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Preface to the Nine Lectures Edition

This edition of Ordinary Differential Equations is structured as nine focused lectures
designed for a graduate course in the Master’s programs in Artificial Intelligence and
Computational Science at Universita della Svizzera italiana. Each lecture builds sys-
tematically on previous material while introducing new concepts and applications that
connect classical ODE theory to contemporary computational science.

The nine-lecture format follows a carefully designed progression that balances theo-
retical depth with practical applications. The 2+2+2+4241 structure allows for natural
groupings of related material while providing flexibility for different course schedules and
emphases.

Course Organization

Block 1: Foundations (Lectures 1-2) establishes the theoretical foundation with ex-
istence and uniqueness theory, geometric interpretation, and analytical solution methods
for first-order equations and systems.

Block 2: Linear Systems (Lectures 3-4) develops the complete theory of linear
systems using matrix methods, eigenvalue analysis, and applications to physical systems.

Block 3: Nonlinear Dynamics (Lectures 5-6) explores the rich phenomena of
nonlinear systems including bifurcations, chaos, and stability analysis.

Block 4: Methods and Applications (Lectures 7-8) covers numerical methods
and detailed applications across science and engineering disciplines.

Block 5: Advanced Topics (Lecture 9) introduces current research areas including
Neural ODEs, stochastic differential equations, and connections to machine learning.

Computational Integration

Each lecture is accompanied by a comprehensive Python file containing all computational
examples, visualizations, and implementations. These files are designed to be:

e Self-contained: Each lecture file can be run independently
e Educational: Code is thoroughly documented with mathematical explanations

e Extensible: Students can modify and extend examples for exploration
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e Professional: Code follows best practices for scientific computing

The separation of theoretical content (in the PDF) from computational content (in
Python files) allows students to focus on mathematical concepts during lectures while
having immediate access to implementations for hands-on exploration.

Prerequisites and Learning Objectives

Students should have completed undergraduate courses in calculus, linear algebra, and
basic differential equations. Familiarity with Python programming is helpful but not
required, as the computational components are designed to be accessible to students with
minimal programming experience.

Upon completion of these nine lectures, students will have mastered both the theoret-
ical foundations and computational techniques necessary for advanced work in dynamical
systems, mathematical modeling, and applications to artificial intelligence and computa-
tional science.

Faculty of Informatics
Universita della Svizzera italiana
Lugano, Switzerland

August 2025



Chapter 1

Lecture 1: Introduction and First-Order
Equations

1.1 Introduction to Differential Equations

Differential equations form the mathematical foundation for describing change and evo-
lution in natural and engineered systems. From the motion of planets to the dynamics
of neural networks, from population growth to financial markets, differential equations
provide the language for modeling how quantities vary with respect to time, space, or
other independent variables.

An ordinary differential equation (ODE) is an equation involving an unknown function
and its derivatives with respect to a single independent variable. The general form of an
n-th order ODE is:

F(t,y,y',y”,...,y(”)) =0 (1.1)

where y = y(t) is the unknown function, ¢ is the independent variable (often repre-
senting time), and y*) denotes the k-th derivative of y with respect to ¢.

The order of a differential equation is the highest derivative that appears in the equa-
tion. The degree is the power of the highest-order derivative when the equation is written
as a polynomial in the derivatives. Most equations we encounter are first-degree, meaning
they are linear in the highest derivative.

1.1.1 Classification of Differential Equations

Differential equations can be classified in several important ways:

Order: First-order equations involve only the first derivative, second-order equations
involve up to the second derivative, and so forth. Higher-order equations often arise from
physical principles involving acceleration (second derivatives) or higher-order effects.

Linearity: A differential equation is linear if it can be written in the form:

an(®Y"™ + a1y + -+ a ()Y + ao(t)y = g(2) (1.2)
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Figure 1.1: Direction fields for various first-order ODEs showing the geometric inter-
pretation of differential equations. Each arrow indicates the slope dy/dx at that point,

providing visual insight into solution behavior.

0, the equation is homogeneous; otherwise, it is nonhomogeneous. Linear

If g(t)
equations have the crucial property that linear combinations of solutions are also solutions

(superposition principle).

An autonomous equation does not explicitly depend on the indepen-

Autonomy
dent variable. For first-order equations, this means %

= f(t,y).

dy
dt

f(y) rather than

Autonomous equations have special geometric properties that simplify their analysis.

1.2 Existence and Uniqueness Theory

Before attempting to solve differential equations, we must understand when solutions

exist and when they are unique. This fundamental question was answered by a series of

theorems developed in the late 19th and early 20th centuries.



1.2. EXISTENCE AND UNIQUENESS THEORY

1.1: Picard-Lindel6f Theorem Consider the initial value problem:

Y stw) (1.3
y(to) = yo (1.4)

If f(t,y) and g—i are continuous in a rectangle R = {(t,y) : |t — to| < a, |y — yo| < b},
then there exists a positive number h < min(a, b/M) where M = max y)cr | f(t,y)], such
that the initial value problem has a unique solution y(t) for t € [ty — h,ty + h].

This theorem guarantees both existence and uniqueness of solutions under reasonable
continuity conditions. The proof, which we outline here, uses the method of successive
approximations (Picard iteration).

Proof Outline: We convert the differential equation to an equivalent integral equa-
tion:

t
vty =w+ [ Fsulo)ds (15)
to
We then define a sequence of functions:

Yo(t) = 1o (1.6)
%H@=m+[f@%@m5 (1.7)

Under the given conditions, this sequence converges uniformly to the unique solution.

The geometric interpretation of this theorem is profound: through each point (%o, yo) in
the domain where the conditions are satisfied, there passes exactly one solution curve. This
means that solution curves cannot cross each other, a fact that has important implications
for the qualitative behavior of solutions.

1.2.1 Failure of Uniqueness

When the conditions of the Picard-Lindel6f theorem are not met, uniqueness can fail
dramatically.

1.1: Non-unique Solutions Consider the initial value problem:

% = 3y?/3 (1.8)
y(0) =0 (1.9)

~1/3

The function f(t,y) = 3y*/® is continuous everywhere, but % =2y is not, contin-

uous at y = 0. This equation has infinitely many solutions:

0 fort <ec
t) = - 1.10
y(t) {(t—c)3 for t > ¢ (1.10)

for any ¢ > 0.

This example illustrates why the continuity of the partial derivative is crucial for
uniqueness.
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1.3 Geometric Interpretation: Direction Fields

One of the most powerful tools for understanding first-order differential equations is the
geometric approach using direction fields (also called slope fields). This method provides
visual insight into solution behavior without requiring explicit solutions.

For the differential equation % = f(t,y), the direction field is constructed by drawing
short line segments with slope f(t,y) at each point (¢, y) in the ty-plane. These segments
indicate the direction that solution curves must follow at each point.

The construction process involves:

1. Choose a grid of points (¢;,y;) in the region of interest 2. At each point, calculate
the slope m;; = f(t;,y;) 3. Draw a short line segment through (¢;,y;) with slope m;; 4.
The collection of all these segments forms the direction field

Solution curves are then tangent to the direction field at every point. This allows us
to sketch approximate solutions by following the flow indicated by the direction field.

