypotheses:

Hy: "the defendant is not guilty”, and
H;: "the defendant is guilty”.

The first one is called the null hypothesis, and is for the time being accepted. The
second one is called the alternative (hypothesis). It is the hypothesis the prosecutor
tries to prove.

1.3 Two kinds of errors

The hypothesis of innocence is only rejected when the evidence is really strong, because
one doesn't want to convict an innocent defendant. The error of convicting an innocent
person is called an error of the first kind. The testing procedure should be set up in
such a way that the occurrence of this error is rare. The reverse error, i.e. acquitting a
person who committed the crime, called the error of the second kind is considered less
serious. As a consequence of this asymmetric behaviour, the frequency of occurrence
of the second type error is often rather large.

Hy is true Hi is true
truly not guilty truly guilty
Accept Null Hypothesis  Right decision ~ Wrong decision
Acquittal Type Il Error
Reject Null Hypothesis  Wrong decision
Conviction Type | Error Right decision

= Type | Error (False Positive): Occurs when the null hypothesis is true, but we
incorrectly reject it. Denoted by a (alpha), also known as the significance level.

= Type Il Error (False Negative): Occurs when the null hypothesis is false, but
we fail to reject it. Denoted by  (beta). The power of a test is defined as 1 — 3
and represents the probability of correctly rejecting a false null hypothesis.

1.4 Test statistic

A criminal trial can be regarded as either or both of two decision processes: guilty vs
not guilty or evidence vs a threshold ("beyond a reasonable doubt"). What we wish is
to judge the defendant, but really we are judging the performance of the prosecution
(which bears the burden of proof). Similarly in hypothesis testing, these decisions
are always made using some (hopefully) clever summary of the data. This summary
is called a test-statistic. There are many summaries of the data possible: one might
show nothing (e.g. “the suspect is a woman”), whereas another (e.g. “the suspect has
blood-stained clothes”) might give some idea that the that the suspect is guilty.

1.5 P-value
We now attempt to reformulate the modus tollens, where
= P = “null hypothesis is true"”

= Q = “not observing this value of the test statistic”

If P = @ was certain, then if the null hypothesis is true, one would never observe this
value of the test statistic. BUT we do observe exactly this value of the test-statistic,
and therefore the null hypothesis must be false.



However, often P = (@ is not certain at all. If the suspect is not guilty, it is not
certain that she has no blood on her clothes. She could have tried to help the victim
immediately afterwards. We want to replace the certain statement,

P=qQ

by an uncertain statement: “the probability that Q happens if P is true”, P(Q|P). If
this value is almost 1, then the implication is almost certain and then we can tolerate
the modus tollens argument. However, if this is far from 1, then the implication is too
uncertain to be able to use the modus tollens.

In actual fact, one does not use P(Q|P), but P(not Q|P) =1 — P(Q|P). This value
is called the p-value, i.e.,

p-value: probability of observing a value for the test statistic that is at
least as extreme as the value that was actually observed, assuming that
the null hypothesis is true.

P-values close to zero, therefore, mean that the implication P = @ is almost certain
and that we can use the modus tollens to reject the null hypothesis.

1.6 Significance level

One use of hypothesis testing is deciding whether experimental results contain enough
information to cast doubt on conventional wisdom. The question is what is enough?
Should the probability of the implication be 99% (i.e. the p-value = 0.01) or 99.9%
(i.e. the p-value=0.001) before we accept the validity of the modus tollens? In most
fields of science and society, one uses 95% as the cut-off —i.e. a cut-off of 0.05 for the
p-value). This is the result of an arbitrary choice by the inventor of hypothesis tests,
R.A. Fisher, in the 1930s. The cut-off is called the significance level.

In statistics, a result is called statistically significant if it is unlikely to have occurred
by chance alone, according to a pre-determined threshold probability, the significance
level. The phrase “test of significance” was coined by Ronald Fisher: “Critical tests
of this kind may be called tests of significance, and when such tests are available we
may discover whether a second sample is or is not significantly different from the first.”
A result that was found to be statistically significant is also called a positive result;
conversely, a result that is not unlikely (i.e. quite likely) under the null hypothesis is
called a negative result or a null result.

The probabilities of the two types of errors are determined by the distributions of the
test statistic under the null and alternative hypotheses.

If Z is our test statistic:

= The probability of a Type | error, P(Reject Hy|Hy is true) = a.
= The probability of a Type Il error, P(Fail to Reject Hy|Hy is false) = (.

