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Predictive models focus on estimating the conditional probability P (Y |X), where Y
is the target variable and X represents the input features. The primary goal is to
make accurate predictions or classifications based on observed data patterns. Predic-
tive models are widely applied in various domains, including finance for stock price
forecasting, healthcare for disease diagnosis, and marketing for customer behavior pre-
diction. Techniques such as linear regression, logistic regression, and neural networks
are commonly employed to identify and learn the relationships between input features
and the target variable. Unlike generative models, predictive models do not attempt to
capture the entire data distribution but instead concentrate on minimizing prediction
error to achieve high accuracy and reliability in forecasting outcomes.

1 Generative and Predictive Models
Typically, the error in generative processes is smaller or equal to that in predictive pro-
cesses. For example, consider a generative process where X1 is a normally distributed
variable (X1 ∼ N (0, 1)), and an associated variable Y is a function of X1 with added
noise

Y = X1 + ϵ1, ϵ1 ∼ N (0, 1). (1)

Additionally, a second variable X2 is derived from Y with further noise

X2 = 3Y + ϵ2, ϵ2 ∼ N (0, 1) (2)

In predictive modeling, specifically in linear regression, the objective is to estimate a
function that best describes the relationship between explanatory variables and the
response variable. The equation

Ŷ = β0 + β1X1 + β2X2 + ϵ (3)

exemplifies this, where the model aims to minimize the Mean Squared Error (MSE) for
optimal coefficient determination. Key elements of this approach include:

• Finding coefficients (β0, β1, β2) that minimize MSE.

• Analyzing the linear relationship between Y and predictors X1, X2.

• Employing the model to predict Y using X1 and X2.

The coefficients from our linear regression model, estimated using training data, are
summarized in the table below:

Coefficient Value
Intercept (Constant) 0.003203
Coefficient of X1 0.099575
Coefficient of X2 0.301211

Table 1: Summary of Linear Regression Model Coefficients

Error analysis in predictive modeling is vital for evaluating a model’s performance.
It involves calculating the discrepancy between observed and predicted values as a
measure of accuracy.

1.1 Binary Prediction
Consider the case where a random variable, Y , is binary. Typically, Y = 1 with
probability πi and Y = 0 with probability 1 − πi. The aim of logistic regression is to
model the probability πi as a function of predictor variables.



Figure 1: Comparison of Error Distributions in Predictive and Generative Models

For the i-th observation, the probability πi of observing Y = 1 is modeled using the
logistic function:

πi =
1

1 + e−z

where z represents a linear combination of predictor variables, given by:

z = β0 + β1x1 + β2x2 + · · ·+ βnxn

Here, x1, x2, . . . , xn are the predictor variables, and β0, β1, β2, . . . , βn are the coeffi-
cients to be estimated from the data.

The logistic function, σ(z) = 1
1+e−z , maps the linear combination z to a probability

value between 0 and 1. This characteristic is crucial for modeling binary outcomes
where the response variable can only take two distinct values.

Figure 2: Graph of the logistic function σ(z)



1.2 Estimation Techniques
Logistic regression, often used for binary classification problems, can be estimated using
various methods. One such approach is gradient descent, as the logistic regression
model is optimized using log-likelihood rather than MSE.
In logistic regression, the Mean Squared Error (MSE) is calculated based on the differ-
ence between the observed binary outcomes and the predicted probabilities. The MSE
is defined as:

MSE =
1

N

N∑
i=1

(pi − yi)
2 (4)

where pi = 1
1+e−zi

, zi = β0 + β1xi1 + · · · + βkxik, and yi are the observed binary
outcomes.
To find the optimal parameters for the logistic regression model using MSE, we calculate
the derivative of MSE with respect to the parameters and set it to zero. However, as
we will see, this leads to a complex equation that is difficult to solve analytically.
The derivative of MSE with respect to a parameter βj is given by:

∂MSE
∂βj

=
2

N

N∑
i=1

(pi − yi)
∂pi
∂βj

(5)

The derivative of pi with respect to zi is given by:

∂pi
∂zi

=
∂

∂zi

(
1

1 + e−zi

)
Using the chain rule, this becomes:

∂pi
∂zi

=
e−zi

(1 + e−zi)2
= pi(1− pi)

The derivative of zi with respect to a parameter βj is:

∂zi
∂βj

= xij

Thus, using the chain rule, the derivative of pi with respect to βj is:

∂pi
∂βj

=
∂pi
∂zi

· ∂zi
∂βj

= pi(1− pi)xij

Substituting and expanding, we get:

∂MSE
∂βj

=
2

N

N∑
i=1

(pi − yi)pi(1− pi)xij (6)

Setting this derivative to zero for optimization:

2

N

N∑
i=1

(pi − yi)pi(1− pi)xij = 0 (7)

However, solving this equation directly for βj is not straightforward due to the non-
linear nature of the logistic function embedded in pi. This non-linearity introduces
complexity, making it challenging to find a closed-form solution for the parameters βj .
Gradient descent is an iterative optimization algorithm used for finding the minimum of
a function. In the context of MSE in logistic regression, the gradient descent algorithm
updates the model parameters by moving in the direction that reduces MSE.
Given a loss function L(β), where β represents the parameters of our model, the idea
of gradient descent is to update the parameters β iteratively in the direction of steepest
descent. The update rule is given by:

β := β − α∇L(β) (8)

where:

• α is the learning rate, which determines the step size in the direction of the
gradient.

