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1 Lecture 1: Introduction and First-Order Equations

1.0.1 Introduction to Differential Equations

Differential equations form the mathematical foundation for describing change and evolution in nat-
ural and engineered systems. From the motion of planets to the dynamics of neural networks, from
population growth to financial markets, differential equations provide the language for modeling
how quantities vary with respect to time, space, or other independent variables.

An ordinary differential equation (ODE) is an equation involving an unknown function and its
derivatives with respect to a single independent variable. The general form of an n-th order ODE
is:

F
(
t, y, y′, y′′, . . . , y(n)

)
= 0 (1)

where y = y(t) is the unknown function, t is the independent variable (often representing time),
and y(k) denotes the k-th derivative of y with respect to t.

The order of a differential equation is the highest derivative that appears in the equation. The
degree is the power of the highest-order derivative when the equation is written as a polynomial in
the derivatives. Most equations we encounter are first-degree, meaning they are linear in the highest
derivative.

1.0.2 Classification of Differential Equations

Differential equations can be classified in several important ways:
Order: First-order equations involve only the first derivative, second-order equations involve up

to the second derivative, and so forth. Higher-order equations often arise from physical principles
involving acceleration (second derivatives) or higher-order effects.

Linearity: A differential equation is linear if it can be written in the form:

an(t)y
(n) + an−1(t)y

(n−1) + · · ·+ a1(t)y
′ + a0(t)y = g(t) (2)

If g(t) = 0, the equation is homogeneous; otherwise, it is nonhomogeneous. Linear equations
have the crucial property that linear combinations of solutions are also solutions (superposition
principle).

Autonomy: An autonomous equation does not explicitly depend on the independent variable.
For first-order equations, this means dy

dt = f(y) rather than dy
dt = f(t, y). Autonomous equations

have special geometric properties that simplify their analysis.
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Figure 1: Direction fields for various first-order ODEs showing the geometric interpretation of
differential equations. Each arrow indicates the slope dy/dx at that point, providing visual insight
into solution behavior.

1.0.3 Existence and Uniqueness Theory

Before attempting to solve differential equations, we must understand when solutions exist and
when they are unique. This fundamental question was answered by a series of theorems developed
in the late 19th and early 20th centuries.

1.1: Picard-Lindelöf Theorem Consider the initial value problem:

dy

dt
= f(t, y) (3)

y(t0) = y0 (4)

If f(t, y) and ∂f
∂y are continuous in a rectangle R = {(t, y) : |t− t0| ≤ a, |y− y0| ≤ b}, then there

exists a positive number h ≤ min(a, b/M) where M = max(t,y)∈R |f(t, y)|, such that the initial value
problem has a unique solution y(t) for t ∈ [t0 − h, t0 + h].

This theorem guarantees both existence and uniqueness of solutions under reasonable continuity
conditions. The proof, which we outline here, uses the method of successive approximations (Picard
iteration).
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Proof Outline: We convert the differential equation to an equivalent integral equation:

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds (5)

We then define a sequence of functions:

y0(t) = y0 (6)

yn+1(t) = y0 +

∫ t

t0

f(s, yn(s)) ds (7)

Under the given conditions, this sequence converges uniformly to the unique solution.
The geometric interpretation of this theorem is profound: through each point (t0, y0) in the

domain where the conditions are satisfied, there passes exactly one solution curve. This means that
solution curves cannot cross each other, a fact that has important implications for the qualitative
behavior of solutions.

1.0.4 Failure of Uniqueness

When the conditions of the Picard-Lindelöf theorem are not met, uniqueness can fail dramatically.

1.1: Non-unique Solutions Consider the initial value problem:

dy

dt
= 3y2/3 (8)

y(0) = 0 (9)

The function f(t, y) = 3y2/3 is continuous everywhere, but ∂f
∂y = 2y−1/3 is not continuous at

y = 0. This equation has infinitely many solutions:

y(t) =

{
0 for t ≤ c

(t− c)3 for t > c
(10)

for any c ≥ 0.

This example illustrates why the continuity of the partial derivative is crucial for uniqueness.

1.0.5 Geometric Interpretation: Direction Fields

One of the most powerful tools for understanding first-order differential equations is the geometric
approach using direction fields (also called slope fields). This method provides visual insight into
solution behavior without requiring explicit solutions.