1.3.1 Isoclines

Isoclines are curves along which the direction field has constant slope. For the equation
dy — f (t,y), the isocline corresponding to slope m is the curve defined by:

dt
fty)=m (1.11)

Isoclines are particularly useful for sketching direction fields by hand, as they allow
systematic construction of regions with similar slopes.

Computational Note: The file lecturel.py contains implementations for generat-
ing direction fields, plotting isoclines, and visualizing solution curves for various first-order
equations.

1.4 Separable Equations

Separable equations form one of the most important classes of first-order ODEs that can
be solved analytically. These equations have the special form:

Y y(tn(y) (112

where the right-hand side can be factored into a function of ¢ times a function of y.

1.4.1 Solution Method

The solution technique involves separating variables and integrating:
1. Rewrite the equation as: % = g(t)dt 2. Integrate both sides: [ % = [gt)dt+C
3. Solve for y if possible
This method works provided h(y) # 0 iI}l the region of interest. Points where h(y) =0
y

correspond to equilibrium solutions where 3¢ = 0.



1.4. SEPARABLE EQUATIONS

1.2: Population Growth Model The logistic equation models population growth with
limited resources:

dP P

—=rP(1—— 1.13
a ( K) (1.13)
where P(t) is the population, r is the intrinsic growth rate, and K is the carrying

capacity.
This is separable: % = rdt
Using partial fractions:

1 1 1/K
PI—P/K) P 1-P/K (1.14)

Integrating and solving yields:

K
P(t) = -
1 + (FO — 1> 67”

where Py = P(0) is the initial population.

(1.15)

Solutions to dy/dx = y/x Logistic Growth: dy/dt = ry(1 - y/K)

IS
5

sl aNaNala)
[T T TR TR
U wN = O

y(t)

— Y0=0.5
Yo=1
— y0=2
— y0=5
— YQ=8
—_— Yo=12
=== Carrying capacity K

0 1 2 3 4 5 0 2 4 6 8 10

Figure 1.2: Solutions to separable equations: (left) Linear growth dy/dx = y/x with
various initial conditions, (right) Logistic growth showing approach to carrying capacity
K for different initial populations.

1.4.2 Equilibrium Solutions and Stability

Equilibrium solutions occur where % = 0. For separable equations % = g(t)h(y), equi-

libria occur where h(y) = 0 (assuming g(t) # 0). "

The stability of equilibria can be determined by examining the sign of h(y) near
equilibrium points:

- If h(y) > 0 for y slightly above the equilibrium and h(y) < 0 for y slightly below,
the equilibrium is stable - If the signs are reversed, the equilibrium is unstable - If h(y)
has the same sign on both sides, the equilibrium is semi-stable
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1.5 Linear First-Order Equations
Linear first-order equations have the standard form:

Y 4 plt)y = alt) (1.16)

These equations can always be solved using the integrating factor method, making
them one of the most tractable classes of differential equations.

1.5.1 Integrating Factor Method

The key insight is to multiply the equation by an integrating factor u(t) that makes the
left side a perfect derivative:

1. Choose pu(t) = e/P®4 2 Multiply the equation by u(t): ,u(t) + (t) (t)y =
wu(t)q(t) 3. Recognize that the left side is 4[u(t)y] 4. Integrate: u(t)y = f,u (t)q(t)dt + C
5. Solve for y: y = (fu dt+C)

1.3: RC Circuit An RC circuit with time-varying voltage source satisfies:

Rcddﬁ + Ve = Vin(t) (1.17)

where V¢ is the capacitor voltage and Vin(t) is the input voltage.
Rewriting in standard form: d(‘;c + 55 Vc = V}gé)
The integrating factor is u(t) = e/ ) , leading to:

Vo(t) = e~ t/(RC) <VC(O) RIC /Ot es/(Rc)Vm(s)ds) (1.18)

1.5.2 Homogeneous vs. Nonhomogeneous Equations

When ¢(t) = 0, the equation is homogeneous: % + p(t)y = 0

The solution is simply: y = Ce~ /Pt

For the nonhomogeneous case, the general solution is the sum of: - The general solution
to the homogeneous equation (complementary solution) - Any particular solution to the
nonhomogeneous equation

This structure reflects the linearity of the equation and will be a recurring theme
throughout our study of linear differential equations.

1.6 Applications and Modeling

Differential equations arise naturally in modeling dynamic processes across all areas of
science and engineering. The key to successful modeling is identifying the fundamental
principles that govern the system’s behavior and translating them into mathematical
relationships.
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1.6. APPLICATIONS AND MODELING
dy/dt + 2y = e/\(-t)
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Figure 1.3: Solutions to linear first-order equations: (left) Integrating factor method

example showing multiple solution curves, (right) Bernoulli equation solutions demon-
strating nonlinear behavior that can be linearized through substitution.

1.6.1 Newton’s Law of Cooling

Newton’s law of cooling states that the rate of temperature change is proportional to the
temperature difference between an object and its environment:

dr
— = —k(T — Teny
o ( )

(1.19)
where T'(t) is the object’s temperature, T,,, is the environmental temperature, and
k > 0 is the cooling constant.

This is a linear first-order equation with solution:

T(t) - Tenv + (TO - Tenv)e_kt

(1.20)
The solution shows exponential decay toward the environmental temperature, with
time constant 7 = 1/k.

1.6.2 Chemical Kinetics

Many chemical reactions follow first-order kinetics, where the reaction rate is proportional
to the concentration of reactant:

d[A]
= —k[A 1.21
dt 4 (1.21)
This gives exponential decay: [A](t) = [A]pe ™
The half-life of the reaction is t1/, = 22

.~ independent of the initial concentration.
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1.6.3 Radioactive Decay

Radioactive decay follows the same mathematical model as first-order chemical kinetics:

dN
—— = -AN 1.22
o (1.22)

where N(t) is the number of radioactive nuclei and A is the decay constant.
The solution N(t) = Nye ! leads to the concept of half-life: ¢, /2= %

1.7 Numerical Considerations

While analytical solutions provide exact answers and theoretical insight, many differen-
tial equations cannot be solved in closed form. Numerical methods bridge this gap by
providing approximate solutions with controlled accuracy.

dy

For first-order equations %Y = f(t,y) with initial condition y(ty) = yo, the simplest

numerical method is Euler’s method:

Yn+1 = Yo+ f(tn, yn) (1.23)

where h is the step size and y,, =~ y(t,,) with t,, =ty + nh.

Euler’s method has a geometric interpretation: at each step, we follow the tangent
line (given by the direction field) for a distance h. The accuracy depends on the step size,
with smaller steps generally giving better approximations.

More sophisticated methods like Runge-Kutta achieve higher accuracy by evaluating
the derivative at multiple points within each step.

Computational Note: The file lecturel.py includes implementations of Euler’s
method, improved Euler method, and fourth-order Runge-Kutta method, along with error
analysis and comparison studies.

1.8 Chapter Summary

This first lecture has established the fundamental concepts that will guide our study of
differential equations:

Existence and Uniqueness: The Picard-Lindel6f theorem provides conditions under
which initial value problems have unique solutions. Understanding when solutions exist
and are unique is crucial for both theoretical analysis and practical applications.

Geometric Perspective: Direction fields provide visual insight into solution be-
havior and help develop intuition about differential equations. This geometric viewpoint
complements analytical methods and is especially valuable for nonlinear equations.

