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1 Lecture 6: Stability Theory and Lyapunov Methods

1.0.1 Introduction to Stability Theory

Stability theory addresses one of the most fundamental questions in dynamical systems: given a
solution to a differential equation, what happens to nearby solutions? This question is crucial for
understanding the robustness of system behavior and predicting long-term dynamics. While lin-
earization provides local stability information near equilibria, Lyapunov theory offers global methods
that can analyze stability over large regions of phase space.

The concept of stability has profound practical implications. In engineering, we need to ensure
that control systems remain stable under perturbations. In ecology, we want to understand whether
population equilibria can persist under environmental fluctuations. In economics, stability analysis
helps predict whether market equilibria are robust to external shocks.

Stability theory provides rigorous mathematical frameworks for addressing these questions. The
methods developed by Aleksandr Lyapunov in the late 19th century remain the cornerstone of
modern stability analysis, offering both theoretical insights and practical tools for system design
and analysis.

1.0.2 Types of Stability

Stability comes in several forms, each capturing different aspects of system behavior under pertur-
bations. Understanding these distinctions is crucial for applying the appropriate analytical tools.

Lyapunov Stability: A solution x(t) is Lyapunov stable if solutions starting near x(0) remain
near x(t) for all future times. Formally, for every ϵ > 0, there exists δ > 0 such that if |x0−x(0)| < δ,
then |x(t;x0)− x(t)| < ϵ for all t ≥ 0.

Asymptotic Stability: A solution is asymptotically stable if it is Lyapunov stable and nearby
solutions actually converge to it as t → ∞. This requires limt→∞ |x(t;x0) − x(t)| = 0 for initial
conditions sufficiently close to x(0).

Exponential Stability: The strongest form of stability, where nearby solutions converge expo-
nentially fast. There exist constants M > 0 and α > 0 such that |x(t;x0)−x(t)| ≤ M |x0−x(0)|e−αt.

Global Stability: When stability properties hold for all initial conditions in the phase space,
not just those in a neighborhood of the reference solution.

For autonomous systems, we typically focus on the stability of equilibrium points, where the
reference solution is constant: x(t) = x∗ for all t.
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Figure 1: Lyapunov function examples: quadratic functions for linear systems, energy functions
for conservative systems, basin of attraction analysis, and gradient system dynamics illustrating
LaSalle invariance principle.

1.0.3 Lyapunov’s Direct Method

Lyapunov’s direct method (also called the second method) provides a way to determine stability
without solving the differential equation explicitly. The method is based on constructing auxiliary
functions, called Lyapunov functions, that capture the essential stability properties of the system.

1.0.4 Lyapunov Functions for Autonomous Systems

Consider the autonomous system dx
dt = f(x) with an equilibrium at x∗ (so f(x∗) = 0). A Lyapunov

function is a scalar function V (x) that satisfies certain properties related to the system’s energy or
distance from equilibrium.

Definition 1.1. A function V : D → R is a Lyapunov function for the system dx
dt = f(x) on domain

D containing equilibrium x∗ if:

1. V (x∗) = 0

2. V (x) > 0 for all x ∈ D \ {x∗} (positive definite)
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3. V is continuously differentiable on D

The function V̇ (x) = ∇V · f(x) is called the orbital derivative of V along system trajectories.

The orbital derivative measures how V changes along solution trajectories. If x(t) is a solution,
then:

d

dt
V (x(t)) = ∇V (x(t)) · dx

dt
= ∇V (x(t)) · f(x(t)) = V̇ (x(t)) (1)

Theorem 1.2. Let V (x) be a Lyapunov function for system dx
dt = f(x) on domain D containing

equilibrium x∗. Then:

1. If V̇ (x) ≤ 0 for all x ∈ D, then x∗ is Lyapunov stable.

2. If V̇ (x) < 0 for all x ∈ D \ {x∗}, then x∗ is asymptotically stable.

3. If additionally V (x) → ∞ as |x| → ∞, then x∗ is globally asymptotically stable.

The intuition behind this theorem is that V acts like an energy function. If V decreases along
trajectories (V̇ < 0), then solutions lose "energy" and must approach the minimum at x∗. If V
merely doesn’t increase (V̇ ≤ 0), solutions remain bounded but may not converge.

