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Lecture Notes: Random Number Generation

Our daily lives are filled with uncertainty, from the simple toss of a coin to the stock market’s
unpredictable rises and falls. This inherent unpredictability is often captured mathematically
through random numbers and random variables. In many realms of science, engineering, and
even entertainment, the ability to generate and harness randomness is invaluable. Random pro-
cesses model phenomena as diverse as subatomic particle interactions, the growth of populations,
and the strategies in a poker game.

In a world that’s increasingly driven by computers — deterministic machines at their core
— generating genuine randomness is challenging. Computers follow predefined instructions to
produce predictable outcomes. So, how can such a machine create a random number, or simulate
the whimsical dance of a snowflake, or the chaotic behavior of weather systems?

Random Number Generators

The answer lies in algorithms that can mimic randomness, even if they aren’t truly random.
These algorithms are the heart of Random Number Generators (RNGs). By inputting an initial
value or ’seed’, they produce sequences of numbers that, for all practical purposes, seem random.

Though it might seem counterintuitive, this ‘pseudo-randomness’ can be a desirable property.
Imagine a scientist running a complex simulation of a galaxy. If something goes awry, it’s
invaluable to replay that simulation with the exact same sequence of 'random’ events to debug
and understand the problem. This reproducibility is only possible with pseudo-random numbers,
not with truly random ones.

But let’s step back a bit. Before delving into how we generate these numbers, it’s crucial to
understand the nature of randomness and how we represent it mathematically.

Definition 1 (Random number). A random number is an unpredictable value, generated inde-
pendently from preceding or succeeding numbers. It lacks any discernible pattern or regularity,
making it impossible to deduce without understanding the underlying random generation pro-
cess. Additionally, a random number should accurately represent true randomness, ensuring an
equitable chance for all potential outcomes.

Moving from individual random numbers, it is essential to understand how we can generate
a series of such numbers, which leads us to the concept of a random number generator.

Definition 2 (Random number Generator). A Random Number Generator (RNG) is an
algorithm that produces a sequence of numbers that lacks any pattern, i.e., appears random.
More formally, an RNG is defined as a function:

R:S—T
(s)—~t

where:

e S is the seed space, a finite set of initial states. An RNG is typically initialized with a
value in S, known as the seed.

o T is the target space, typically the set of real numbers in the interval [0, 1) or a set of
integer values.

o The function R maps each seed s € S to a targett € T in a manner that appears random.
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RNGs are essential in many areas of computing, including simulation, cryptography, and
probabilistic algorithms. While the outputs of an RNG may appear random, they are determined
entirely by the initial seed and are thus pseudorandom.

To get closer to "true" randomness in computer systems, one approach is to use some fun-
damentally unpredictable process as a source of randomness. These are known as hardware (or
true) random number generators (HRNGs or TRNGs).

For example, they might use physical processes like atmospheric noise, radioactive decay, or
even small variations in the timing of keyboard presses or mouse movements. These sources are
inherently unpredictable and do not follow a deterministic algorithm, so the numbers generated
in this way can be considered truly random.

However, HRNGs tend to be slower and more difficult to implement than PRNGs, and in
many cases, the numbers generated by PRNGs are sufficiently random for the task at hand.

Property 1. With the understanding of what random numbers and their generators are, we can
now lay down some properties that a well-functioning random number generator should exhibit:

o Unpredictability: Without knowing the algorithm and seed, it should be impossible to
predict future numbers.

e Reproducibility: Given the same seed, the RNG should produce the same sequence of
numbers.

e Representation of True Randommness: The RNG should accurately represent true
randomness, ensuring an equitable chance for all potential outcomes.

e Long period: The sequence of numbers should be long before repeating.

o Efficiency: The RNG should generate numbers quickly.

It’s important to note that not all random number generators will have all these properties.
For instance, cryptographic random number generators prioritize unpredictability and may sac-
rifice reproducibility. The appropriate RNG for a given application depends on what properties
are most important for that use case.