Analytical Methods: Separable equations and linear first-order equations represent
important classes that can be solved exactly. The methods developed here—separation
of variables and integrating factors—are fundamental techniques that extend to more
complex situations.
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Applications: Differential equations provide the mathematical framework for mod-
eling change in natural and engineered systems. The examples of population growth,
cooling, chemical kinetics, and radioactive decay illustrate how mathematical principles
translate into practical insights.

Numerical Methods: When analytical solutions are not available, numerical meth-
ods provide approximate solutions. Understanding the relationship between analytical
and numerical approaches is essential for modern scientific computing.

The concepts introduced in this lecture form the foundation for everything that follows.
In the next lecture, we will extend these ideas to systems of first-order equations and
explore the rich geometric structure that emerges in higher dimensions.

Computational Companion: All examples, visualizations, and numerical methods
discussed in this lecture are implemented in lecturel.py. Students are encouraged to
run and modify these examples to deepen their understanding of the theoretical concepts.
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Chapter 2

Lecture 2: Systems of First-Order Equa-
tions

2.1 Introduction to Systems

Many phenomena in science and engineering involve multiple interacting quantities that
change simultaneously. A predator-prey ecosystem involves both predator and prey pop-
ulations, a mechanical system has both position and velocity, and an electrical circuit
may have multiple currents and voltages. Such situations naturally lead to systems of
differential equations.

A system of first-order differential equations has the general form:

dl’l

E:fl(taxlaxQ)"'axn> (21)

dz

d_; = fQ(t,l'l,fL'Q, s 7$n) (22)
: (2.3)

dxn—f(ta:x Tn) (2.4)

dt — Jn\by L1, L2y ... 5Ln .

This can be written compactly in vector notation as:

dx

— =f(¢ 2.5

X _tx) (25)
where x = (21, %9, ..., 2,)7 is the state vector and f = (fy, fo, ..., f,)? is the vector

field.

The power of this formulation is that it reduces the study of systems to the study of
vector fields in n-dimensional space. This geometric perspective provides deep insights
into the behavior of complex dynamical systems.

11
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Figure 2.1: Examples of first-order systems: (top left) Predator-prey phase portrait show-
ing closed orbits, (top right) Population dynamics time series, (bottom left) SIR epidemic
model, (bottom right) Coupled oscillators demonstrating energy exchange.

2.1.1 Reduction of Higher-Order Equations

Any higher-order differential equation can be converted to a system of first-order equa-
tions. This reduction is fundamental because it allows us to study all differential equations

using the unified framework of first-order systems.

Consider the second-order equation:

d?y
— =F(t
dt? ( ’

nit) 26)

We introduce new variables: x1 =y and x5 = %. Then:

dx
d—tl = 2, (2.7)
dx
d_tz = F(t, x1, .172) (28)

12



2.2. EXISTENCE AND UNIQUENESS FOR SYSTEMS

This technique extends to equations of any order, always producing a system of first-
order equations with the same number of equations as the order of the original equation.

2.1: Harmonic Oscillator The equation for a harmonic oscillator is:

d*x

W + CUQ%’ =0 (29)
Setting 1 = x and xy = %, we get:

dl’l

— = 2.10

d

% S (2.11)

This system describes circular motion in the (z1,x2) phase plane with angular fre-
quency w.

2.2 Existence and Uniqueness for Systems

The existence and uniqueness theory for systems parallels that for scalar equations, but
with vector-valued functions and matrix derivatives.

2.1: Existence and Uniqueness for Systems Consider the initial value problem:

dx
— =f(t 2.12
(%) (212)
X(to) = Xp (213)
If f and the Jacobian matrix % are continuous in a neighborhood of (tg,x¢), then

there exists a unique solution in some interval containing t.

The Jacobian matrix is:

Oh oh ... 9N
8:21 822 afvn
Of2 9f2 . . Of
ﬁ _ oz Oxo OTn (2 14)
Ox S '
Ofn  Ofn .. Ofn
Ox1 Oxo Ozxn

This theorem guarantees that through each point in the domain, there passes exactly
one solution trajectory. This means that trajectories in phase space cannot cross each
other, a fundamental property that constrains the possible behavior of dynamical systems.

13
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2.3 Phase Space and Trajectories

The phase space (or state space) of a system is the space of all possible states x. For
an n-dimensional system, the phase space is R™. Each point in phase space represents a
complete specification of the system’s state at a given time.

A trajectory (or orbit) is a curve in phase space that represents the evolution of the
system over time. Starting from initial condition x, at time ¢y, the trajectory is the set
of points {x(t) : t > to} where x(¢) is the solution to the initial value problem.

The vector field f(¢,x) assigns a velocity vector to each point in phase space. Trajec-
tories are always tangent to the vector field, flowing along the directions indicated by the
field.

2.3.1 Autonomous Systems

When the vector field does not depend explicitly on time, % = f(x), the system is

autonomous. Autonomous systems have special properties: "

1. **Time translation invariance™*: If x(t) is a solution, then x(¢+c¢) is also a solution
for any constant c.

2. **Unique trajectories**: Each trajectory is determined entirely by its initial point,
independent of the starting time.

3. **Phase portraits**: The collection of trajectories in phase space forms a phase
portrait that completely characterizes the system’s behavior.

For autonomous systems, we can think of the vector field as defining a flow in phase
space, like the flow of a fluid. Trajectories are the streamlines of this flow.

2.4 Two-Dimensional Systems

Two-dimensional systems provide the richest setting for developing geometric intuition
while remaining visualizable. The general autonomous system in the plane is:

dx

® — fay) (2.15)
Y~ y(ey) (2.16)

2.4.1 Nullclines and Flow Analysis

Nullclines are curves where one component of the velocity vector vanishes: - **z-nullclines™*:

curves where f(x,y) =0, so fl—f = 0 - **y-nullclines™*: curves where g(x,y) = 0, so % =
Nullclines divide the phase plane into regions where the flow has consistent direction.
On z-nullclines, trajectories move purely vertically; on y-nullclines, they move purely
horizontally.
Equilibrium points occur at intersections of z- and y-nullclines, where both f(z,y) =0

and g(z,y) = 0.

14



2.4. TWO-DIMENSIONAL SYSTEMS

2.2: Predator-Prey System The Lotka-Volterra predator-prey model is:

dx

i bxy (2.17)
d
d—i{ = —cy +day (2.18)

where x is prey population, y is predator population, and a, b, c,d > 0.
The nullclines are: - z-nullclines: z = 0 and y = a/b - y-nullclines: y = 0 and x = ¢/d
Equilibria occur at (0,0) and (¢/d, a/b).

Nullclines and Equilibria Competition Model

4.0

10 T
= x-nullcline (x=0) \ . = x-nullcline
3.5 === x-nulicline (y=2.0) \ \ = y-nullcline
== y-nullcline (y=0) 8
3.0 = y-nullcline (x=3.0) .
. ) @ Extinction equilibrium = D
2.5 - @ Coexistence equilibrium = 6l P
s o~
220 (4 s
Rl 3 (9}
8 a y 8_ N f /7
& 151 2 o/
7
101 N AT A AP P
VAR AR A A e
0.5
A S —
0.0 0
0 1 2 3 4 5 6 0 2 4 6 8 10 12
Prey (x) Species 1 (x)

Figure 2.2: Nullclines and phase flow analysis: (left) Predator-prey system showing null-
clines, equilibria, and direction field with closed orbits, (right) Competition model demon-
strating different equilibrium types and flow patterns.