Given a significance level «, the critical value Z, is the value for which:

P(Z > Z,|Hy is true) = «

And for the power of the test:

P(Z > Zy|Hy is true) =1—p

In hypothesis testing, we aim to minimize both Type | and Type Il errors. However, in
practice, there is a trade-off:

As « decreases, (3 increases (and vice versa). (1)

Thus, the goal is often to determine an acceptable level of « (common choices are
0.05, 0.01) and design the test to minimize 8 for that a. Another approach is to
maximize the power of the test, which is 1 — 3, given a fixed a.

The choice of « should reflect the relative seriousness of the two types of errors in
a particular testing context. For example, in medical testing, a Type | error (falsely
diagnosing a healthy person as sick) might be deemed more serious than a Type Il
error (falsely diagnosing a sick person as healthy), leading to a choice of a smaller «.



Example: A Clairvoyant Card Game

Lets consider a more realistic example. A person (the subject) is tested for clairvoy-
ance. He is shown the back of a randomly chosen playing card 25 times and asked to
guess its suit. The number of correct guesses (hits) is denoted by X.

As we seek evidence of clairvoyance, we start by assuming the null hypothesis that the
person is not clairvoyant. The alternative hypothesis is that the person is (to some
degree) clairvoyant. Under the null hypothesis, the subject can only guess. For each
card, the probability of any single suit is 1/4. Under the alternative hypothesis, the
probability of a correct guess, p, differs from 1/4. Thus, the hypotheses are:

Hy : p=1/4 (just guessing)
Hy : p # 1/4 (true clairvoyance).

We call this a two-sided test, meaning that a priori it is logically possible for p to
be either greater than or less than 1/4. This is typically the case in practical situa-
tions, so most tests are two-sided. The main consequence of a two-sided test is in the
calculation of the p-value: the exceedance probabilities are multiplied by 2 (see below).

If the test subject correctly predicts all 25 cards, it seems reasonable to reject the
null hypothesis and consider him clairvoyant. With only 5 or 6 hits, however, there
is no reason to doubt the null hypothesis. But what about 12 hits, or 17 hits? We
must determine the critical number ¢ of hits at which we consider the subject to be
clairvoyant. How do we determine this critical value ¢?

In practice, one decides how strict to be by choosing how often one is willing to make
a Type | error (a false positive). For example, with ¢ = 25:

25
1
Type | error =2 x P(X =25 | Hy is true) = 2 x (4) .
This probability is extremely small.
The probability of a false positive is thus the probability of randomly guessing all 25
cards correctly, times 2 (since the test is two-sided). If we are less strict and choose
¢ =10, we have:

25
25
Type | error = 2x P(X > 10 | Hy is true) = 2 x Z (k ) (0.25)%(0.75)% % ~ 0.14.
k=10

So, ¢ = 10 yields a much larger probability of a false positive.

Before conducting the test, one typically decides on a desired probability of a Type |
error. Common values range from 1% to 5%. Depending on this chosen error rate, we
calculate ¢. For example, if we select an error rate of 1%, then c is determined by:

Type | error =2 x P(X > ¢ | Hy is true) < 0.01.

From all ¢ values satisfying this inequality, we choose the smallest one. Why? Because
remember there is another error, the Type Il error (false negative), which we also want
to minimize. In our example, this leads us to select ¢ = 12.

What if the subject did not guess any cards correctly at all? Getting zero hits can also
be considered unusual. The probability of guessing incorrectly once is ¢ = 1 —p = 3/4.
Using the same reasoning, the probability of calling all 25 cards wrong is:

p-value = 2 x P(X = 0| Hy is true) = 2 x (0.75)%° ~ 0.0014.

This is about a 1 in 1000 chance and would be evidence for dismissing Hy in favor
of Hi. While it may seem strange, this result suggests the subject consistently avoids
guessing correctlyalso a form of clairvoyance.

Example: Power Plant’s Effect on Cancer Incidence

We aim to determine if a power plant influences the incidence of a specific cancer,
measurable through a continuous scale like biomarker levels. Our linear regression
model is:

Yi=Bo+ Bri+e;
Here, Y; represents cancer severity or biomarker levels, x; indicates proximity to the
power plant, and e; is the error term. The coefficient 5 measures the power plant's
effect.
Our hypothesis test is:



» Hy: 8 =0 (No effect)
= Hy: B #0 (Some effect)

The least squares estimator for 3 is:
B=(XTX)"'xTy

A possible test statistic T is defined as:

If Hy is true, the p-value is:

p—value = P(|T| > |tobs|)

Where T is the t-statistic under Hy, and t,s is the observed value.

The Central Limit Theorem ensures that, even if e; is not normally distributed, S
will approximate a normal distribution for large samples, allowing the use of standard
t-tests.