The Linear Congruential Generator (LCG) is a type of pseudorandom number generator,
and it is one of the oldest and best-known pseudorandom number generator algorithms. The
simplicity of its underlying mathematical structure, combined with its fast execution and the
minimal memory it requires, have contributed to its widespread usage.

Definition 3 (Linear Congruential Generator). The LCG generates a sequence of random num-
bers via the following linear recurrence relation:

Xnt1 = (aX, +¢) mod m (1)
where:
o X, 11 is the next number in the sequence.
e X, is the current number.
e a, ¢, and m are constants, known as the multiplier, increment, and modulus, respectively.

e mod denotes the modulus operation.

The initial or seed value Xg = S, is also required to start the sequence.
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The LCG is designed to generate a sequence of numbers that appear random but are de-
terministically produced by the recurrence relation. This deterministic production makes the
sequence reproducible, an essential property in many applications.

The key idea behind the LCG is the modulus operation, which allows the generator to
produce a sequence of numbers in a specific range (0 to m — 1), regardless of the values of a, ¢,
and X,,.

The parameters a, ¢, and m can be carefully chosen to produce sequences with desirable
properties. For example, with the right parameters, the LCG can achieve a long period (up to
m) before repeating, which is another important characteristic for a good pseudorandom number
generator.

The Linear Congruential Generator (LCG) has several key characteristics that shape its
suitability as a random number generator.

Beginning with the simplest properties, the LCG is notably reproducible and efficient. Repro-
ducibility is a crucial characteristic in many applications, such as simulations, where repeating
the same sequence of numbers is vital for replicating results. With an LCG, one can always
expect the same sequence of numbers when provided with the same seed and constants.

When it comes to efficiency, the LCG shines as well. The generation process involves merely
multiplication, addition, and modulus operations, all of which are computationally inexpensive.
The minimalistic requirement of state space, which is just the last generated number, further
enhances this efficiency. This makes LCGs an ideal choice for systems burdened by limited
computational resources or memory.

Unpredictability, another essential attribute of a good random number generator, is some-
what of a mixed bag for the LCG. While it’s generally challenging to predict the output num-
bers without knowing the multiplier, increment, modulus, and seed, a person with knowledge
of the algorithm and access to a sufficient number of sequential numbers from the sequence can
potentially calculate the constants and forecast future numbers. Due to this, LCGs are not
recommended for applications where a high level of unpredictability, such as in cryptography, is
necessary.

To have an idea of the period, consider LCG with the recurrence relation:

Xn+1=3X,+5) mod8 (2)

where the seed value Xg = 1. This LCG generates a sequence of integers between 0 and 7. See
figure ??. For this LCG, the sample space Q for all possible output is the set {0, 1,2,3,4,5,6,7}.
A period of 8, as in the previous example, is indeed quite small and could introduce noticeable
patterns in the generated random numbers. It is clear that the maximum period of the LCG is
m.

) 0 3 6 1 4 7 2 ) 0

Figure 1: A sequence of realizations from a linear congruential generator (LCG). The x-axis
represents the index in the sequence, and the y-coordinate of each point represents the value of
the LCG at that index. The sequence is shown until it begins to repeat, including the first and
second term of the repetition.

Choosing better values for the initial seed and the parameters of the RNG can lead to a longer
period. For instance, the Mersenne Twister PRNG, which is commonly used in programming
languages and statistical software, has a period of 219937 — 1 (a Mersenne prime), which is an
astronomically large number.

The final property leads to the main concept of this book, the concept of probability.
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Discrete probability distributions

Ensuring an equitable chance for all potential outcomes, as a guiding principle, embodies the
essence of fairness and justice in diverse contexts. This idea offers a fundamental framework
of equity, resonating with scenarios as simple as a game of chance, and as complex as social
systems. Consider a coin toss, for instance. Ideally, the coin is fair, meaning that it offers an
equal chance of landing on either heads or tails — a 50% chance for each. Similarly, a dice roll
in a fair game should offer each face an equal likelihood of showing up, that is, about 16.67%
for each of the six possible outcomes.
Mathematically, the chance of a situation is quantified using a measure called Probability.