Example. Consider the linear system dx
dt = Ax where A has eigenvalues with negative real parts.

We can construct a quadratic Lyapunov function:

V (x) = xTPx (2)

where P is a positive definite matrix satisfying the Lyapunov equation:

ATP+PA = −Q (3)

for some positive definite matrix Q.
The orbital derivative is:

V̇ (x) = 2xTPAx = −xTQx < 0 (4)

This proves global asymptotic stability of the origin.

1.0.5 Construction of Lyapunov Functions

Finding appropriate Lyapunov functions is often the most challenging aspect of stability analysis.
Several systematic approaches exist:

Physical Energy: For mechanical systems, total energy (kinetic plus potential) often serves
as a natural Lyapunov function. For electrical circuits, energy stored in capacitors and inductors
provides similar functions.

Quadratic Forms: For systems near equilibria, quadratic functions V (x) = xTPx are often
effective. The matrix P can be determined by solving Lyapunov equations or using optimization
methods.

Sum of Squares: For polynomial systems, Lyapunov functions can be constructed as sums of
squares of polynomials. This approach connects to semidefinite programming and computational
methods.

Control Lyapunov Functions: In control theory, Lyapunov functions are designed to guide
the construction of stabilizing feedback controllers.
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1.0.6 LaSalle’s Invariance Principle

While Lyapunov’s direct method requires V̇ < 0 for asymptotic stability, many systems have Lya-
punov functions where V̇ ≤ 0 with equality on some set. LaSalle’s invariance principle extends
Lyapunov theory to handle these cases.

Theorem 1.3. Let Ω be a compact positively invariant set for system dx
dt = f(x). Let V : Ω → R

be continuously differentiable with V̇ (x) ≤ 0 for all x ∈ Ω.
Define E = {x ∈ Ω : V̇ (x) = 0} and let M be the largest invariant set in E. Then every solution

starting in Ω approaches M as t → ∞.

This principle is particularly powerful for analyzing systems where energy is conserved along
some directions but dissipated along others.

Example. Consider a damped pendulum:

dθ

dt
= ω (5)

dω

dt
= − sin θ − cω (6)

where c > 0 is the damping coefficient.
The total energy is:

V (θ, ω) =
1

2
ω2 + (1− cos θ) (7)

The orbital derivative is:

V̇ = ω(− sin θ − cω) + sin θ · ω = −cω2 ≤ 0 (8)

We have V̇ = 0 only when ω = 0. On this set, dω
dt = − sin θ, which equals zero only at

θ = 0, π, 2π, . . .
The largest invariant set in {ω = 0} consists of the equilibria (θ, ω) = (2πk, 0) for integer k. By

LaSalle’s principle, all trajectories approach one of these equilibria.
Further analysis using linearization shows that (0, 0) is stable while (π, 0) is unstable, so trajecto-

ries approach (0, 0) from a neighborhood and (±2π, 0) from trajectories that cross the separatrices.

1.0.7 Instability and Chetaev’s Theorem

While Lyapunov theory provides tools for proving stability, proving instability requires different
approaches. Chetaev’s theorem offers a method for establishing instability using auxiliary functions.

Theorem 1.4. Consider system dx
dt = f(x) with equilibrium at origin. Suppose there exists a

function V (x) and a region U containing the origin such that:

1. V (0) = 0

2. In U , the set {x : V (x) > 0} is nonempty and V̇ (x) > 0 whenever V (x) > 0

3. Every neighborhood of the origin contains points where V (x) > 0

Then the origin is unstable.

The idea is to find a function that increases along some trajectories starting arbitrarily close to
the equilibrium, forcing these trajectories to move away from equilibrium.
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Figure 2: Stability analysis: (left) comparison of linearization with nonlinear behavior showing
validity regions, (right) parameter-dependent stability boundaries demonstrating critical parameter
values.

1.0.8 Basin of Attraction and Region of Stability

For asymptotically stable equilibria, the basin of attraction (or region of attraction) is the set of all
initial conditions whose trajectories converge to the equilibrium. Determining this region is crucial
for understanding the practical stability of systems.

