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Lecture Notes: Quasi-reaction systems

Quasi-reaction systems are dynamical processes where a number of agents, particles or nodes
interact in a stochastic way throughout reactions, generating different configurations for the
studied system over time. These systems include applications such as protein dynamics, gene
expression, ecological systems, kinetic systems, compartmental models, actor-oriented systems,
among others.

In many of these applications, statistical methods for the inference of kinetic rates dynamics
are crucial. Kinetic systems can be mathematically modeled as a Poisson processes, like the
ones seen in lecture 6.

Quasi-reaction systems are dynamical processes where agents, particles, or nodes interact
in a stochastic manner, leading to various system configurations over time. These systems are
integral to numerous scientific and engineering fields.

• Protein Dynamics: Central to biochemistry, quasi-reaction systems model the intricate
processes of protein synthesis and folding. Stochastic models are particularly useful in
analyzing protein-ligand interactions, a critical aspect in drug development and molecular
biology. Understanding these interactions aids in predicting drug efficacy and protein
behavior.

• Gene Expression: These systems are instrumental in the study of gene regulation net-
works. Modeling the stochastic aspects of gene expression helps in deciphering complex
cellular processes, contributing to advancements in genetic engineering and personalized
medicine.

• Ecological Systems: Quasi-reaction systems find applications in ecology, particularly in
modeling complex interactions within ecosystems. They help in understanding predator-
prey dynamics, nutrient cycling, and population dynamics, offering insights into ecological
stability and species survival strategies.

• Kinetic Systems in Chemistry: These systems are fundamental in chemical kinetics,
where reaction rates are influenced by the stochastic interactions of molecules. Under-
standing these interactions is crucial for developing new chemical processes and materials.

• Compartmental Models in Epidemiology: In epidemiology, quasi-reaction systems
model disease spread, with compartments representing different stages of disease progres-
sion. This modeling is vital for predicting disease trajectories, informing public health
policies, and understanding epidemiological patterns.

In many applications, particularly in kinetic systems, statistical methods are employed to
infer dynamic rates. When dealing with large numbers of species, these stochastic kinetic models
can often be approximated by deterministic models, employing a mean field approach. This
allows for a more tractable analysis of systems that operate on varying time scales.

Basic Combinatorics in Reaction Systems

Before delving into the complexities of reaction systems, it’s essential to understand the basics of
combinatorics, which plays a critical role in these systems. Combinatorics, the branch of math-
ematics dealing with combinations and arrangements of objects, is fundamental in calculating
reaction rates and understanding reaction dynamics.

Consider a simple scenario where we have a set of distinct objects, and we want to determine
how many different ways we can arrange or select these objects. The principles of combinatorics
allow us to calculate these possibilities. For example, if we have n different objects and want to
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Figure 1: Scientific Diagram Illustrating Population Dynamics in an Ecological Context: This
visualization depicts different species populations as graphs or curves over time, showing fluctu-
ations in population sizes. It includes elements such as predator-prey relationships, with arrows
indicating the impact of one species on another, and reflects the complex interplay of birth
rates, death rates, and environmental factors affecting these populations. The diagram serves
as a comprehensive visual aid in understanding the dynamic and interconnected nature of eco-
logical systems, emphasizing the critical role of various biological and environmental factors in
shaping population trends.

choose r of them, the number of different combinations we can form is given by the binomial
coefficient, denoted as

(
n
r

)
. This coefficient is calculated as:(

n

r

)
=

n!

r!(n− r)!

where n! (n factorial) is the product of all positive integers up to n. This combinatorial
calculation is crucial in reaction systems, particularly when determining reaction rates and the
number of possible interactions between different molecular species.

This formula calculates the number of ways to choose r items from a set of n items, where
the order of selection does not matter. Let us explore the rationale behind this formula:

The factorial of a number n, denoted as n!, is the product of all positive integers up to n. It
represents the total number of ways to arrange n items in order:

n! = n× (n− 1)× (n− 2)× · · · × 1

Since combinations focus on selection where order does not matter, we adjust for overcounting
caused by different arrangements:
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• Arrangements of Chosen Items: For any selection of r items, there are r! ways to
arrange these items. To eliminate order consideration, we divide by r!:

n!

r!