• ∇L(β) is the gradient of the loss function, which gives the direction of steepest
ascent.



The gradient descent algorithm iteratively updates the parameters until it converges to
a minimum. Convergence is typically determined by either a small change in the loss
function between iterations or reaching a predetermined number of iterations.

Example. This example demonstrates logistic regression with a dataset of 8 rows,
using a single feature X and a binary outcome Y . We will illustrate the parameter
update process using gradient descent.
Dataset: Consider the following dataset:

X Y
1 0
2 0
3 0
4 1
5 1
6 1
7 1
8 1

Here, X is the feature, and Y is the binary outcome.
□

Model Setup: We form the parameter vector w′ = [w, b] by combining the weight w
and bias b. Initially, let’s set w = 0 and b = 0. The augmented input data X ′ includes
the original feature X and a constant 1 for the bias term.
Gradient Descent Optimization: We will apply one iteration of gradient descent
with a learning rate η = 0.01. The update rule for the parameter vector w′ is:

w′
new = w′

old − η∇ℓ(w′
old) (9)

Calculations: First, calculate the predicted probabilities for each data point with the
initial parameters:

P (Y = 1|X ′ = 1) =
1

1 + e−(0·1+0)
= 0.5

P (Y = 1|X ′ = 2) =
1

1 + e−(0·2+0)
= 0.5

... and so on for X ′ = 3, 4, . . . , 8.
Next, compute the gradient of the loss function with respect to w′ for each data point
and sum them up to get the overall gradient. For simplicity, we’ll show the calculation
for just one data point here:

∂

∂w
ℓ(w′, 1) = (0.5− 0) · 1 = 0.5

∂

∂b
ℓ(w′, 1) = 0.5− 0 = 0.5

Finally, update the parameters using the average gradient across all data points:

wnew = wold − η × Average Gradient w.r.t. w

bnew = bold − η × Average Gradient w.r.t. b

This example demonstrates the initial step of parameter optimization in logistic regres-
sion using gradient descent. In practice, multiple iterations over the entire dataset are
necessary, and the parameters are updated iteratively until convergence.

1.3 likelihood methods
In logistic regression, we deal with a binary outcome variable, Y , which takes values
0 or 1. For each observation i, the model predicts a probability πi = P (Yi = 1|Xi)
based on input features Xi. The probability of observing the actual outcome Yi given
this predicted probability is expressed as:

P (Yi|Xi) = πYi
i · (1− πi)

1−Yi

This formula accounts for both possible outcomes:

• If Yi = 1, the probability is πi.



• If Yi = 0, the probability is 1− πi.
The overall probability for all observations is the product of these individual probabili-
ties:

L(β) =

n∏
i=1

P (Yi|Xi)

Taking the logarithm of this probability function, we get the log-probability:

log(L(β)) =
n∑

i=1

[Yi log(πi) + (1− Yi) log(1− πi)]

The negative log-probability, the function we aim to minimize, is thus:

− log(L(β)) = −
n∑

i=1

[Yi log(πi) + (1− Yi) log(1− πi)]

In this formulation, a lower negative log-probability value indicates a better model
fit. Accurate predictions lead to smaller values in the summation, reflecting lower
prediction error, while inaccurate predictions result in larger values, indicating higher
error. Therefore, minimizing this function aligns with reducing inaccuracies in the
model’s predictions.
The optimization of the logistic regression model is performed using gradient descent,
focusing on the parameter vector w′. The update rule for gradient descent is:

w′
new = w′

old − η∇ℓ(w′
old) (10)

In this equation, η represents the learning rate and ∇ℓ(w′
old) is the gradient of the loss

function with respect to the parameter vector.
The gradient of the loss function with respect to the parameter vector w is obtained
by taking partial derivatives:

∇ℓ(w) =

n∑
i=1

(pi − yi)Xi (11)

Each term (pi − yi) represents the error between the predicted probability and the
actual outcome, and Xi is the feature vector for the i-th observation.
In a vectorized implementation, where X is the matrix of input features and Y is the
vector of outcomes, the gradient can be expressed more compactly:

∇ℓ(w) = XT (P − Y ) (12)

Here, P is the vector of predicted probabilities for all observations, and XT is the
transpose of the feature matrix.