For the differential equation dy
dt = f(t, y), the direction field is constructed by drawing short

line segments with slope f(t, y) at each point (t, y) in the ty-plane. These segments indicate the
direction that solution curves must follow at each point.

The construction process involves:
1. Choose a grid of points (ti, yj) in the region of interest 2. At each point, calculate the slope

mij = f(ti, yj) 3. Draw a short line segment through (ti, yj) with slope mij 4. The collection of all
these segments forms the direction field

Solution curves are then tangent to the direction field at every point. This allows us to sketch
approximate solutions by following the flow indicated by the direction field.
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1.0.6 Isoclines

Isoclines are curves along which the direction field has constant slope. For the equation dy
dt = f(t, y),

the isocline corresponding to slope m is the curve defined by:

f(t, y) = m (11)

Isoclines are particularly useful for sketching direction fields by hand, as they allow systematic
construction of regions with similar slopes.

Computational Note: The file lecture1.py contains implementations for generating direction
fields, plotting isoclines, and visualizing solution curves for various first-order equations.

1.0.7 Separable Equations

Separable equations form one of the most important classes of first-order ODEs that can be solved
analytically. These equations have the special form:

dy

dt
= g(t)h(y) (12)

where the right-hand side can be factored into a function of t times a function of y.

1.0.8 Solution Method

The solution technique involves separating variables and integrating:
1. Rewrite the equation as: dy

h(y) = g(t)dt 2. Integrate both sides:
∫ dy

h(y) =
∫
g(t)dt+C 3. Solve

for y if possible
This method works provided h(y) ̸= 0 in the region of interest. Points where h(y) = 0 correspond

to equilibrium solutions where dy
dt = 0.

1.2: Population Growth Model The logistic equation models population growth with limited
resources:

dP

dt
= rP

(
1− P

K

)
(13)

where P (t) is the population, r is the intrinsic growth rate, and K is the carrying capacity.
This is separable: dP

P (1−P/K) = rdt

Using partial fractions:
1

P (1− P/K)
=

1

P
+

1/K

1− P/K
(14)

Integrating and solving yields:

P (t) =
K

1 +
(

K
P0

− 1
)
e−rt

(15)

where P0 = P (0) is the initial population.
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Figure 2: Solutions to separable equations: (left) Linear growth dy/dx = y/x with various initial
conditions, (right) Logistic growth showing approach to carrying capacity K for different initial
populations.

1.0.9 Equilibrium Solutions and Stability

Equilibrium solutions occur where dy
dt = 0. For separable equations dy

dt = g(t)h(y), equilibria occur
where h(y) = 0 (assuming g(t) ̸= 0).

The stability of equilibria can be determined by examining the sign of h(y) near equilibrium
points:

- If h(y) > 0 for y slightly above the equilibrium and h(y) < 0 for y slightly below, the equilibrium
is stable - If the signs are reversed, the equilibrium is unstable - If h(y) has the same sign on both
sides, the equilibrium is semi-stable

1.0.10 Linear First-Order Equations

Linear first-order equations have the standard form:

dy

dt
+ p(t)y = q(t) (16)

These equations can always be solved using the integrating factor method, making them one of
the most tractable classes of differential equations.

1.0.11 Integrating Factor Method

The key insight is to multiply the equation by an integrating factor µ(t) that makes the left side a
perfect derivative:

1. Choose µ(t) = e
∫
p(t)dt 2. Multiply the equation by µ(t): µ(t)dydt + µ(t)p(t)y = µ(t)q(t) 3.

Recognize that the left side is d
dt [µ(t)y] 4. Integrate: µ(t)y =

∫
µ(t)q(t)dt + C 5. Solve for y:

y = 1
µ(t)

(∫
µ(t)q(t)dt+ C

)
1.3: RC Circuit An RC circuit with time-varying voltage source satisfies:

RC
dVC

dt
+ VC = Vin(t) (17)
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where VC is the capacitor voltage and Vin(t) is the input voltage.
Rewriting in standard form: dVC

dt + 1
RCVC = Vin(t)

RC

The integrating factor is µ(t) = et/(RC), leading to:

VC(t) = e−t/(RC)

(
VC(0) +

1

RC

∫ t

0
es/(RC)Vin(s)ds

)
(18)

Figure 3: Solutions to linear first-order equations: (left) Integrating factor method example showing
multiple solution curves, (right) Bernoulli equation solutions demonstrating nonlinear behavior that
can be linearized through substitution.