• Arrangements of Unchosen Items: There are also (n − r)! ways to arrange the re-
maining n− r items. Dividing by (n− r)! further removes the ordering of unchosen items:

n!

r!(n− r)!

By combining these adjustments, we derive the formula for combinations, which accurately
counts the number of ways to choose r items from n without considering the order:(

n

r

)
=

n!

r!(n− r)!

This formula corrects for overcounting inherent in permutations and focuses on the unique
selections where the order of items is irrelevant, a crucial aspect in many fields including prob-
ability, statistics, and biology.

Stoichiometry of Reaction Systems

Stoichiometry in reaction systems examines the quantitative relationships between reactants
and products in chemical reactions. Consider a system with r different reactants and p different
products involved in a series of reactions.

Each reaction can be described by an equation. For the j-th reaction, the equation is:

r∑
i=1

kijRi
θj−→

p∑
i=1

sijPi. (1)

Here, Ri represents the i-th reactant and Pi represents the i-th product. The coefficients kij
and sij are the stoichiometric coefficients for reactants and products, respectively, in the j-th
reaction.

Example 1 (Basic Predator-Prey Model). Consider a simplified ecological model with two types
of organisms: predators (denoted as P ) and prey (denoted as Q). The dynamics of this system
are captured by the following reactions, each with its associated rate:

Q
βrepro−−−−→ 2Q (Prey reproduction at rate βrepro), (2)

P +Q
βpred−−−→ 2P (Predation and predator reproduction at rate βpred), (3)

P
βdeath−−−−→ ∅ (Predator death at rate βdeath). (4)

We define the reactants and products for each reaction as follows:

• Reactants: R = {Q,P, P +Q},

• Products: P = {2Q, 2P, ∅}.
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When does something happen:

∆TP→∅ ∼ Exp(βdeath),

∆TP+Q→2P ∼ Exp(βpred),

∆TQ→2Q ∼ Exp(βrepro).

About reaction in ∆t time:

• P → ∅: will have happened approx 2βdeath∆t times,

• P +Q → 2P : 6βpred∆t,

• Q → 2Q: 3βrepro∆t.

We expect to see

E[YP (∆t)] = YP (0) + 6βpred∆t− 2βdeath∆t,

E[YQ(∆t)] = YQ(0) + 3βrepro∆t− 6βpred∆t.

We actually saw at ∆t = 2:

YP (2) = 5,

YQ(2) = 4.

Now we want to know what we expect to happen at 2 + ∆t:

R1 : 4βrepro∆t times,
R2 : 20βpred∆t times,
R3 : 5βdeath∆t times.

So we expect to see

E[YP (2 + ∆t)] = 5 + 20βpred∆t− 5βdeath∆t,

E[YQ(2 + ∆t)] = 4 + 3βrepro∆t− 20βpred∆t.

We actually see

YP (4) = 8,

YQ(4) = 1.

What are the most likely values for βrepro, βpred, βdeath?
We saw 3× 2 values of the states:
First interval:

5 ≈ 2 + 6βpred · 2− 2βdeath · 2,
4 ≈ 3 + 3βrepro · 2− 6βpred · 2.

Second interval:

8 ≈ 5 + 20βpred · 2− 5βrepro · 2,
1 ≈ 4 + 5βrepro · 2− 20βpred · 2.

This leads to the matrix equation:
3
1
3
−3

 =


0 12 −4
6 −12 0
40 −10 0
10 −40 0


βrepro
βpred
βdeath

+


ϵ1
ϵ2
ϵ3
ϵ4


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Figure 2: Diagrams showing the different number of combinations of reactions in the predator-
prey system.
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To estimate the model parameters (βrepro, βpred, βdeath), we use the observed values from two
intervals, forming the following matrix equation:

3
1
3
−3

 =


0 12 −4
6 −12 0
0 40 −10
10 −40 0


βrepro
βpred
βdeath

+


ϵ1
ϵ2
ϵ3
ϵ4


The least squares estimate β̂ is calculated as β̂ = (XTX)−1XTY . Using this formula, the
estimated values are:

β̂repro ≈ 0.36,

β̂pred ≈ 0.155,

β̂death ≈ 0.235.