1.0.9 Estimating Basins of Attraction

Lyapunov functions provide a systematic way to estimate basins of attraction. If V (x) is a Lyapunov
function with V̇ (x) < 0 for x ̸= x∗, then any level set {x : V (x) ≤ c} that doesn’t contain other
equilibria lies within the basin of attraction.

The largest such level set provides an estimate of the basin. While this estimate may be conser-
vative, it gives a guaranteed region of stability.

Example. Consider the system:

dx

dt
= −x+ xy (9)

dy

dt
= −y − x2 (10)

The origin is an equilibrium. The linearization has matrix:

J =

(
−1 0
0 −1

)
(11)

This shows local asymptotic stability. To estimate the basin of attraction, try the quadratic
Lyapunov function:

V (x, y) = x2 + y2 (12)

The orbital derivative is:

V̇ = 2x(−x+ xy) + 2y(−y − x2) = −2x2 + 2x2y − 2y2 − 2x2y = −2x2 − 2y2 < 0 (13)

for (x, y) ̸= (0, 0). Since V (x) → ∞ as |x| → ∞, the origin is globally asymptotically stable.
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1.0.10 Multiple Equilibria and Competing Basins

When systems have multiple stable equilibria, their basins of attraction partition the phase space.
The boundaries between basins often contain unstable equilibria or limit cycles and represent sep-
aratrices in the dynamics.

Understanding these boundaries is crucial for predicting system behavior. Small perturbations
that move initial conditions across basin boundaries can lead to dramatically different long-term
behavior.

1.0.11 Converse Lyapunov Theorems

While Lyapunov’s direct method provides sufficient conditions for stability, converse theorems es-
tablish that these conditions are also necessary. These results guarantee that stable systems always
have Lyapunov functions, even if finding them explicitly may be difficult.

Theorem 1.5. If the origin is asymptotically stable for system dx
dt = f(x), then there exists a

Lyapunov function V (x) such that V (x) > 0 for x ̸= 0 and V̇ (x) < 0 for x ̸= 0 in some neighborhood
of the origin.

Furthermore, if the origin is exponentially stable, then there exists a Lyapunov function satisfy-
ing:

α1|x|2 ≤ V (x) ≤ α2|x|2 (14)

V̇ (x) ≤ −α3|x|2 (15)

for positive constants α1, α2, α3.

These converse theorems provide theoretical completeness to Lyapunov theory and justify the
search for Lyapunov functions in stability analysis.

1.0.12 Stability of Periodic Orbits

Extending stability analysis to periodic orbits requires modifications of the basic Lyapunov ap-
proach. The key insight is to study the behavior of nearby trajectories relative to the periodic
orbit.

1.0.13 Poincaré Maps and Floquet Theory

For a periodic orbit xp(t) with period T , we can analyze stability using a Poincaré map. Choose
a cross-section Σ transverse to the orbit and define the map P : Σ → Σ that takes points to their
next intersection with Σ.

The periodic orbit corresponds to a fixed point of P , and its stability is determined by the
eigenvalues of DP (the multipliers). The orbit is stable if all multipliers have magnitude less than
one.

Alternatively, Floquet theory analyzes the linearization around the periodic orbit. The funda-
mental matrix solution Φ(t) satisfies Φ(t + T ) = Φ(t)M where M is the monodromy matrix. The
eigenvalues of M (Floquet multipliers) determine stability.
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1.0.14 Lyapunov Functions for Periodic Orbits

Constructing Lyapunov functions for periodic orbits is more complex than for equilibria. One
approach uses the distance to the orbit:

V (x) = min
s∈[0,T ]

|x− xp(s)|2 (16)

However, this function may not be differentiable everywhere. Alternative approaches include
using energy-like functions or constructing functions in orbital coordinates.

1.0.15 Input-to-State Stability

Modern control theory extends classical stability concepts to systems with inputs or disturbances.
Input-to-state stability (ISS) provides a framework for analyzing how external inputs affect system
stability.