Permutation Test

A permutation test is a non-parametric statistical method used for hypothesis testing,
particularly to determine if two or more samples originate from the same distribution.
The process is delineated as follows:

1. The null hypothesis H posits no effect or difference between the groups, e.g.,
equal means.

2. All observations from the different groups are pooled together, creating a com-
prehensive pool of data.

3. This pooled data is then randomly permuted and redistributed into new groups,
each matching the size of the original groups.

4. For each permutation, a test statistic is calculated. This statistic could be any
measure of interest, depending on the research question:

T=fyW) - fy®)
5. This process is repeated numerous times (e.g., 10,000 times) to generate a dis-

tribution of the test statistic under Hy.

6. The actual test statistic calculated from the original, unpermuted data is then
compared to this distribution.

7. The p-value is determined by the proportion of permuted test statistics that are
as extreme or more extreme than the observed statistic:

Number of permutations with 7' > observed T

-value =
b Total number of permutations

A low p-value (typically less than 0.05) indicates that the observed difference is unlikely
due to chance, leading to a rejection of Hy. This test is valued for its versatility and
robustness, as it does not make assumptions about the distribution of the data.

Example: Teaching methods

Consider the scenario of evaluating two teaching methods in terms of their effectiveness.
Our objective is to use a hypothesis testing framework to ascertain if the observed
differences in student pass rates between two schools are statistically significant.
Hypotheses:

» Null Hypothesis (Hp): There is no significant difference in the pass rates between
the two schools.

= Alternative Hypothesis (H7): There is a significant difference in the pass rates
between the two schools, attributable to the teaching methods.



Permutation Test for Difference in Proportions

I'= = Observed Difference
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Figure 1: Histogram of permuted differences in pass rates with the observed difference
indicated.

The data includes results from two schools: School A, employing a new teaching
method with 773 students (of whom 18 passed), and School B, using a traditional
method with 1123 students (of whom 11 passed). The permutation test, chosen for
its robustness in non-parametric settings, is used to compare the pass rates.

The permutation test produced an observed difference in pass rates of approximately
0.0135. The p-value for this observed difference is 0.0398. Since this p-value is be-
low the conventional threshold of 0.05, we reject the null hypothesis in favor of the
alternative hypothesis. This result suggests that the difference in pass rates between
the two schools is statistically significant and may be attributed to the difference in
teaching methods.

Example: Is Nakamura Cheating?

Following recent allegations of cheating by Vladimir Kramnik against Hikaru Naka-
mura, this analysis aims to statistically evaluate Nakamura's winning streaks. Kram-
nik's accusations, made in November 2023, were based on Nakamura's exceptional
performance, including a 45.5 out of 46 win rate. Chess.com's investigation found no
evidence of cheating, but we aim to independently assess the statistical likelihood of
such performance (source).

The hypotheses tested are:

» Hjy: The occurrence of long winning streaks is due to chance.

= Hi: The occurrence of long winning streaks is too improbable to be due to
chance, indicating potential cheating.

Using the ELO rating system, the probability of Nakamura winning a game is calculated,
taking into account his high performance in recent games:

. 1
P(Wm) = 1+ 10(Opponent ELO—Nakamura ELO) /400

The simulation parameters are as follows:
= Number of games per simulation: 25,000
= Number of simulations: 100
= Nakamura's ELO (adjusted for recent performance): 3300
= Opponent’s ELO range: 2700 to 3100
= Threshold for significant winning streak: 40 games

The key statistic in this analysis is the longest winning streak. The simulation results,
which are analyzed to understand the likelihood of Nakamura’'s winning streaks occur-
ring by chance, include the mean and median longest winning streaks, as well as the
frequency of simulations with winning streaks above the 40-game threshold.


https://dotesports.com/chess/news/chess-com-reaches-conclusion-on-hikaru-cheating-accusations-by-vladimir

A p-value is calculated to determine the statistical significance of the results, comparing
the observed longest winning streak against the distribution from the simulations. The
conclusion will be based on whether this p-value is lower than the typical significance
level of 0.05.

A histogram is included to visually represent the distribution of the longest winning
streaks in the simulations, providing a clear visual interpretation of the data.

Distribution of Longest Winning Streaks in Simulation

Frequency

50 100 150 200 250
Longest Winning Streak

2 Decision Theory Principles

Decision theory is an interdisciplinary study involving psychology, economics, statistics,
and philosophy, focusing on the nuances of decision-making, particularly in situations of
uncertainty. The primary goal of this field is to dissect the decision-making process and
enhance its effectiveness. At the heart of decision theory lies the concept of expected
utility (EU), which represents the cumulative utility of all potential outcomes, each
weighted by its probability.