To further assess the reliability of these estimates, a bootstrap analysis was performed. The
table below provides the descriptive statistics for each bootstrapped beta coefficient:

Statistic βrepro βpred βdeath
Mean -0.344 -0.095 -0.809
Std 1.083 0.332 1.221
Min -2.100 -0.450 -2.100
25% -0.733 -0.450 -2.100
50% 0.360 0.155 -0.050
75% 0.633 0.233 0.235
Max 0.633 0.233 0.633

Table 1: Descriptive statistics for each bootstrapped beta coefficient.

The rate of each reaction depends on the combinations of reactant molecules. For reaction
j:

hj = θj ×
r∏

i=1

(
Yi
kij

)
, (5)

where Yi is the number of molecules of the i-th reactant. The term
(
Yi
kij

)
represents the number

of combinations of kij molecules from Yi available molecules. The reaction rate θj is then the
product of these combinations.

Consider the state of the system at a given time t, denoted Yt. If the j-th reaction occurs
first after starting with Y0 molecules, the new state Yt for each reactant is:

Yti = Y0i + (sij − kij), (6)

where vij = sij − kij is the net change in the i-th reactant due to the j-th reaction.
The overall molecular changes in the system can be encapsulated in the net change matrix

V:
V = S−K, (7)

where S and K are matrices of stoichiometric coefficients for products and reactants, respectively,
across all reactions, with dimensions p× r.



Probability & Statistics SA 2023-2024 7

x x

x

x x

β1

β2

β3

Example 2 (Circular Reaction System). Consider the following circular unitary reaction sys-
tem,

Y1
θ1−→ Y2,

Y2
θ2−→ Y3,

Y3
θ3−→ Y1.

In this system, each substance Yi transforms into the next, forming a closed loop. The
reactions are driven by the rates θ1, θ2, and θ3.

To analyze this system, we define the stoichiometric matrices:
Reactants R = {Y1, Y2, Y3}, Products P = {Y2, Y3, Y1}.
The matrix of stoichiometric coefficients for reactants (K) and products (S) are:

K =

1 0 0
0 1 0
0 0 1

 , S =

0 1 0
0 0 1
1 0 0

 . (8)

The net change matrix (V) is calculated as V = S−K:

V =

0 1 0
0 0 1
1 0 0

−

1 0 0
0 1 0
0 0 1

 =

−1 1 0
0 −1 1
1 0 −1

 . (9)

This matrix V represents the net change in the quantities of Y1, Y2, and Y3 due to each
reaction in the system.

Inference of System Dynamics

The system under study is characterized by a set of reactions occurring over time from 0 to
T . These reactions involve various compartments or states in the system, each with its distinct
dynamics.

Each reaction in the system is associated with a waiting time Ti, which follows an exponential
distribution:

Ti ∼ Exp(λi) for i = 1, 2, . . .

Here, λi is the rate parameter of the i-th reaction. The count C indicates the number of
occurrences of a particular event in a time interval ∆t:

C = # of occurrences in ∆t

For instance, the probability of no occurrences (i.e., C = 0) within ∆t is:

P (C = 0) = 1− (1− e−λ∆t)
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The probability of exactly one occurrence in ∆t is:

P (C = 1) = e−λ∆t · (λ∆t)1

1!

And for reaction i, the count Ci follows a Poisson distribution:

Ci ∼ Poisson (θi)

where θi is given by:

θi = λi

p∏
j=1

(
Y (t)

kj

)
∆t

This equation models the frequency of each reaction, considering the current state Y (t) of the
system.

With the knowledge of Ci, we update the system states as follows:

∆Y (t) = Y (t+∆t)− Y (t) = V TC

This expression calculates the change in state variables, ∆Y (t), based on the reactions that
occurred.

Given observed data Y at specific time points, we aim to estimate the rate parameters λ
that best describe the system dynamics. The dynamics can be represented as:

∆Y (t) = X(t)λ+ η(t)

Here, X(t) is the matrix capturing the influence of each reaction, and η(t) represents the error
term.

The residuals η are the difference between observed and predicted changes in state variables:

η = ∆Y −Xλ

The objective is to minimize the sum of squared residuals, Ση2, which is equivalent to minimizing
ηT η. By differentiating with respect to λ and setting the derivative to zero, we find the optimal
λ:

∂

∂λ
Ση2 = 0

Solving this equation yields the estimated rate parameters λ̂:

λ̂ = (XTX)−1XT∆Y

This optimized λ̂ provides the best-fit parameters for our model, describing the underlying
dynamics of the system.


