ODE Lecture Notes Francisco Richter

Ordinary Differential Equations

Lecture Notes

Francisco Richter

Universita della Svizzera italiana
Faculty of Informatics

August 18, 2025

1 Lecture 2: Systems of First-Order Equations

1.0.1 Introduction to Systems

Many phenomena in science and engineering involve multiple interacting quantities that change
simultaneously. A predator-prey ecosystem involves both predator and prey populations, a me-
chanical system has both position and velocity, and an electrical circuit may have multiple currents
and voltages. Such situations naturally lead to systems of differential equations.

A system of first-order differential equations has the general form:

dl’l

— = e, Iy 1

7 filt, 1,22, 20) (1)

d:IZ'Q

— = e, Iy 2

7 fo(t, w1, @2, ...) (2)
(3)

dz,

—_—= 4

dt fn(t7w17m27 7xn) ()

This can be written compactly in vector notation as:

dx

i f(t,x) (5)

where x = (21,22, ...,2,)7 is the state vector and £ = (f1, fa,..., fn)T is the vector field.

The power of this formulation is that it reduces the study of systems to the study of vector
fields in n-dimensional space. This geometric perspective provides deep insights into the behavior
of complex dynamical systems.

1.0.2 Reduction of Higher-Order Equations

Any higher-order differential equation can be converted to a system of first-order equations. This
reduction is fundamental because it allows us to study all differential equations using the unified
framework of first-order systems.

Consider the second-order equation:

ODE Lecture Notes

Francisco Richter

Predator-Prey Phase Portrait

Population Dynamics

5
6 —— Prey
—— Predator
a4
5
>3 S
. ¥ g 41
2 i ©
© >
o | ! a
E 2 ¥ O 31
o 4 o
]
14+ 2
¥
¥
¥ ,
0 1
o 1 2 3 4 5 6 7 8 0 2 4 6 g 10 12 14
Prey (x) Time
SIR Epidemic Model Coupled Oscillators
1000 1 1.00 1 —— Mass 1
—— Mass 2
0.75 1
800
) 4
S 0.50
2 €
S i
= _ @ 025
° 6001 — Susceptible IS
b —— Infected 8 0.00 1
5} ©
—— Recovered —
E 4001 30251
a
€
5 -0.50 A
Z 2004
-0.75 A
0 -1.00 A
0 10 20 30 40 50 00 25 50 75 100 125 150 175 200
Time (days) Time

Figure 1: Examples of first-order systems: (top left) Predator-prey phase portrait showing closed
orbits, (top right) Population dynamics time series, (bottom left) SIR epidemic model, (bottom
right) Coupled oscillators demonstrating energy exchange.

We introduce new variables: z1 = y and zo = %. Then:

dzy
dt

dzs
dt

= F(t,z1,22)

(7)
(8)

This technique extends to equations of any order, always producing a system of first-order
equations with the same number of equations as the order of the original equation.

2.1: Harmonic Oscillator The equation for a harmonic oscillator is:

d2
dt?
Setting x1 = x and x5 = %, we get:
dl‘l
dt
dl‘g

dt

_aj2

—w—i-wa:O

= —WwW I

ODE Lecture Notes Francisco Richter

This system describes circular motion in the (x1,x2) phase plane with angular frequency w.

1.0.3 Existence and Uniqueness for Systems

The existence and uniqueness theory for systems parallels that for scalar equations, but with vector-
valued functions and matrix derivatives.

2.1: Existence and Uniqueness for Systems Consider the initial value problem:

dx
& = (%) (12)
x(to) = Xo (13)

If f and the Jacobian matrix g—i are continuous in a neighborhood of (g, X¢), then there exists

a unique solution in some interval containing #.

The Jacobian matrix is:

9fi 9h ... Of1
oxr1 Oxo OTn
Ofr 9fr .. Of2
ox | i
Ofn Ofn ... Ofn
o1 0o O0zn

This theorem guarantees that through each point in the domain, there passes exactly one solution
trajectory. This means that trajectories in phase space cannot cross each other, a fundamental
property that constrains the possible behavior of dynamical systems.

