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Lecture Notes: Prediction

Generative and predictive models are integral in statistical modeling and machine learning,
each fulfilling distinct objectives. Generative models aim to replicate the underlying probability
distribution of data, offering insights into the data generation process. Predictive models, in
contrast, focus on forecasting future outcomes from observed data patterns.

One notable feature of these models is the comparison of errors. Typically, the error in
generative processes is smaller or equal to that in predictive processes. For example, consider a
generative process where X1 is a normally distributed variable (X1 ∼ N (0, 1)), and an associated
variable Y is a function of X1 with added noise

Y = X1 + ϵ1, ϵ1 ∼ N (0, 1). (1)

Additionally, a second variable X2 is derived from Y with further noise

X2 = 3Y + ϵ2, ϵ2 ∼ N (0, 1) (2)

In predictive modeling, specifically in linear regression, the objective is to estimate a function
that best describes the relationship between explanatory variables and the response variable. The
equation

Ŷ = β0 + β1X1 + β2X2 + ϵ (3)

exemplifies this, where the model aims to minimize the Mean Squared Error (MSE) for
optimal coefficient determination. Key elements of this approach include:

• Finding coefficients (β0, β1, β2) that minimize MSE.

• Analyzing the linear relationship between Y and predictors X1, X2.

• Employing the model to predict Y using X1 and X2.

The coefficients from our linear regression model, estimated using training data, are summa-
rized in the table below:

Coefficient Value

Intercept (Constant) 0.003203
Coefficient of X1 0.099575
Coefficient of X2 0.301211

Table 1: Summary of Linear Regression Model Coefficients

Error analysis in predictive modeling is vital for evaluating a model’s performance. It involves
calculating the discrepancy between observed and predicted values as a measure of accuracy.

To visually compare the error distributions of generative and predictive models, a violin plot
is presented:
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Figure 1: Comparison of Error Distributions in Predictive and Generative Models

Predicting binary variables

Consider the case where a random variable, Y , is binary. Typically, Y = 1 with probability πi
and Y = 0 with probability 1− πi. The aim of logistic regression is to model the probability πi
as a function of predictor variables.

For the i-th observation, the probability πi of observing Y = 1 is modeled using the logistic
function:

πi =
1

1 + e−z

where z represents a linear combination of predictor variables, given by:

z = β0 + β1x1 + β2x2 + · · ·+ βnxn

Here, x1, x2, . . . , xn are the predictor variables, and β0, β1, β2, . . . , βn are the coefficients to be
estimated from the data.

The logistic function, σ(z) = 1
1+e−z , maps the linear combination z to a probability value

between 0 and 1. This characteristic is crucial for modeling binary outcomes where the response
variable can only take two distinct values.

Estimation Process

Logistic regression, often used for binary classification problems, can be estimated using various
methods. One such approach, familiar from previous classes, is the Mean Squared Error (MSE).

In logistic regression, the MSE is calculated based on the difference between the observed
binary outcomes and the predicted probabilities. The MSE is defined as:

MSE =
1

N

N∑
i=1

(pi − yi)
2 (4)
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Figure 2: Graph of the logistic function σ(z)

where pi =
1

1+e−zi
, zi = β0 + β1xi1 + · · ·+ βkxik, and yi are the observed binary outcomes.

To find the optimal parameters for the logistic regression model using MSE, we calculate the
derivative of MSE with respect to the parameters and set it to zero. However, as we will see,
this leads to a complex equation that is difficult to solve analytically.

The derivative of MSE with respect to a parameter βj is given by:

∂MSE
∂βj

=
2

N

N∑
i=1

(pi − yi)
∂pi
∂βj

(5)

the derivative of pi with respect to zi is given by:

∂pi
∂zi

=
∂

∂zi

(
1

1 + e−zi

)
Using the chain rule, this becomes:

∂pi
∂zi

=
e−zi

(1 + e−zi)2
= pi(1− pi)

The derivative of zi with respect to a parameter βj is:

∂zi
∂βj

= xij

Thus, using the chain rule, the derivative of pi with respect to βj is:

∂pi
∂βj

=
∂pi
∂zi

· ∂zi
∂βj

= pi(1− pi)xij

Substituting and expanding, we get:

∂MSE
∂βj

=
2

N

N∑
i=1

(pi − yi)pi(1− pi)xij (6)
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Setting this derivative to zero for optimization:

2

N

N∑
i=1

(pi − yi)pi(1− pi)xij = 0 (7)

However, solving this equation directly for βj is not straightforward due to the non-linear
nature of the logistic function embedded in pi. This non-linearity introduces complexity, making
it challenging to find a closed-form solution for the parameters βj .

Gradient Descent

Gradient descent is an iterative optimization algorithm used for finding the minimum of a
function. In the context of MSE in logistic regression, the gradient descent algorithm updates
the model parameters by moving in the direction that reduces MSE.

Gradient descent is a first-order iterative optimization algorithm for finding the minimum
of a function. In the context of machine learning, this function is often a loss function that we
want to minimize.