2.4.2 Direction Fields for Systems

The direction field for a two-dimensional system assigns a direction vector (f(x,y), g(z,y))
to each point (z,y) in the plane. This generalizes the direction field concept from scalar
equations.

Constructing the direction field involves: 1. Choose a grid of points (x;,y;) 2. At
each point, calculate the direction vector (f(z;,y;),g(z;,y;)) 3. Draw an arrow in this
direction (usually normalized for visibility) 4. Trajectories flow along the direction field

The direction field provides immediate visual information about the system’s behavior
without solving the equations explicitly.

Computational Note: The file lecture2.py contains comprehensive tools for gen-
erating direction fields, plotting nullclines, and visualizing trajectories for two-dimensional
systems.
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2.5 Linear Systems

Linear systems form a special class where complete analytical solutions are possible. A
linear system has the form:

— =A(t)x + b(t) (2.19)
where A(t) is an n X n matrix and b(¢) is an n-dimensional vector.

When b(t) = 0, the system is homogeneous:

dx

= Ax (2.20)

2.5.1 Constant Coefficient Systems

When A is constant, the system becomes:

dx

—=A 2.21
il (2.21)

The solution involves the matrix exponential:
x(t) = eAlx (2.22)

L . .
where e = > % is the matrix exponential.

2.5.2 Eigenvalue Analysis

For constant coefficient linear systems, the behavior is determined by the eigenvalues and
eigenvectors of matrix A.

If A has eigenvalue A with eigenvector v, then x(¢) = e*v is a solution. This gives:
- **Real eigenvalues™: Exponential growth (A > 0) or decay (A < 0) along eigenvector
directions - **Complex eigenvalues™*: Spiral motion with exponential growth or decay

A

2.3: Two-Dimensional Linear System Consider:
dx 1 2
The characteristic equation is:

det(A—=A)=(1-XN)2-)N)—-6=X—-31—-4=0 (2.24)

Eigenvalues: A\ =4, \y = —1

Eigenvectors: v; = (2), Vo = <_11)

General solution:
x(t) = cre* (;) + cpe”" (_11> (2.25)

16



2.6. EQUILIBRIA AND LINEARIZATION

2.6 Equilibria and Linearization

Equilibrium points (also called fixed points or critical points) are constant solutions where
dx
& =0.

dt
dx

For the autonomous system ¢ = f(x), equilibria satisfy:

f(x*) = 0 (2.26)

2.6.1 Linear Stability Analysis

Near an equilibrium x*, we can approximate the nonlinear system by its linearization.
Let u = x — x* be the displacement from equilibrium. Then:

d
d—lz = J(x")u + higher order terms (2.27)
where J(x*) = %‘ is the Jacobian matrix evaluated at the equilibrium.

——

For small displacer);l?e);lts, the linear approximation dominates:

du

dt "~

The stability of the equilibrium is determined by the eigenvalues of the Jacobian: -

**Stable**: All eigenvalues have negative real parts - **Unstable™*: At least one eigen-

value has positive real part - **Neutrally stable®*: All eigenvalues have non-positive real
parts, with at least one having zero real part

J(x")u (2.28)

2.4: Pendulum Equilibria The nonlinear pendulum equation is:

d*6
Converting to a system with x; =60, x5 = %:

d

% = 2 (2.30)

dz, g .

E = —7 SN T'q (231)
Equilibria occur at (nm,0) for integer n.
The Jacobian is:

0 1
J= (_%Cowl 0) (2.32)
0 1 . . .

At (0,0): J = (—g/l 0) with eigenvalues +i4/¢/l (center)

At (m,0): J = (g(}l (1)> with eigenvalues ++/g/l (saddle)

17
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2.7 Applications and Examples

2.7.1 Coupled Oscillators

Two masses connected by springs provide a fundamental example of coupled dynamics:

d2$1
mlm = —klﬂil — kg(.fl)'l — 33'2) (233)
d*x
2 dt22 == —k'g.ﬁI?Q — kz(l’z — 33'1) (234)

Converting to first-order form with x = (zy, &1, T2, 79)":

0 1 0 0

dx |-tk koo
E: 6”1 0 "61 1 X (235)
R

The eigenvalues determine the normal mode frequencies of the coupled system.

2.7.2 Epidemiological Models

The SIR (Susceptible-Infected-Recovered) model for disease spread is:

% = —BSI (2.36)
I

% = BSI — I (2.37)

dR

— =l (2.38)

where S, I, and R are the numbers of susceptible, infected, and recovered individuals,
respectively.

Since S+ I + R = N (constant total population), this reduces to a two-dimensional
system in the (S, I) plane.

2.7.3 Chemical Reaction Networks

Consider the autocatalytic reaction scheme:

A+ X —2X (2.39)
X > B (2.40)

18



2.8. NUMERICAL METHODS FOR SYSTEMS

The rate equations are:

% = —k[A][X] (2.41)
A k[ 4)X] - alx) (2.42)
d[B]

= = ho[X] (2.43)

If [A] is held constant (large reservoir), this becomes a two-dimensional system that
can exhibit bistability or oscillations depending on parameters.

2.8 Numerical Methods for Systems

Numerical methods for scalar equations extend naturally to systems. For the system

&x — £(¢,x), Euler’s method becomes:

Xpi1 = Xy + b £, x,) (2.44)

Similarly, the fourth-order Runge-Kutta method extends to:

k1 = hf(tn, %) (2.45)
— hE(t, + 72, %, + k1/2) (2.46)

= hf(t, + h/2,x, +ko/2) (2.47)

= hE(t, + h, % + k) (2.48)

Xnp+1 = Xp, + g(kl + 2k2 + 2k3 -+ k4) (249)

2.8.1 Computational Considerations

When implementing numerical methods for systems, several factors become important:

1. **Computational cost**: Scales with system dimension 2. **Memory require-
ments™*: Storage for multiple vectors 3. **Stability**: Numerical stability can depend
on system properties 4. **Conservation laws**: Some systems conserve energy or other
quantities

Computational Note: The file lecture2.py includes implementations of numeri-
cal methods for systems, phase portrait generation, and analysis tools for the examples
discussed in this lecture.

2.9 Chapter Summary

This second lecture has extended our understanding from scalar equations to systems of
differential equations, opening up the rich world of multidimensional dynamics:
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Systems Framework: Any differential equation can be written as a first-order sys-
tem, providing a unified approach to studying all differential equations. The vector field
perspective gives geometric insight into solution behavior.

Phase Space Analysis: The phase space provides a complete description of system
behavior. Trajectories, nullclines, and direction fields are powerful tools for understanding
dynamics without explicit solutions.

Linear Systems: Constant coefficient linear systems can be solved completely using
eigenvalue analysis. The eigenvalues and eigenvectors determine the qualitative behavior
near equilibria.

Equilibria and Stability: Equilibrium points and their stability properties organize
the global behavior of dynamical systems. Linearization provides local stability informa-
tion that often determines global behavior.