1.0.4 Phase Space and Trajectories

The phase space (or state space) of a system is the space of all possible states x. For an n-dimensional
system, the phase space is R". Each point in phase space represents a complete specification of the
system’s state at a given time.

A trajectory (or orbit) is a curve in phase space that represents the evolution of the system over
time. Starting from initial condition xg at time t, the trajectory is the set of points {x(¢) : ¢t > to}
where x(t) is the solution to the initial value problem.

The vector field f(t,x) assigns a velocity vector to each point in phase space. Trajectories are
always tangent to the vector field, flowing along the directions indicated by the field.

1.0.5 Autonomous Systems

When the vector field does not depend explicitly on time, ‘Cll—’t‘ = f(x), the system is autonomous.

Autonomous systems have special properties:

1. **Time translation invariance®*: If x(¢) is a solution, then x(¢ + ¢) is also a solution for any
constant c.

2. **Unique trajectories**: Each trajectory is determined entirely by its initial point, indepen-
dent of the starting time.

3. **Phase portraits®*: The collection of trajectories in phase space forms a phase portrait that
completely characterizes the system’s behavior.

For autonomous systems, we can think of the vector field as defining a flow in phase space, like
the flow of a fluid. Trajectories are the streamlines of this flow.

ODE Lecture Notes Francisco Richter

1.0.6 Two-Dimensional Systems

Two-dimensional systems provide the richest setting for developing geometric intuition while re-
maining visualizable. The general autonomous system in the plane is:

dzx

X = e (19
Y g (16)

1.0.7 Nullclines and Flow Analysis

Nullclines are curves where one component of the velocity vector vanishes: - **z-nullclines**: curves
where f(x,y) =0, so ‘fi—f = 0 - **y-nullclines**: curves where g(z,y) =0, so % =
Nullclines divide the phase plane into regions where the flow has consistent direction. On z-
nullclines, trajectories move purely vertically; on y-nullclines, they move purely horizontally.
Equilibrium points occur at intersections of z- and y-nullclines, where both f(z,y) = 0 and

g(x,y) = 0.
2.2: Predator-Prey System The Lotka-Volterra predator-prey model is:

d
df = az — bxy (17)
d
d?; = —cy + dzy (18)

where z is prey population, y is predator population, and a, b, c,d > 0.
The nullclines are: - z-nullclines: z = 0 and y = a/b - y-nullclines: y = 0 and x = ¢/d
Equilibria occur at (0,0) and (¢/d,a/b).

Competition Model

Nullclines and Equilibria

4.0 10
s x-nullcline (x=0) \ m— x-nullcline
3.5 1 = x-nullcline (y=2.0) NI = y-nullcline
== y-nullcline (y=0) 8
3.0 1 m—y-nullcline (x=3.0) b \
- @ Extinction equilibrium - D A
2251 @ Coexistence equilibrium | < ¢ | o h
S > S
£ 20 E 1 7 >
E a v $ 4 f /7 P
& 157 & 7 -
f 7 -
1.0 1 5] 1 7 -
P A Gl A e
0.5 1
A I S
0.0 T T u T T 0 T T T T *
0 1 2 3 4 5 6 0 2 4 6 8 10 12
Prey (x) Species 1 (x)

Figure 2: Nullclines and phase flow analysis: (left) Predator-prey system showing nullclines, equi-
libria, and direction field with closed orbits, (right) Competition model demonstrating different
equilibrium types and flow patterns.

ODE Lecture Notes Francisco Richter

1.0.8 Direction Fields for Systems

The direction field for a two-dimensional system assigns a direction vector (f(z,y), g(x,y)) to each
point (z,y) in the plane. This generalizes the direction field concept from scalar equations.