Definition 4 (Random Variable). A random wvariable is a function that assigns a real number
to each outcome of a random experiment. More formally, given an outcome space 2, a random
variable X is defined as a function

X: Q>R (3)

which maps each possible outcome w € Q to a real number X (w) = x. The set of all possible
values of X, often denoted by range(X) or simply the image of X, is a subset of the real numbers
R.

The sample space, denoted as €2, for any given experiment signifies the collection of every
conceivable outcome of that experiment. If the space ) is discrete, we will say that X is a
discrete R.V.

Definition 5 (Probability Mass Function (pmf)). The probability mass function (pmf) asociated
with a Random Variable X is represented as a function px : range(X) — [0,1], defined by

px(z) =P{weQ: X(w) =1}
for every x € range(X), such that:

1. For every outcome x € range(X), 0 < px(z) < 1.

2. The sum of the probabilities for all possible outcomes is 1, i.e., Emmnge(x)px(x) =1.

Any subset E C § is considered a situation or event. The probability of an event E, denoted
as Px(FE), represents the likelihood of that event occurring. It can also be denoted simply as
P(E) when the context is clear.

Let’s consider the rolling dice process. Consider the scenario of rolling a fair six-sided dice.
The sample space of this scenario is {1,2,3,4,5,6}. Since the dice is fair, each outcome is
equally likely. Therefore, the probability assigned to each outcome is %. The PMF of this
discrete random variable is thus:

Loifwe{1,2,3,4,5,6},
p(z) = i
0 otherwise

The PMF here characterizes a uniform distribution, each outcome from the dice roll has an
equal chance of occurring, demonstrating the fairness of the dice.

Experiment 1 (Probability and frequency). Consider the Linear Congruential Generator (LCG),
a type of RNG algorithm, given by the recurrence relation:

X1 = (1664525 x X, + 1013904223) mod 232
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Figure 2: Mapping of LCG Outputs to Coin Toss Outcomes for First Four Iterations

To determine the probability of either outcome (H or T), we consider the frequency approach
to probability. Given that the LCG produces uniform random numbers over its range, half of the
numbers will be below % and half will be above. Using this midpoint, numbers below this value
can be mapped to "H’ and numbers above to "T°. Therefore, as n — 232:

P(H) = P(T) =0.5

This ensures an almost equal probability for the LCG’s output to represent either a 'Heads’
or a ’Tails’ for a sufficiently large number of trials.

The empirical validation of this theory can be observed in the figure below. As the sample
size N increases, the proportions of 'Heads’ and "Tails’ converge to the theoretical value of 0.5,
reinforcing the uniformity and reliability of the LCG in mapping outcomes.

Proportion of Heads and Tails as a Function of n
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Figure 3: Proportions of 'Heads’ and 'Tails’ outcomes as generated by the Numerical Recipes
LCG over a sample size of N. As N increases, the proportions converge to the expected value
of 0.5, demonstrating the uniformity of the RNG in mapping outcomes.

One of the simplest forms of a discrete probability distribution is the discrete uniform dis-
tribution. As we just saw, if we let X represent the outcome of flipping a fair coin, X could
take the values Heads, Tails each with probability 1/2. Similarly, if X represents the outcome
of rolling a fair six-sided die, X can take the values 1,2,3,4,5,6 each with probability 1/6.

Example 1 (Discrete Uniform distribution). Let X be a random variable with outcomes equally
likely in the set a,a + 1,...,b has the following probability mass function (PMF):
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1
p(X—]C) —m, fOT k:—a,a+1,...,b. (4)

This, is called the discrete uniform distribution

The preceding examples primarily highlighted uniform distributions, where each outcome
had an equal likelihood of occurrence. As we transition further, we will delve into some of the
most renowned distributions that exhibit varied probabilities for different outcomes, breaking
away from the uniformity principle.