1.4 Performance Evaluation
Logistic regression leverages the logistic (or sigmoid) function, denoted as σ, to esti-
mate the probability of a binary outcome based on predictor variables. The probability
that the outcome y equals 1, given predictors x, is given by the logistic function:

P (y = 1|x) = σ(wTx+ b) =
1

1 + e−(wT x+b)
.

The model delineates a linear decision boundary in the feature space. A data point is
classified based on which side of the boundary it falls on:

ŷ =

{
1 if wTx+ b ≥ 0,

0 otherwise.
This mechanism allows logistic regression to make predictions on new, unseen data by
applying the learned linear function. The model outputs the likelihood of each instance
belonging to the positive class.
Extending logistic regression beyond binary classification, techniques like One-vs-Rest
(OvR) or multinomial logistic regression enable it to handle multiclass classification
scenarios.
In assessing feature importance, the model’s coefficients, w, reveal the influence of
each predictor. Features with larger absolute values of coefficients have a greater
impact on the prediction.
Performance metrics are calculated for each resample based on the model’s predictions
and the true labels of the resampled data.



1. Accuracy: The ratio of correct predictions to the total number of predictions.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

2. Precision: The ratio of true positive predictions to the total number of true
positive and false positive predictions.

Precision =
True Positives

True Positives + False Positives

3. Recall: The ratio of true positive predictions to the total number of true positive
and false negative predictions.

Recall = True Positives
True Positives + False Negatives

4. F1 Score: The harmonic mean of precision and recall.

F1 Score = 2 · Precision·
Precision+

5. Kappa: A statistic that measures inter-rater agreement for categorical items,
adjusting for chance agreement.

Kappa =
Po − Pe

1− Pe

where Po is the observed agreement, and Pe is the expected agreement by chance.

1.5 Case Study: Loan Prediction
This case study focuses on a dataset of loan applicants to model and predict loan
approval decisions. Each row represents an individual applicant, with the following
features:

• AnnualIncome (AI): The applicant’s annual income in dollars.

• EmploymentStatus (ES): Binary indicator of employment status (1 for em-
ployed, 0 for unemployed).

• OpenCreditLines (OC): Number of open credit lines.

• CreditScore (CS): Credit score of the applicant.

• DebtToIncomeRatio (DR): Ratio of debt to income.

• LoanApproved (LA): Binary outcome of the loan application (1 for approved,
0 for denied).

Below is a sample of the dataset used for the analysis:

AI ES OC CS DR LA
76460 1 2 628 0.20 1
56002 1 9 675 0.37 1
64681 1 5 672 0.20 0

... ... ... ... ... ...
56029 0 7 747 0.26 1

Table 2: Sample data from the loan application dataset. Abbreviations are explained
below.

The logistic regression model for predicting loan approval is defined as follows:

log
(

P (LA|x)
1− P (LA|x)

)
= 3.644−3.058×10−5·AI+0.4219·ES+0.03151·OC−0.003686·CS−0.3325·DR

The coefficients indicate the change in the log odds of loan approval for a one-unit
change in each predictor variable. Table 4 summarizes the estimated parameters and
their statistical significance.
To evaluate the models predictive performance, the following metrics were calculated:



Abbreviation Description
AI Annual Income
ES Employment Status
OC Open Credit Lines
CS Credit Score
DR Debt-to-Income Ratio
LA Loan Approved

Table 3: Nomenclature for abbreviations used in Table 2.

Parameter Estimate Std. Error z value Pr(> |z|)
Intercept 3.644 3.524 1.034 0.3011

AI −3.058× 10−5 1.805× 10−5 −1.694 0.0902
ES 0.4219 0.5022 0.840 0.4009
OC 0.03151 0.07770 0.405 0.6851
CS −0.003686 0.004544 −0.811 0.4172
DR −0.3325 2.015 −0.165 0.8689

Table 4: Estimated coefficients of the logistic regression model.

• Accuracy: 55.5%

Accuracy =
Number of Correct Predictions
Total Number of Predictions

• Precision: 55.07%

Precision =
True Positives

True Positives + False Positives

• Recall: 39.58%

Recall = True Positives
True Positives + False Negatives

• F1 Score: 46.06%

F1 Score = 2 · Precision · Recall
Precision + Recall

• Kappa: 0.0988
Kappa =

Po − Pe

1− Pe

where Po is the observed agreement and Pe is the expected agreement by chance.

The model demonstrates moderate predictive ability, with balanced accuracy, precision,
and recall. However, the low Cohens Kappa score suggests that improvements in feature
selection or modeling approach could enhance performance.
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