Applications: Systems of differential equations model coupled phenomena across
science and engineering. The examples of oscillators, epidemics, and chemical reactions
illustrate the breadth of applications.

Numerical Methods: Computational methods extend naturally to systems, though
computational cost and stability considerations become more important in higher dimen-
sions.

The geometric perspective developed in this lecture provides the foundation for under-
standing more complex phenomena like bifurcations, chaos, and strange attractors that
we will explore in later lectures. The interplay between local analysis (near equilibria)
and global behavior (phase portraits) is a central theme in dynamical systems theory.

Computational Companion: All examples, phase portraits, and numerical methods
discussed in this lecture are implemented in lecture2.py. The code includes interactive
tools for exploring parameter dependence and visualizing high-dimensional projections.
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Chapter 3

Lecture 3: Linear Systems and Matrix
Methods

3.1 Introduction to Linear Systems

Linear systems of differential equations form the foundation for understanding more com-
plex dynamical behavior. They arise naturally in many applications and provide the local
approximation to nonlinear systems near equilibrium points. The complete solvability of
linear systems makes them an essential stepping stone to understanding general dynamical
systems.
A linear system of differential equations has the form:
dx
— = A(t)x + b(t) (3.1)
dt
where x(t) € R" is the state vector, A(t) is an n X n matrix of coefficients, and b(t)
is an n-dimensional forcing term.
When b(t) = 0, the system is homogeneous:
dx
— =A()x 3.2
== A() (32)
The linearity of these systems means that the principle of superposition applies: if
x1(t) and x5(t) are solutions to the homogeneous system, then any linear combination
c1x1(t) 4 cox2(t) is also a solution.

3.2 Constant Coefficient Systems
The most tractable case occurs when the coefficient matrix is constant: A(t) = A. This

leads to the autonomous linear system:

dx_

A .
o X (3.3)
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Figure 3.1: Classification of linear systems by eigenvalue type: stable/unstable nodes,
saddles, spirals, and centers. Each panel shows phase portraits with eigenvector directions
and typical trajectories.

The solution to this system can be expressed using the matrix exponential:
x(t) = eAlx (3.4)

where xo = x(0) is the initial condition.

3.2.1 Matrix Exponential

The matrix exponential is defined by the convergent series:

(A1)? | (At)° (A1)
o= (3.5)
=

At
e =14+ At+ 5 + 3l o

This series converges for all finite t and any matrix A. The matrix exponential satisfies
several important properties:

e ¢ =T (identity matrix)

o %eAt — ApAt — oAtA

o cAlt+s) = eAteAs (wwhen A commutes with itself)

o (A1 = At

22



3.3. EIGENVALUE ANALYSIS

3.2.2 Computing the Matrix Exponential

While the series definition is theoretically important, practical computation of the matrix
exponential typically uses eigenvalue decomposition or other numerical methods.

Computational Note: The file lecture3.py contains implementations for comput-
ing matrix exponentials using various methods, including eigenvalue decomposition, Padé
approximation, and scaling and squaring algorithms.

3.3 Eigenvalue Analysis

The behavior of linear systems is fundamentally determined by the eigenvalues and eigen-
vectors of the coefficient matrix A.

3.1: Eigenvalues and Eigenvectors For an n X n matrix A, a scalar A is an eigenvalue
and a nonzero vector v is a corresponding eigenvector if:

Av = )\v (3.6)
The eigenvalues are the roots of the characteristic polynomial:
det(A — M) =0 (3.7)

3.3.1 Real Distinct Eigenvalues

When A has n real, distinct eigenvalues A1, Ag, ..., A\, with corresponding eigenvectors
V1, Vs, ..., V,, the general solution is:
x(t) = c1eM'vy + €' vy + - 4 ey, (3:8)
The constants ¢, co, ..., ¢, are determined by initial conditions.

3.1: Two-Dimensional System with Real Eigenvalues Consider the system:
dx 1 2

olet(l_A 2 ):(1—)\)(2—>\)—6:)\2—3/\—4:0 (3.10)

The characteristic equation is:

3 2—A
Eigenvalues: \y =4, Ay =

For A\; = 4: (A —4I)v; = 0 gives v| = (g)

For \y = —1: (A +1I)vy = 0 gives vy = ( 1)

General solution:
) =cret (g + coe” ( ) (3.11)
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3.3.2 Complex Eigenvalues

When A has complex eigenvalues, they occur in conjugate pairs for real matrices. If
A =« +if is an eigenvalue with eigenvector v = u + tw, then the real solutions are:

x1(t) = e*(ucos(ft) — wsin(j5t)) (3.12)
Xo(t) = e*(w cos(ft) + usin(ft)) (3.13)

These solutions represent spiraling motion in the phase plane, with the exponential
factor e* determining whether the spiral converges to the origin (o < 0), diverges from
it (a > 0), or maintains constant amplitude (a = 0).

3.2: System with Complex Eigenvalues Consider the system:

dx -1 2

— = <_2 _1) X (3.14)
The characteristic equation is:

det (_SA _12_ A) =(—1-AN24+4=X4+22+5=0 (3.15)

Eigenvalues: A = —1 4+ 2

For A = —1 + 27, the eigenvector is v = C) ( ) ' ((1))

Real solutions:

cos 2t

< sin(2¢ ) (3.16)
sin 2t

<cos 2t ) (3.17)

General solution:
1 cos(2t) + cosin(2t)

_
x(t) = e (—cl sin(2t) + ¢, cos(2t)> (3.18)
3.3.3 Repeated Eigenvalues

When an eigenvalue has algebraic multiplicity greater than its geometric multiplicity, we
need generalized eigenvectors to construct the complete solution.

For a repeated eigenvalue A with geometric multiplicity less than algebraic multiplicity,
we find generalized eigenvectors vy satisfying:

(A = \D)fv, =0 (3.19)

The corresponding solutions involve polynomial terms multiplied by exponentials.
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3.4 Classification of Two-Dimensional Linear Systems

For two-dimensional systems, the qualitative behavior is completely determined by the
eigenvalues of the coefficient matrix. The classification depends on the trace tr(A) =
A1 + Ay and determinant det(A) = AjAo.

3.1: Classification of 2D Linear Systems For the system % = Ax with eigenvalues

dt
)\17 )\22
Real Distinct Eigenvalues:

e Stable Node: A\, Ay < 0 (both negative)

e Unstable Node: A\, \; > 0 (both positive)

e Saddle Point: \; < 0 < Ay (opposite signs)

Complex Eigenvalues (A = a+if, § #0):

e Stable Spiral: a < 0 (negative real part)

e Unstable Spiral: a > 0 (positive real part)

e Center: a = 0 (purely imaginary)

Repeated Eigenvalues:

e Stable/Unstable Node: Complete set of eigenvectors

e Degenerate Node: Incomplete set of eigenvectors

The trace-determinant plane provides a convenient way to visualize this classification.
The parabola (tr(A))? = 4 det(A) separates regions with real eigenvalues from those with
complex eigenvalues.

3.5 Fundamental Matrix and Wronskian

For the homogeneous system 2 = Ax, a fundamental matrix ®(t) is any n X n matrix

whose columns are linearly independent solutions.

dx

o= Ax satisfies:

3.2: Fundamental Matrix A fundamental matrix ®(t) for the system

d®

— =A® 3.20
The general solution can be written as:
x(t) = ®(t)c (3.21)
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where c is a constant vector determined by initial conditions.