Constructing the direction field involves: 1. Choose a grid of points (x;,y;) 2. At each point,
calculate the direction vector (f(x;,y;),9(zi,y;)) 3. Draw an arrow in this direction (usually nor-
malized for visibility) 4. Trajectories flow along the direction field

The direction field provides immediate visual information about the system’s behavior without
solving the equations explicitly.

Computational Note: The file lecture2.py contains comprehensive tools for generating
direction fields, plotting nullclines, and visualizing trajectories for two-dimensional systems.

1.0.9 Linear Systems

Linear systems form a special class where complete analytical solutions are possible. A linear system

has the form: p
dit‘ — A()x +b(t) (19)

where A(t) is an n x n matrix and b(t) is an n-dimensional vector.
When b(t) = 0, the system is homogeneous:

dx

— = A(t 20
>~ Al (20)
1.0.10 Constant Coefficient Systems
When A is constant, the system becomes:
dx
— =A 21
o = AX (21)

The solution involves the matrix exponential:

x(t) = eflxq (22)

At)k . . .
where eAt = Y oreo (k,) is the matrix exponential.

1.0.11 Eigenvalue Analysis

For constant coefficient linear systems, the behavior is determined by the eigenvalues and eigenvec-
tors of matrix A.

If A has eigenvalue A with eigenvector v, then x(t) = e*v is a solution. This gives: - **Real
eigenvalues™: Exponential growth (A > 0) or decay (A < 0) along eigenvector directions - **Com-
plex eigenvalues**: Spiral motion with exponential growth or decay

2.3: Two-Dimensional Linear System Consider:

=11

The characteristic equation is:

det(A—XI)=(1-X)(2-X)—-6=X—-3\—-4=0 (24)

ODE Lecture Notes Francisco Richter

Eigenvalues: A\1 =4, Ay = —1

Eigenvectors: v; = <§>7 V2 = (_11>

General solution:
x(t) = cret (g) + cpe! <_11> (25)

1.0.12 Equilibria and Linearization

Equilibrium points (also called fixed points or critical points) are constant solutions where f%‘ =0.

For the autonomous system ‘(%‘ = f(x), equilibria satisfy:

f(x*)=0 (26)

1.0.13 Linear Stability Analysis

Near an equilibrium x*, we can approximate the nonlinear system by its linearization. Let u = x—x*
be the displacement from equilibrium. Then:

d
d—ltl = J(x*)u + higher order terms (27)
where J(x*) = g)f(‘ is the Jacobian matrix evaluated at the equilibrium.

x=x*
For small displacements, the linear approximation dominates:

du
— = * 2
S I (28)

The stability of the equilibrium is determined by the eigenvalues of the Jacobian: - **Stable™*:
All eigenvalues have negative real parts - **Unstable®*: At least one eigenvalue has positive real
part - **Neutrally stable**: All eigenvalues have non-positive real parts, with at least one having
zero real part

2.4: Pendulum Equilibria The nonlinear pendulum equation is:

d?6 g .
W‘FYSIHHZO (29)
Converting to a system with z; = 0, 2o = %:

da;l

hated 30
at (30)
d

% = —% sin 1 (31)

Equilibria occur at (nm,0) for integer n.

The Jacobian is:
0 1
J= (—517 COSs 1 0) (32)

At (0,0): J = (—O/Z é) with eigenvalues +iy/g/l (center)
At (m,0): J = (g(}l (1)) with eigenvalues +4/¢/l (saddle)

ODE Lecture Notes Francisco Richter

1.0.14 Applications and Examples
1.0.15 Coupled Oscillators

Two masses connected by springs provide a fundamental example of coupled dynamics:

d*z

7721?21 = —kix1 — ka(x1 — x2) (33)
d?z

mQWf = —ngCQ — kQ (:EQ — .7,'1) (34)

Converting to first-order form with x = (21, &1, 29, 42)7:

0 1 0 0

ki+k k
CLX: S 0 nr 0 x (35)
dt 0 0 0 1

k katk

A

The eigenvalues determine the normal mode frequencies of the coupled system.