Example 2 (Bernoulli Distribution). Consider a binary experiment with outcomes that do not
share the same probability. The Bernoulli distribution provides a mathematical model for such
situations.

Let X be a random variable representing the outcome of this binary experiment. X is said to
follow a Bernoulli distribution if it takes on two possible outcomes: 1 (success) with probability
p and 0 (failure) with probability 1 — p. Formally, the PMF is defined as:

P(x =k =P UE=L
1—p ifk=0.

Here, 0 < p <1 is the probability of success, and k can only take values 0 or 1.

Example 3 (Binomial Distribution). Following the idea of the Bernoulli distribution, suppose
we conduct a series of n Bernoulli trials. Fach trial has two possible outcomes: "success”
(with probability p) and "failure" (with probability 1 — p). The probability of obtaining exactly k
successes in these n trials is given by:

Px =1 = () -pr

for k=0,1,...,n. The random variable X representing the number of successes in n trials
follows a binomial distribution.

Example 4 (Poisson Distribution). A discrete random variable X is said to have a Poisson
distribution with parameter X > 0 (where X is the average number of occurrences in a fired
interval or region) if its PMF is given by:

e M \k
k!

P(X=k)=

for k=0,1,2,... where e is the base of the natural logarithm.

Expectation

Imagine you play a game where you roll a fair six-sided dice, and you money equal to the
number that shows up on the dice. If you play this game once, you could end up with any
amount between 1 CHF and 6 CHF. But if you were to play this game many times, what would
be the "average" amount you’d expect to win on each roll? This average value is the expected
value.

Definition 6. For a discrete random variable X with probability mass function p(x), the ex-
pected value E[X] is defined as:

ElX] =Y o p(a)

where the summation is over all possible values of x.
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Essentially, it is the weighted average of the possible values the random variable can take,
where the weights are given by their respective probabilities.
For a fair six-sided dice, the expected value would be:
1 1 1 1 1 1 21
E[X]—1<6> +2<6>+3<6>+4<6>+5<6>+6(6> =% =3.5
This means that, on average, you would expect to win 3.50 CHF per roll, even though it’s
impossible to roll a 3.5 on a dice.

Expectation is a key concept in statistics and probability. It plays a central role in deci-
sion theory for the evaluation and comparison of strategies. Additionally, it is instrumental
in defining other statistical measures such as variance and covariance. By providing a method
to summarize the potential outcomes of a random variable into a single value, expectation fa-

cilitates predictions based on probabilistic models. Its understanding is essential for advanced
applications in statistics and probabilistic analysis.

Property 2 (Linearity of Expectation). Let X1, Xo, ..., X,, be random variables (not necessarily
independent). For any constants ay,as,...,ay, the expectation of their linear combination is

given by:
n n
Z aiXi] = Z azE[XJ
i=1 i=1

Linearity of expectation, as described above, plays a critical role in many probabilistic anal-
yses, enabling us to break down complex expressions into simpler components. It also serves as
foundational groundwork for understanding more intricate theorems, such as the Law of Large
Numbers.

E

Example 5 (Expectation of the Bernoulli Distribution). Let X be a random variable following
a Bernoully distribution with success probability p.
Using the expectation formula for the Bernoulli distribution, we have:

EX]=1p+0-(1-p)=p
Hence, the expected value of X is p.

Example 6 (Expectation of the Poisson Distribution). Let X be a random variable following a
Poisson distribution with parameter \. Its probability mass function is given by:

e ANk

P(X = k) = —

To find the expectation E[X]|, we compute:

= e Mk
EX]=) k- o
- !

o

This can be split into two parts: the k = 0 term and the sum from k = 1 to infinity. The
k =0 term gives a contribution of 0 to the sum.
So,
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Multiplying and dividing by A in our expression for E[X], we notice that:

O —A)\k—1
e )\
=X\ -S
(k
k=1
Recognizing the Taylor series expansion for e*, which is e® = 12 4 T1, our sum S becomes

the expansion for e, excluding the k = 0 term. This gives:

S=e'-1

Thus, B[X] = X- (e — 1) + \.