The Wronskian of the fundamental matrix is:

W(t) = det(®(t)) (3.22)

3.2: Abel’s Formula For the linear system % = A(t)x, the Wronskian satisfies:

W (t) = W(ty) exp ( / t tr(A(s))ds> (3.23)

to

For constant coefficient systems:

W (t) = W(0)er At (3.24)

3.6 Nonhomogeneous Linear Systems

The nonhomogeneous system has the form:

d
d—’t‘ = Ax + b(t) (3.25)

3.3: Structure of General Solution The general solution to the nonhomogeneous system
1s:
x(t) = x1(t) + %, (1 (3.26)

where x,() is the general solution to the homogeneous system and x,(¢) is any particular
solution to the nonhomogeneous system.

3.6.1 Variation of Parameters

The method of variation of parameters provides a systematic approach to finding partic-
ular solutions.

3.4: Variation of Parameters Formula If ®(¢) is a fundamental matrix for the homo-
geneous system, then a particular solution is:

t
x,(t) = B(t) / &' (s)b(s)ds (3.27)
For constant coefficient systems, this becomes:

x,(t) = eAt/ e *b(s)ds (3.28)

to
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3.6.2 Method of Undetermined Coefficients

When the forcing term b(t) has a special form (polynomial, exponential, sinusoidal, or
combinations), the method of undetermined coefficients can be more efficient than varia-
tion of parameters.

3.3: Forced Harmonic Oscillator Consider the system:

@ (—2}2 (1)) X+ (FO coos(Qt)) (3:29)

This represents a forced harmonic oscillator with natural frequency w and driving
frequency (2.
The homogeneous solution is:

xu(t) = e ( cos(wt) > + o ( sin(wt) ) (3.30)

—wsin(wt) w cos(wt)

For the particular solution, we try:

Acos(§2t) + Bsin(Qt)
Xp(t) = (C cos(Qt) + Dsin(Qt)) (3.31)

Substituting and solving yields the particular solution, which exhibits resonance when
0 =w.

3.7 Stability Theory

The stability of linear systems is completely determined by the eigenvalues of the coeffi-
cient matrix.

3.3: Stability Definitions For the linear system ij—’; = Ax:

Asymptotically Stable: All eigenvalues have negative real parts. All solutions
approach zero as t — oo.

Stable (Lyapunov): All eigenvalues have non-positive real parts, and those with
zero real part are simple. Solutions remain bounded.

Unstable: At least one eigenvalue has positive real part. Some solutions grow without
bound.

3.5: Stability Criterion for Linear Systems The linear system ‘fl—’t‘ = Ax is:

e Asymptotically stable if and only if Re();) < 0 for all eigenvalues \;

e Stable if and only if Re()\;) < 0 for all eigenvalues, with simple eigenvalues on the
imaginary axis

e Unstable if and only if Re();) > 0 for at least one eigenvalue \;
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3.8 Applications

3.8.1 Mechanical Systems

Linear mechanical systems with small displacements lead naturally to linear differential
equations. Consider a system of masses connected by springs and dampers.
The equations of motion for n masses can be written as:

Mg + Cq + Kq = £(1) (3.32)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and
f(t) is the external forcing.

Converting to first-order form with x = [q”, qT]|"

q
Cclz_j - (—Mo—lK —MI-lc) X+ (M‘(l)f(t)) (3.33)

3.8.2 Electrical Circuits

Linear electrical circuits with resistors, inductors, and capacitors lead to linear systems.
Using Kirchhoft’s laws, the circuit equations can be written in matrix form.
For a circuit with n independent loops, the equations have the form:
di

L +Ri+Qq=v(!) (3.34)

where 1 is the vector of loop currents, q is the vector of charges, and the matrices
represent inductance, resistance, and inverse capacitance effects.

3.8.3 Population Dynamics

Linear population models arise when considering small perturbations around equilibrium
populations or when interaction terms are linearized.
A general linear population model has the form:

dn
— = An 3.35
o (3.35)
where n(t) represents population densities and A contains birth rates, death rates,
and migration coefficients.
The dominant eigenvalue (largest real part) determines the long-term growth rate of

the total population.

3.9 Numerical Methods for Linear Systems

While linear systems can be solved analytically, numerical methods are important for
large systems and when coefficient matrices are known only approximately.
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3.9.1 Matrix Exponential Computation

Computing e numerically requires careful consideration of accuracy and stability. Com-
mon methods include:

1. **Eigenvalue decomposition®*: When A = PDP~!, then eA! = PeP!P!

2. **Padé approximation®™*: Rational approximation to the matrix exponential

3. **Scaling and squaring**: Use the identity et = (eAt/2")2"

3.9.2 Numerical Integration

Standard ODE solvers can be applied to linear systems, though specialized methods can
exploit the linear structure for improved efficiency and accuracy.

Computational Note: The file lecture3.py includes comprehensive implementa-
tions of matrix exponential computation, eigenvalue analysis, and numerical methods
specifically designed for linear systems.

3.10 Chapter Summary

This lecture has developed the complete theory for linear systems of differential equations:
Matrix Exponential: The solution x(t) = e®*x, provides the fundamental solution

operator for linear systems. Understanding how to compute and interpret the matrix

exponential is crucial for both theoretical analysis and practical computation.

Eigenvalue Analysis: The eigenvalues and eigenvectors of the coefficient matrix
completely determine the qualitative behavior of linear systems. This provides a powerful
tool for understanding stability, oscillations, and long-term behavior.

Classification: Two-dimensional linear systems can be completely classified based
on their eigenvalues, leading to nodes, spirals, saddles, and centers. This classification
extends to higher dimensions and provides the foundation for understanding nonlinear
systems through linearization.

Solution Methods: Both homogeneous and nonhomogeneous linear systems can be
solved systematically using eigenvalue methods, variation of parameters, and undeter-
mined coefficients. These methods provide exact solutions that serve as benchmarks for
numerical methods.

Stability Theory: Linear stability analysis provides the foundation for understand-
ing the behavior of more complex systems. The connection between eigenvalues and
stability is fundamental to dynamical systems theory.

Applications: Linear systems arise naturally in mechanical engineering, electrical
circuits, population dynamics, and many other fields. The mathematical framework de-
veloped here applies broadly across science and engineering.

The techniques developed in this lecture provide the foundation for understanding
nonlinear systems through linearization, which we will explore in subsequent lectures.
The interplay between local linear analysis and global nonlinear behavior is a central
theme in modern dynamical systems theory.
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Computational Companion: All theoretical concepts, solution methods, and appli-
cations discussed in this lecture are implemented with detailed examples in lecture3.py.
The code includes visualization tools for phase portraits, eigenvalue analysis, and stability
regions.
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Chapter 4

Lecture 4: Eigenvalue Methods and Di-
agonalization

4.1 Introduction to Eigenvalue Methods

Eigenvalue methods provide the most powerful and systematic approach to solving linear
systems of differential equations. These methods not only yield explicit solutions but
also reveal the fundamental structure underlying the system’s behavior. The eigenvalue-
eigenvector decomposition transforms complex coupled systems into collections of inde-
pendent, simpler equations.