Given a loss function L(β), where β represents the parameters of our model, the idea of
gradient descent is to update the parameters β iteratively in the direction of steepest descent.
The update rule is given by:

β := β − α∇L(β) (8)

where:

• α is the learning rate, which determines the step size in the direction of the gradient.

• ∇L(β) is the gradient of the loss function, which gives the direction of steepest ascent.

By subtracting the gradient scaled by the learning rate from the current parameters, we
move in the direction of steepest descent, thereby reducing the loss function until we hopefully
reach a minimum.

The gradient descent algorithm iteratively updates the parameters until it converges to a
minimum. Convergence is typically determined by either a small change in the loss function
between iterations or reaching a predetermined number of iterations.

Example

This example demonstrates logistic regression with a dataset of 8 rows, using a single feature
X and a binary outcome Y . We will illustrate the parameter update process using gradient
descent.

Dataset: Consider the following dataset:

X Y
1 0
2 0
3 0
4 1
5 1
6 1
7 1
8 1
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Here, X is the feature, and Y is the binary outcome.
Model Setup: We form the parameter vector w′ = [w, b] by combining the weight w and

bias b. Initially, let’s set w = 0 and b = 0. The augmented input data X ′ includes the original
feature X and a constant 1 for the bias term.

Gradient Descent Optimization: We will apply one iteration of gradient descent with a
learning rate η = 0.01. The update rule for the parameter vector w′ is:

w′
new = w′

old − η∇ℓ(w′
old) (9)

Calculations: First, calculate the predicted probabilities for each data point with the initial
parameters:

P (Y = 1|X ′ = 1) =
1

1 + e−(0·1+0)
= 0.5

P (Y = 1|X ′ = 2) =
1

1 + e−(0·2+0)
= 0.5

... and so on for X ′ = 3, 4, . . . , 8.
Next, compute the gradient of the loss function with respect to w′ for each data point and

sum them up to get the overall gradient. For simplicity, we’ll show the calculation for just one
data point here:

∂

∂w
ℓ(w′, 1) = (0.5− 0) · 1 = 0.5

∂

∂b
ℓ(w′, 1) = 0.5− 0 = 0.5

Finally, update the parameters using the average gradient across all data points:

wnew = wold − η × Average Gradient w.r.t. w

bnew = bold − η × Average Gradient w.r.t. b

Conclusion: This example demonstrates the initial step of parameter optimization in lo-
gistic regression using gradient descent. In practice, multiple iterations over the entire dataset
are necessary, and the parameters are updated iteratively until convergence.

Beyond the MSE

In logistic regression, we deal with a binary outcome variable, Y , which takes values 0 or 1.
For each observation i, the model predicts a probability πi = P (Yi = 1|Xi) based on input
features Xi. The probability of observing the actual outcome Yi given this predicted probability
is expressed as:

P (Yi|Xi) = πYi
i · (1− πi)

1−Yi

This formula accounts for both possible outcomes:

• If Yi = 1, the probability is πi.

• If Yi = 0, the probability is 1− πi.

The overall probability for all observations is the product of these individual probabilities:

L(β) =

n∏
i=1

P (Yi|Xi)
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Taking the logarithm of this probability function, we get the log-probability:

log(L(β)) =
n∑

i=1

[Yi log(πi) + (1− Yi) log(1− πi)]

The negative log-probability, the function we aim to minimize, is thus:

− log(L(β)) = −
n∑

i=1

[Yi log(πi) + (1− Yi) log(1− πi)]

In this formulation, a lower negative log-probability value indicates a better model fit. Accu-
rate predictions lead to smaller values in the summation, reflecting lower prediction error, while
inaccurate predictions result in larger values, indicating higher error. Therefore, minimizing this
function aligns with reducing inaccuracies in the model’s predictions.

The optimization of the logistic regression model is performed using gradient descent, focus-
ing on the parameter vector w′. The update rule for gradient descent is:

w′
new = w′

old − η∇ℓ(w′
old) (10)

In this equation, η represents the learning rate and ∇ℓ(w′
old) is the gradient of the loss function

with respect to the parameter vector.
The gradient of the loss function with respect to the parameter vector w is obtained by

taking partial derivatives:

∇ℓ(w) =
n∑

i=1

(pi − yi)Xi (11)

Each term (pi−yi) represents the error between the predicted probability and the actual outcome,
and Xi is the feature vector for the i-th observation.

In a vectorized implementation, where X is the matrix of input features and Y is the vector
of outcomes, the gradient can be expressed more compactly:

∇ℓ(w) = XT (P − Y ) (12)

Here, P is the vector of predicted probabilities for all observations, and XT is the transpose of
the feature matrix.

Prediction and performance evaluation

Logistic regression leverages the logistic (or sigmoid) function, denoted as σ, to estimate the
probability of a binary outcome based on predictor variables. The probability that the outcome
y equals 1, given predictors x, is given by the logistic function:

P (y = 1|x) = σ(wTx+ b) =
1

1 + e−(wTx+b)
.