2.1 Theory Foundations

Definition 1 (Expected Utility). The Expected Utility (EU) is formulated by the equa-
tion:

EU = Zpiu(a:i), 2)

where p; represents the probability of outcome x;, and u(x;) is the utility correlated
with that outcome.

The utility function u(z), pivotal in decision theory, quantifies an individuals preferences
among different outcomes. Consider a decision scenario such as choosing between
receiving $100 today or $110 in a year. The utility function captures the individual's
preference for immediate versus delayed rewards, thus influencing the decision-making
process.

Example. Consider an individual facing the decision to invest in a stock. The utility
function u(x) could represent the satisfaction gained from different monetary outcomes.
Let's say the stock has a 50% chance of doubling the investment (gain) and a 50%
chance of losing half of it (loss). If the individual's investment is $100, the expected
utility could be calculated as follows, assuming a simple utility function where the utility
is equal to the monetary value:

EU = 0.5 x u($200) + 0.5 x u($50)
= 0.5 x $200 + 0.5 x $50
= $125.

In this framework, we define loss as the inverse of utility.



Definition 2 (Loss). The loss associated with an outcome is the negative utility,
defined as:

L(x;) = —u(w;). 3)

These foundational elements are crucial in statistical decision theory, guiding the pur-
suit of optimal decisions. They find applications across diverse fields, from public policy
analysis to balancing potential benefits and costs in various sectors.

One of the earliest applications of decision theory, which is closely related to game
theory, is Pascal's Wager. The French mathematician Blaise Pascal proposed a decision
problem to determine whether one should believe in God. The wager is simple: either
God exists or He doesn't. Pascal argues that believing in God is the most rational
choice, given the possible outcomes.

God Exists God Doesn’t Exist
Believe in God Infinite reward (Heaven) | Finite loss (wasted time in worship)
Don’t Believe in God Infinite loss (Hell) Finite gain (time saved)

To quantify the utilities in Pascal’'s Wager, let's assign symbolic values to the out-
comes. Let Ueaven represent the utility of achieving Heaven, Upe) for Hell, Uworship for
the finite loss due to worship, and Utime saved for the finite gain of time saved by not
worshipping. Assuming the existence and non-existence of God are equally probable,
let p represent the probability, such that p = 0.5.

Calculating Expected Utilities

1. Believing in God: The expected utility for believing in God, denoted as EUggjieve,
is a combination of the utility of going to Heaven and the loss due to worship. Thus,
it is given by:

EUgclieve = P X UHeaven + (1 _p> X UWorship- (4)

2. Not Believing in God: Similarly, the expected utility for not believing in God,
EUnot Believe, is the combination of the utility of Hell and the gain of time saved. This
is expressed as:

EUNot Believe = P X Unell + (1 _p) X UTime Saved- (5)

Assigning Values to Utilities

To proceed with the calculations, we need to assign values to the utilities. Given the
nature of Pascal's Wager, we assign:

® Uheaven = +00 (representing an infinite reward),
= Upen = —o0 (representing an infinite loss),

* Uworship and UTime saved as finite values, where Uworship < UTime Saved Since the
loss due to worship is considered less significant than the gain of time saved.

Evaluating the Decision

Given these values, the expected utilities can be evaluated:

» For EUgclieve; any term multiplied by +oo (representing the infinite utility of
Heaven) will dominate the equation. Therefore, EUgelieve effectively becomes
+00.

= Similarly, for EUyot Believe, the term involving —oo (the infinite loss of Hell)
dominates, making EUnot Believe = —00.

In Pascal’'s Wager, from a purely utilitarian perspective, the decision to believe in
God offers a higher expected utility due to the infinite reward of Heaven. Much like
hypothesis testing, the cost of making an incorrect decision (Type | or Type Il errors)
must be weighed. In hypothesis testing, the consequences of incorrectly rejecting a
true null hypothesis (Type | error) versus failing to reject a false null hypothesis (Type
[l error) are considered.



2.2 Practical Decision Applications
2.2.1 Climate Change

In contemporary discussions, Pascal's Wager finds a parallel in the debate over climate
change. The dilemma of whether to acknowledge and address climate change or to
dismiss it can be examined through a similar analytical lens.

Climate Change is Real Climate Change Isn’t Real
Act to Combat It | Avert catastrophic outcomes | Unnecessary expenditure of resources
Do Nothing Risk grave consequences Conservation of resources

This decision matrix contrasts the outcomes of action versus inaction on climate
change, considering global impacts, economic ramifications, and the well-being of fu-
ture generations.