The central idea is to find special directions in the state space—the eigenvector direc-
tions—along which the system evolves in the simplest possible way. Along these directions,
the system behaves like a one-dimensional equation with exponential solutions.

For the linear system % = Ax, we seek solutions of the form:

x(t) = veM (4.1)

where v is a constant vector and A is a constant scalar. Substituting into the differential
equation:

aveM = Avet (4.2)
This leads to the eigenvalue problem:
Av = )v (4.3)

The scalars A are eigenvalues and the corresponding vectors v are eigenvectors of
matrix A.

4.2 The Eigenvalue Problem

4.1: Eigenvalues and Eigenvectors For an n x n matrix A, a scalar A is an eigenvalue
and a nonzero vector v is a corresponding eigenvector if:

Av = )\v (4.4)
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Equivalently, (A — AI)v = 0, which has nontrivial solutions if and only if:
det(A — M) =0 (4.5)

This equation is called the characteristic equation, and its left side is the characteristic
polynomial.

4.2.1 Computing Eigenvalues
The characteristic polynomial of an n x n matrix is a polynomial of degree n:
p(A) =det(A = AI) = (=1)" A"+ oo A" L4 - F A+ (4.6)

The coefficients are related to the matrix elements through: - ¢, ; = (=1)""'tr(A)
(trace) - ¢ = det(A) (determinant)

For a 2 x 2 matrix A = ° Z :
p(A) = A* — (a+ d)X + (ad — be) = A\* — tr(A)\ + det(A) (4.7)

The eigenvalues are:

tr(A) £ 1/(tr(A))% — 4det(A)

)\1,2 == 2 (48)
4.2.2 Computing Eigenvectors
Once eigenvalues are found, eigenvectors are computed by solving:

This is a homogeneous linear system. The eigenvector is determined up to a scalar
multiple, so we typically normalize it or choose a convenient scaling.

4.1: Complete Eigenvalue Analysis Consider the matrix:

A (2 é) (4.10)

Step 1: Find eigenvalues

3—A 1

det(A—)\I):det( 5 9\

)=(3—)\)(2—)\)—2=)\2—5/\+4 (4.11)

Factoring: (A —4)(A—1)=0,s0 A\; =4, Ay = 1.
Step 2: Find eigenvectors
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For A\ = 4:
(A —dT)v; — (‘21 12> vi=0 (4.12)

This gives —v; + v = 0, S0 vi = G)
For Ay = 1:
2 1

This gives 2v, + vy = 0, s0 vy = <_12)

4.3 Diagonalization

When a matrix has a complete set of linearly independent eigenvectors, it can be diago-
nalized.

4.1: Diagonalization Theorem An n X n matrix A is diagonalizable if and only if it
has n linearly independent eigenvectors. In this case:

A = PDP! (4.14)

where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues:

M 0 - 0
0 X -+ 0
P:(V1 Vo ce- Vn), D= . . ) (4.15)
0 0 - )\,
4.3.1 Solution via Diagonalization
When A is diagonalizable, the solution to ‘fl—’t‘ = Ax can be written as:
x(t) = PeP'P'x, (4.16)
Since D is diagonal:
eMt 0 0
0 e ... 0
=1 _ (4.17)
0 0 ... et

This shows that the solution is a linear combination of exponential functions with
rates determined by the eigenvalues.
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4.3.2 Modal Coordinates

The transformation y = P~!x introduces modal coordinates. In these coordinates, the
system becomes:

dy
— =D 4.18
o =Dy (4.18)
This is a decoupled system:
dys
— = 4.19
dt 1Y1 ( )
dys
— = 4.20
di 2Y2 ( )
: (4.21)
dyn
= M\ Un 4.22
5 Y (4.22)

Each modal coordinate evolves independently according to y;(t) = ;(0)e.

4.4 Complex Eigenvalues

When the coefficient matrix is real but has complex eigenvalues, they occur in conjugate
pairs. This leads to oscillatory solutions.

4.4.1 Complex Exponentials and Real Solutions

If A =a+1if is a complex eigenvalue with eigenvector v = u + iw, then:
x(t) = e (u + iw) = e[(u + iw)(cos(Bt) + isin(St))] (4.23)
Expanding and taking real and imaginary parts:

x,(t) = e*[ucos(ft) — wsin(5t)] (4.24)
Xo(t) = e™[w cos(ft) + usin(5t)] (4.25)

These are two linearly independent real solutions.

4.2: System with Complex Eigenvalues Consider:

A= <(1) _01) (4.26)

The characteristic equation is:
det(A — M) =M +1=0 (4.27)

Eigenvalues: A = +i
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For A — i
(A —iT)v = (‘12' ‘1.) v=0 (4.28)

L 1 1 (0
This gives v = (z) = (0) +1 (1)

1
Sou= 0 and w = 1

With @ = 0 and 8 = 1, the real solutions are:

X1 (t) = (COS t) (4.29)

sint

xa(t) = (_ sin t> (4.30)

cost

cost —sint
x(t) = & (sint> + e ( cost ) (4.31)

General solution:

4.5 Repeated Eigenvalues

When an eigenvalue has algebraic multiplicity greater than its geometric multiplicity, the
matrix is not diagonalizable. In this case, we need generalized eigenvectors.

4.5.1 Geometric vs. Algebraic Multiplicity

4.2: Multiplicities For an eigenvalue \:

e Algebraic multiplicity: The multiplicity of A as a root of the characteristic poly-
nomial

e Geometric multiplicity: The dimension of the eigenspace, i.e., dim(null(A — AI))

The geometric multiplicity is always less than or equal to the algebraic multiplicity.

4.5.2 Generalized Eigenvectors

When the geometric multiplicity is less than the algebraic multiplicity, we find generalized
eigenvectors.

4.3: Generalized Eigenvectors For an eigenvalue A with algebraic multiplicity m, the

generalized eigenvectors of rank k satisfy:

(A - MD)fv=0 (4.32)

The ordinary eigenvectors are generalized eigenvectors of rank 1.
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4.5.3 Jordan Canonical Form
When a matrix is not diagonalizable, it can be transformed to Jordan canonical form:
A=PJP! (4.33)

where J is a block diagonal matrix with Jordan blocks:

A1 0 -+ 0
ox 1 -0
JN) =11 ¢ (4.34)
0 0 Al
00 0 A
4.3: Repeated Eigenvalue Case Consider:
2 1
A=) 4
The characteristic equation is:
det(A—X)=(2-)1)?*=0 (4.36)
So A = 2 with algebraic multiplicity 2.
For the eigenspace:
(A— 2Dy = (8 (1)) v=0 (4.37)

L . . . 1
This gives only one linearly independent eigenvector: v; = <O>

For the generalized eigenvector, we solve:

(A — QI)VQ =V (438)
L 0
This gives vy = (1>
The solutions are:
x(t) = e*v; = e* <(1)> (4.39)
Xy(t) = e*(tvy + vy) = e* <§> (4.40)

4.6 Applications to Mechanical Systems

Eigenvalue methods are particularly powerful for analyzing mechanical systems with mul-
tiple degrees of freedom.
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4.6.1 Normal Modes of Vibration
Consider a system of n masses connected by springs. The equations of motion are:
Mqgq+Kq=0 (4.41)

where M is the mass matrix and K is the stiffness matrix.
Assuming solutions of the form q(t) = ve™*:

(—*M+K)v=0 (4.42)
This is a generalized eigenvalue problem:
Kv = w*Mv (4.43)

The eigenvalues w? are the squares of the natural frequencies, and the eigenvectors v;
are the mode shapes.