But since e - (e* — 1) is just —e™* added to €*, and —e™* +e* = \, we find:
E[X] =\

Hence, the expected value of X is A.

Independence

The concept of independence is crucial in the study of probability and statistics. When dealing
with random variables, independence ensures that the realization of one random variable doesn’t
give any information about the realization of another.

Definition 7. Let X and Y be two random variables. They are said to be independent if and
only if for every pair of events (or situations) E1 and Ea, we have:

P(XEEl,YEEQ):P<X€E1)-P(Y€Eg)

This definition ensures that our understanding of randomness is preserved; knowledge about
the outcome of one random process shouldn’t provide any information about the outcome of
another if they are indeed independent.

Example 7 (Independence with RNG-simulated Coin Tosses). Building on our previous ex-
periment with the LCG and the coin toss simulation, let’s now formalize this using random
variables.

Let:
e X1 be a random variable representing the outcome of the first RNG run.
e X5 be a random wariable representing the outcome of the second RNG run.

The RNG can produce outcomes corresponding to "Heads’ (H) or ’Tails’ (T). For simplicity,
let’s denote 'Heads’ as 1 and "Tails’ as 0. So, the random variables X1 and Xo can take values
from the set {0, 1}.

Based on our earlier exploration:

P(Xy=1)=P(H)=0.
P(Xo=0)=P(T)=0
If X1 and X5 are independent, then:
P(X1=1,X2=0)=P(X1=1)- P(X2=0)
Plugging in our values:
P(X;=1,X9=0)=05-05=0.25

Thus, if our simulation yields a joint probability of X1 = 1 and Xo = 0 close to 0.25, it
reinforces that X1 and Xy are independent when simulated using our RNG method.



Probability & Statistics SA 2023-2024 9

In practical scenarios, such independence can be vital to ensure that simulations or experi-
ments aren’t inadvertently biased by intertwined RNGs.

Experiment 2. Let’s illustrate dependence using a single RNG, specifically the Linear Congru-
ential Generator (LCG). Recall the LCG’s formula:

Xnt1 = (aXy,+¢) modm

where X,, is the current random number, a and ¢ are constants, and m is the modulus.
For this illustration, we will define two situations based on the same €):

o Xi:0Q — R where X1(w) =

W
m

e Xy :Q — R where Xo(w) =

3l

Consider two situations:

o A = Situation where X (w) >

o= N

e B = Situation where Xa(w) >

By our definitions:

.p(A):m_/?:l

m 2

e PB)=P(1-2>3)=Pw<2)=1

However, if A occurs, i.e., Xi(w) > %, then Xo(w) will necessarily be less than % Thus,
P(ANB) =0.
This implies:
P(ANB) +# P(A)P(B)

showing that the situations A and B are dependent.

Independent LCGs Dependent LCGs
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Figure 4: Simulation of dependent and independent LCG.
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Definition 8 (Cumulative Distribution Function (Discrete Case)). Let X be a discrete random
variable with a probability mass function p(x). The cumulative distribution function (CDF) of
X is defined by:

F(z)=P(X <2)=)_p(t)

t<x

where the sum runs over all possible values t of X that are less than or equal to x.

Example 8 (CDF of a Discrete Uniform Distribution). Consider a random variable X that
follows a discrete uniform distribution over the interval [a,b], where a and b are integers with
a<b.

The Cumulative Distribution Function (CDF) for any value k in this interval is:

0 ifk<a
F(k) == ifa<k<b
1 ifk>b

For values in the interval [a,b], the CDF F(k) represents the probability that X takes on a value
less than or equal to k. It increases by ﬁ for each integer increment in k within the interval.