In this scenario, the utilities are defined as follows:

» Upction Symbolizes the utility derived from combating climate change, potentially
preventing dire consequences.

» Ulnaction represents the utility of not engaging in climate action, which might
include short-term economic gains or convenience.

» Updverse Stands for the negative utility associated with the severe impacts of
unchecked climate change.

»  URedundant denotes the utility lost through futile actions if the severity of climate
change is overestimated.

Considering the decision to act against climate change, the expected utility, £Uaction,
is calculated. It balances the benefit of positive action, Uaction, against the cost of
potentially unnecessary efforts, Uredundant- 1 his is mathematically expressed as:

EUpction = P - Uaction + (1 - p) - URedundant; (6)

where p is the probability of the adverse effects of climate change materializing.
Alternatively, the decision to refrain from climate action involves calculating the ex-
pected utility of inaction, EUjyaction- T his utility combines the immediate benefits of
inaction, Ulnaction, With the long-term risks of adverse effects, Uagverse- The formula
for this utility is:

EUlnaction = P - Undverse + (1 - p) - Ulnaction- (7)

These formulations provide a structured approach to evaluating the complex decision-
making process related to climate change, accounting for both immediate and future
impacts.

2.2.2 Medical Decision-Making

In medical decision-making, doctors must often decide on treatment plans based on
diagnostic tests and patient data. These decisions can be modeled using decision theory
to optimize patient outcomes while minimizing risks.

Decision State (0;): Patient is sick | State (6,): Patient is not sick | Loss Function
Dy: Treat Low loss Moderate loss L(6,D,)
Dy: Do not treat High loss No loss L(6, D5)

Table 1: Decision Table for Medical Treatment Scenario

In this table, the decisions D1 and D- represent treating and not treating the patient,
respectively. The loss associated with each decision depends on the actual health state
of the patient ().

Consider two decision rules:

1. Rule 1 (R1): Treat if the test is positive, otherwise don't.
2. Rule 2 (R2): Always treat, regardless of the test.
In terms of effectiveness:

= R1 could be effective if the test is reliable. It balances treating the sick and
avoiding unnecessary treatments.



= R2 is less effective if the test is reliable, as it leads to unnecessary treatments.
R1 is a better rule in this case.

An effective rule is one where no other rule is always better. R1 could be effective with
a good diagnostic test, while R2 is less so due to its inefficiency.

2.3 Decision Making Under Uncertainty

In statistical decision theory, we explore how to make the best choices under conditions
of uncertainty. This involves understanding decisions d based on data x and considering
unknown parameters 6. The key is to assess the effectiveness of these decisions, which
is done using a loss function L(6,d). This function measures the cost or penalty of
making decision d when the true situation is 6.

Definition 3. The risk function in decision theory, denoted as R(6,d), is defined as
the expected loss associated with a decision d when the true state of nature is 0.
Mathematically, it is expressed as:

R(0,d) = Ep[L(0,d)], (8)

where Ey represents the expectation under the probability distribution of the observed
data x, given the parameter 6.

Our goal is to find a decision rule that reduces this risk function as much as possible,
regardless of the actual value of 6.

To properly set up a statistical decision problem, we need to consider:
= The probability model Py, describing data distribution.
= The decision space D, which includes all possible decisions.
= The loss function L(6,d), representing the cost of each decision.

A decision rule is effective if there's no other rule that always results in a lower risk
across all possible 8. This means the rule is rational and efficient under the given
assumptions of the model.

Now consider a medical treatment model, where we consider a matrix X of explanatory
variables, and a binary 'action’ variable indicating treatment decisions (1 for treatment,
0 for no treatment). This action is separate from the variables in X.

The matrix X and the action variable are arranged as follows:

Ti1  Ti2 -0 Tin
Zr21 T22 o X2n
X - ] (9)
Tm1l Tm?2 o Tmn
aq
a
action = , (10)
Am

where each a; is either 0 or 1, indicating the treatment decision for each case.
We define a new observation vector Xpew from X and an action value apey for this new
case:

Xnew = |[Tnewl Tnew2 *° Tnewn|,@new = binary value (0 or 1). (11)

In our regression model, we aim to predict the decision variable Y by considering both
the new observations Xpew and the impact of the treatment decision apew. The model
is expressed as:

9= XnewB + anewBactiom (12)

where B are the estimated coefficients for the explanatory variables X, and Baction is
the estimated coefficient reflecting the effect of the treatment decision. This model
provides insights into how the combination of observed data and treatment decision
influences the decision variable Y.
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