1.0.16 Epidemiological Models

The SIR (Susceptible-Infected-Recovered) model for disease spread is:

ds
dI
dR

where S, I, and R are the numbers of susceptible, infected, and recovered individuals, respec-
tively.

Since S + I + R = N (constant total population), this reduces to a two-dimensional system in
the (S, I) plane.

1.0.17 Chemical Reaction Networks

Consider the autocatalytic reaction scheme:

A+ X —2X (39)
X—->B (40)
The rate equations are:
d[A] _
W = hAIx) (41)
X~ hAIX) ~ kalx) (12)
d[B] _
T ka[X] (43)

If [A] is held constant (large reservoir), this becomes a two-dimensional system that can exhibit
bistability or oscillations depending on parameters.

ODE Lecture Notes Francisco Richter

1.0.18 Numerical Methods for Systems

Numerical methods for scalar equations extend naturally to systems. For the system % = f(t,x),
Euler’s method becomes:
Xni1 =Xp +h- f(tna Xn) (44)

Similarly, the fourth-order Runge-Kutta method extends to:

k1 = hf(tn, %) (45)
ko = hf(t, + h/2, %, + k1/2) (46)
ks = hf(t, + h/2,%, + K2/2) (47)
k4 = hf(t, + h, x, + k3) (48)
Xp+1 = Xp + E(kl + 2ko + 2k3 + k4) (49)

1.0.19 Computational Considerations

When implementing numerical methods for systems, several factors become important:

1. **Computational cost™*: Scales with system dimension 2. **Memory requirements**: Stor-
age for multiple vectors 3. **Stability**: Numerical stability can depend on system properties 4.
**Conservation laws™*: Some systems conserve energy or other quantities

Computational Note: The file lecture2.py includes implementations of numerical methods
for systems, phase portrait generation, and analysis tools for the examples discussed in this lecture.

This second lecture has extended our understanding from scalar equations to systems of differ-
ential equations, opening up the rich world of multidimensional dynamics:

Systems Framework: Any differential equation can be written as a first-order system, pro-
viding a unified approach to studying all differential equations. The vector field perspective gives
geometric insight into solution behavior.

Phase Space Analysis: The phase space provides a complete description of system behavior.
Trajectories, nullclines, and direction fields are powerful tools for understanding dynamics without
explicit solutions.

Linear Systems: Constant coefficient linear systems can be solved completely using eigenvalue
analysis. The eigenvalues and eigenvectors determine the qualitative behavior near equilibria.

Equilibria and Stability: Equilibrium points and their stability properties organize the global
behavior of dynamical systems. Linearization provides local stability information that often deter-
mines global behavior.

Applications: Systems of differential equations model coupled phenomena across science and
engineering. The examples of oscillators, epidemics, and chemical reactions illustrate the breadth
of applications.

Numerical Methods: Computational methods extend naturally to systems, though compu-
tational cost and stability considerations become more important in higher dimensions.

The geometric perspective developed in this lecture provides the foundation for understanding
more complex phenomena like bifurcations, chaos, and strange attractors that we will explore in
later lectures. The interplay between local analysis (near equilibria) and global behavior (phase
portraits) is a central theme in dynamical systems theory.

Computational Companion: All examples, phase portraits, and numerical methods discussed
in this lecture are implemented in lecture2.py. The code includes interactive tools for exploring
parameter dependence and visualizing high-dimensional projections.

	Lecture 2: Systems of First-Order Equations
	Introduction to Systems
	Reduction of Higher-Order Equations
	Existence and Uniqueness for Systems
	Phase Space and Trajectories
	Autonomous Systems
	Two-Dimensional Systems
	Nullclines and Flow Analysis
	Direction Fields for Systems
	Linear Systems
	Constant Coefficient Systems
	Eigenvalue Analysis
	Equilibria and Linearization
	Linear Stability Analysis
	Applications and Examples
	Coupled Oscillators
	Epidemiological Models
	Chemical Reaction Networks
	Numerical Methods for Systems
	Computational Considerations