The model delineates a linear decision boundary in the feature space. A data point is
classified based on which side of the boundary it falls on:

ŷ =

{
1 if wTx+ b ≥ 0,

0 otherwise.

This mechanism allows logistic regression to make predictions on new, unseen data by ap-
plying the learned linear function. The model outputs the likelihood of each instance belonging
to the positive class.
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Extending logistic regression beyond binary classification, techniques like One-vs-Rest (OvR)
or multinomial logistic regression enable it to handle multiclass classification scenarios.

In assessing feature importance, the model’s coefficients, w, reveal the influence of each
predictor. Features with larger absolute values of coefficients have a greater impact on the
prediction.

Performance metrics are calculated for each resample based on the model’s predictions and
the true labels of the resampled data.

1. Accuracy: The ratio of correct predictions to the total number of predictions.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

2. Precision: The ratio of true positive predictions to the total number of true positive and
false positive predictions.

Precision =
True Positives

True Positives + False Positives

3. Recall: The ratio of true positive predictions to the total number of true positive and
false negative predictions.

Recall =
True Positives

True Positives + False Negatives

4. F1 Score: The harmonic mean of precision and recall.

F1 Score = 2 · Precision · Recall
Precision + Recall

5. Kappa: A statistic that measures inter-rater agreement for categorical items, adjusting
for chance agreement.

Kappa =
Po − Pe

1− Pe

where Po is the observed agreement, and Pe is the expected agreement by chance.

Loan Prediction Example

We have a dataset representing loan applicants, comprising various features that are typically
considered in loan approval decisions. Each row represents an individual applicant, with the
following columns:

• AnnualIncome: The applicant’s annual income in dollars.

• EmploymentStatus: Binary indicator of employment status (1 for employed, 0 for un-
employed).

• OpenCreditLines: Number of open credit lines.

• CreditScore: Credit score of the applicant.

• DebtToIncomeRatio: Ratio of debt to income.

• LoanApproved: Binary outcome of the loan application (1 for approved, 0 for denied).
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AnnualIncome EmployStatus OpenCreditLines CreditScore DebtToIncomeRatio LoanApproved
76460 1 2 628 0.20 1
56002 1 9 675 0.37 1
64681 1 5 672 0.20 0

... ... ... ... ... ...
56029 0 7 747 0.26 1

Table 2: Sample data from the loan application dataset.

Below is a sample from the dataset, providing a glimpse into the nature of the data used for
logistic regression analysis.

The estimated logistic regression model for predicting loan approval is given by the following
equation:

log

(
P (Loan Approved|x)

1− P (Loan Approved|x)

)
= 3.644 · (Intercept)

− 3.058× 10−5 · (AnnualIncome)
+ 0.4219 · (EmploymentStatus)
+ 0.03151 · (OpenCreditLines)
− 0.003686 · (CreditScore)
− 0.3325 · (DebtToIncomeRatio)

Parameter Estimation

The logistic regression model parameters and their statistical significance are presented in the
table below:

Parameter Estimate Std. Error z value Pr(>|z|)
Intercept 3.644e+00 3.524e+00 1.034 0.3011

AnnualIncome -3.058e-05 1.805e-05 -1.694 0.0902
EmploymentStatus 4.219e-01 5.022e-01 0.840 0.4009
OpenCreditLines 3.151e-02 7.770e-02 0.405 0.6851

CreditScore -3.686e-03 4.544e-03 -0.811 0.4172
DebtToIncomeRatio -3.325e-01 2.015e+00 -0.165 0.8689

Table 3: Estimated coefficients of the logistic regression model.

The coefficients represent the change in the log odds of loan approval for a one-unit change
in each predictor variable. The p-values indicate the statistical significance of each coefficient.

Once the logistic regression model was evaluated on the test dataset to determine its predic-
tive performance. The following metrics were calculated:

• Accuracy: The ratio of correct predictions to the total number of predictions.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

= 55.5%

• Precision: The ratio of true positive predictions to the total number of true positive and
false positive predictions.

Precision =
True Positives

True Positives + False Positives
= 55.07%



Probability & Statistics SA 2023-2024 9

• Recall: The ratio of true positive predictions to the total number of true positive and
false negative predictions.

Recall =
True Positives

True Positives + False Negatives
= 39.58%

• F1 Score: The harmonic mean of precision and recall.

F1 Score = 2 · Precision · Recall
Precision + Recall

= 46.06%

• Kappa: A statistic that measures inter-rater agreement for categorical items, adjusting
for chance agreement.

Kappa =
Po − Pe

1− Pe
= 0.0988

where Po is the observed agreement, and Pe is the expected agreement by chance.

The model demonstrates moderate predictive ability, with a balanced performance across
accuracy, precision, and recall. However, the low Cohen’s Kappa score indicates the need for
further model improvement.