Definition 1.6. System dx
dt = f(x,u) is input-to-state stable if there exist functions β ∈ KL and

γ ∈ K such that for all initial conditions x0 and inputs u(t):

|x(t)| ≤ β(|x0|, t) + γ( sup
0≤s≤t

|u(s)|) (17)

Here K denotes class K functions (continuous, strictly increasing, with γ(0) = 0) and KL denotes
class KL functions (decreasing in the second argument for each fixed first argument).

ISS captures the intuitive notion that bounded inputs should produce bounded outputs, with
the bound depending continuously on the input magnitude.

1.0.16 Computational Methods in Stability Analysis

Modern computational tools have revolutionized stability analysis, enabling the study of high-
dimensional systems and the construction of Lyapunov functions for complex nonlinear systems.

1.0.17 Sum of Squares Programming

For polynomial systems, Lyapunov functions can be constructed as sums of squares (SOS) of polyno-
mials. This approach reformulates the search for Lyapunov functions as a semidefinite programming
problem, which can be solved efficiently using interior-point methods.

The key insight is that a polynomial p(x) is positive if and only if it can be written as:

p(x) =

m∑
i=1

qi(x)
2 (18)

for some polynomials qi(x). This condition can be expressed as a semidefinite constraint on the
coefficients.

1.0.18 Numerical Construction of Lyapunov Functions

For general nonlinear systems, numerical methods can construct piecewise-linear or radial basis
function Lyapunov functions. These approaches discretize the state space and solve optimization
problems to find functions satisfying the Lyapunov conditions.
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Machine learning techniques, including neural networks, have also been applied to learn Lya-
punov functions from simulation data. These methods show promise for high-dimensional systems
where traditional approaches become computationally intractable.

Computational Note: The file lecture6.py implements various stability analysis methods,
including Lyapunov function construction for linear systems, numerical basin of attraction estima-
tion, and SOS-based methods for polynomial systems. The code demonstrates both theoretical
concepts and practical computational techniques.

1.0.19 Applications in Control and Engineering

Stability theory forms the foundation of modern control system design. Controllers are designed not
just to achieve desired performance but to guarantee stability under uncertainties and disturbances.

1.0.20 Lyapunov-Based Control Design

Control Lyapunov functions (CLFs) provide a systematic approach to controller synthesis. Given a
system dx

dt = f(x)+g(x)u, a CLF is a function V (x) such that for each x ̸= 0, there exists a control
u making V̇ < 0.

The control law can then be chosen to minimize V̇ , ensuring stability while optimizing perfor-
mance criteria.

1.0.21 Robust Stability Analysis

Real systems always contain uncertainties in parameters, unmodeled dynamics, and external dis-
turbances. Robust stability analysis extends Lyapunov methods to guarantee stability despite these
uncertainties.

Techniques include: - **Quadratic Stability:** Using a single quadratic Lyapunov function for all
possible parameter values - **Parameter-Dependent Lyapunov Functions:** Allowing the Lyapunov
function to depend on uncertain parameters - **Integral Quadratic Constraints:** Incorporating
information about the structure of uncertainties

This lecture has developed the fundamental theory and methods of stability analysis for dynam-
ical systems. The key contributions include:

Lyapunov’s Direct Method: Provides a systematic framework for analyzing stability without
solving differential equations explicitly. The method’s power lies in its generality and its ability to
provide global stability results.

LaSalle’s Invariance Principle: Extends Lyapunov theory to systems where energy is con-
served along some directions. This principle is particularly valuable for mechanical and physical
systems with natural conservation laws.

Basin of Attraction Analysis: Determines the region of initial conditions leading to stable
behavior. Understanding these regions is crucial for predicting system behavior and designing robust
controllers.

Computational Methods: Modern optimization and machine learning techniques enable sta-
bility analysis of complex, high-dimensional systems that were previously intractable.

Stability theory provides both theoretical insights and practical tools for system analysis and
design. The methods developed here form the foundation for advanced topics in control theory,
including adaptive control, robust control, and nonlinear control design.

The concepts introduced in this lecture will be essential for understanding the numerical meth-
ods and applications discussed in subsequent lectures. The interplay between stability theory and
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computational methods continues to drive advances in our ability to analyze and control complex
dynamical systems.
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