1.0.12 Homogeneous vs. Nonhomogeneous Equations

When q(t) = 0, the equation is homogeneous: dy
dt + p(t)y = 0

The solution is simply: y = Ce−
∫
p(t)dt

For the nonhomogeneous case, the general solution is the sum of: - The general solution to the
homogeneous equation (complementary solution) - Any particular solution to the nonhomogeneous
equation

This structure reflects the linearity of the equation and will be a recurring theme throughout
our study of linear differential equations.

1.0.13 Applications and Modeling

Differential equations arise naturally in modeling dynamic processes across all areas of science and
engineering. The key to successful modeling is identifying the fundamental principles that govern
the system’s behavior and translating them into mathematical relationships.

1.0.14 Newton’s Law of Cooling

Newton’s law of cooling states that the rate of temperature change is proportional to the temperature
difference between an object and its environment:

dT

dt
= −k(T − Tenv) (19)
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where T (t) is the object’s temperature, Tenv is the environmental temperature, and k > 0 is the
cooling constant.

This is a linear first-order equation with solution:

T (t) = Tenv + (T0 − Tenv)e
−kt (20)

The solution shows exponential decay toward the environmental temperature, with time constant
τ = 1/k.

1.0.15 Chemical Kinetics

Many chemical reactions follow first-order kinetics, where the reaction rate is proportional to the
concentration of reactant:

d[A]

dt
= −k[A] (21)

This gives exponential decay: [A](t) = [A]0e
−kt

The half-life of the reaction is t1/2 =
ln 2
k , independent of the initial concentration.

1.0.16 Radioactive Decay

Radioactive decay follows the same mathematical model as first-order chemical kinetics:

dN

dt
= −λN (22)

where N(t) is the number of radioactive nuclei and λ is the decay constant.
The solution N(t) = N0e

−λt leads to the concept of half-life: t1/2 =
ln 2
λ .

1.0.17 Numerical Considerations

While analytical solutions provide exact answers and theoretical insight, many differential equations
cannot be solved in closed form. Numerical methods bridge this gap by providing approximate
solutions with controlled accuracy.

For first-order equations dy
dt = f(t, y) with initial condition y(t0) = y0, the simplest numerical

method is Euler’s method:

yn+1 = yn + h · f(tn, yn) (23)

where h is the step size and yn ≈ y(tn) with tn = t0 + nh.
Euler’s method has a geometric interpretation: at each step, we follow the tangent line (given

by the direction field) for a distance h. The accuracy depends on the step size, with smaller steps
generally giving better approximations.

More sophisticated methods like Runge-Kutta achieve higher accuracy by evaluating the deriva-
tive at multiple points within each step.

Computational Note: The file lecture1.py includes implementations of Euler’s method,
improved Euler method, and fourth-order Runge-Kutta method, along with error analysis and
comparison studies.

This first lecture has established the fundamental concepts that will guide our study of differ-
ential equations:
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Existence and Uniqueness: The Picard-Lindelöf theorem provides conditions under which
initial value problems have unique solutions. Understanding when solutions exist and are unique is
crucial for both theoretical analysis and practical applications.

Geometric Perspective: Direction fields provide visual insight into solution behavior and help
develop intuition about differential equations. This geometric viewpoint complements analytical
methods and is especially valuable for nonlinear equations.

Analytical Methods: Separable equations and linear first-order equations represent impor-
tant classes that can be solved exactly. The methods developed here—separation of variables and
integrating factors—are fundamental techniques that extend to more complex situations.

Applications: Differential equations provide the mathematical framework for modeling change
in natural and engineered systems. The examples of population growth, cooling, chemical kinetics,
and radioactive decay illustrate how mathematical principles translate into practical insights.

Numerical Methods: When analytical solutions are not available, numerical methods provide
approximate solutions. Understanding the relationship between analytical and numerical approaches
is essential for modern scientific computing.

The concepts introduced in this lecture form the foundation for everything that follows. In the
next lecture, we will extend these ideas to systems of first-order equations and explore the rich
geometric structure that emerges in higher dimensions.

Computational Companion: All examples, visualizations, and numerical methods discussed
in this lecture are implemented in lecture1.py. Students are encouraged to run and modify these
examples to deepen their understanding of the theoretical concepts.
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