4.6.2 Modal Analysis

The general solution is a superposition of normal modes:

n

q(t) = > (A cos(wit) + B;sin(wt))v; (4.44)
i=1
Each mode oscillates independently at its natural frequency. This decomposition is
fundamental to understanding vibrations in mechanical systems.
Computational Note: The file lecture4.py contains comprehensive implemen-
tations of eigenvalue computation, diagonalization procedures, and modal analysis for
mechanical systems.

4.7 Stability Analysis via Eigenvalues

The eigenvalues of the coefficient matrix completely determine the stability of linear sys-
tems.

4.2: Stability Criteria For the linear system % = Ax:
Asymptotically Stable: All eigenvalues have negative real parts

Re(A;) < 0 for all (4.45)

Marginally Stable: All eigenvalues have non-positive real parts, with simple eigen-
values on the imaginary axis

Re(\;) <0 for all 4, with simple eigenvalues when Re()\;) =0 (4.46)
Unstable: At least one eigenvalue has positive real part

Re()\;) > 0 for some i (4.47)

37



CHAPTER 4. LECTURE 4: EIGENVALUE METHODS AND DIAGONALIZATION

4.7.1 Routh-Hurwitz Criteria

For determining stability without explicitly computing eigenvalues, the Routh-Hurwitz
criteria provide necessary and sufficient conditions based on the coefficients of the char-
acteristic polynomial.

For a polynomial p(A\) = a,\" + a, (A"t + -+ a1\ + ag with a,, > 0, all roots have
negative real parts if and only if all the Hurwitz determinants are positive:

Ap—1 Ap-3 Qn—5
, Hs=1|a, a,-o Gn_4|,... (4.48)
0 Qp—1 Gp-3

Qp—1 Gp-3
ap Ap—2

Hy=ay,_1, Hy=

4.8 Numerical Methods for Eigenvalue Problems

Computing eigenvalues and eigenvectors numerically is a fundamental problem in com-
putational linear algebra.

4.8.1 Power Method

The power method finds the dominant eigenvalue (largest in absolute value) and its cor-
responding eigenvector.

4.1: Power Method Given matrix A and initial vector v:
1. For k=0,1,2,...

Wil = AVk (449)

Vit+1 = Whi1 (450)
W]

)\k+1 = Vg+1AVk+1 (451)

2. Continue until convergence
The sequence A\, converges to the dominant eigenvalue, and v converges to the cor-
responding eigenvector.

4.8.2 QR Algorithm

The QR algorithm is the most widely used method for computing all eigenvalues of a
matrix.

4.2: QR Algorithm Given matrix Ay = A:
1. For k=0,1,2,...

A, = QrRr  (QR decomposition) (4.52)
Ay = RiQy (4.53)
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2. Continue until A converges to upper triangular form
The diagonal elements of the limit matrix are the eigenvalues.

4.8.3 Computational Considerations

- **Conditioning™*: Eigenvalue problems can be ill-conditioned when eigenvalues are close
together - **Deflation**: After finding one eigenvalue, deflation techniques can be used
to find others - **Specialized methods™*: Symmetric matrices, sparse matrices, and other
special structures have specialized algorithms

4.9 Advanced Topics

4.9.1 Matrix Functions

Beyond the matrix exponential, other matrix functions arise in applications:
Matrix Sine and Cosine:

sin(At) = ’; (_gk(i?)! . (4.54)
cos(At) = Z % (4.55)

i

0

Matrix Square Root: A'/? such that (A'/?)2 = A
Matrix Logarithm: log(A) such that e84 = A

4.9.2 Pseudospectra

For non-normal matrices, eigenvalues can be highly sensitive to perturbations. Pseu-
dospectra provide a more robust analysis tool:

s (A)={AeC: (M —A) " >1/e) (4.56)

This set includes all points that are eigenvalues of some matrix within distance e of

A.

4.10 Chapter Summary

This lecture has developed the complete eigenvalue theory for linear systems:

Eigenvalue Problem: The fundamental equation Av = Av reveals the natural di-
rections and rates of evolution for linear systems. Computing eigenvalues and eigenvectors
provides the key to understanding system behavior.
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Diagonalization: When a matrix has a complete set of eigenvectors, it can be di-
agonalized, leading to decoupled modal equations. This transformation reveals the inde-
pendent modes of the system.

Complex Eigenvalues: Complex eigenvalues lead to oscillatory solutions with ex-
ponential envelopes. The real and imaginary parts of complex eigenvectors provide the
spatial patterns of oscillation.

Repeated Eigenvalues: When eigenvalues are repeated with insufficient eigenvec-
tors, generalized eigenvectors and Jordan canonical form provide the complete solution
structure.

Mechanical Applications: Normal mode analysis of vibrating systems demonstrates
the power of eigenvalue methods in engineering applications. Each mode represents a
fundamental pattern of oscillation.

Stability Analysis: Eigenvalue locations in the complex plane completely determine
stability. This provides a systematic approach to analyzing system behavior without
solving the equations explicitly.

Numerical Methods: Computational eigenvalue algorithms enable the analysis of
large systems arising in practical applications. Understanding these methods is essential
for modern scientific computing.

The eigenvalue approach provides both theoretical insight and computational tools
that extend far beyond linear differential equations. These methods form the founda-
tion for understanding more complex phenomena including bifurcations, chaos, and the
behavior of nonlinear systems near equilibria.

Computational Companion: All eigenvalue computations, diagonalization proce-
dures, and applications discussed in this lecture are implemented with detailed examples
in lectured.py. The code includes both analytical and numerical approaches to eigen-
value problems.
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Chapter 5

Lecture 5: Nonlinear Dynamics and Phase
Plane Analysis

5.1 Introduction to Nonlinear Systems

Nonlinear differential equations represent the vast majority of mathematical models en-
countered in real-world applications. Unlike linear systems, which admit superposition
and have well-understood solution structures, nonlinear systems exhibit a rich variety
of behaviors that can include multiple equilibria, limit cycles, chaos, and sensitive de-
pendence on initial conditions. The study of nonlinear dynamics has revolutionized our
understanding of complex systems across disciplines ranging from physics and biology to
economics and engineering.
The general autonomous nonlinear system in the plane takes the form:

X~ ) (5.1)
Y~ y(ey) 52

where f and ¢ are nonlinear functions of the state variables. The absence of explicit
time dependence in autonomous systems allows us to focus on the geometric structure of
the phase space and the qualitative behavior of trajectories.

The fundamental challenge in nonlinear dynamics is that exact analytical solutions
are rarely available. Instead, we rely on qualitative methods that reveal the essential
features of system behavior without requiring explicit solution formulas. These methods
include phase plane analysis, linearization near equilibria, energy methods, and geometric
approaches that exploit the structure of the vector field.

5.1.1 Fundamental Differences from Linear Systems

Nonlinear systems exhibit phenomena that are impossible in linear systems. The principle
of superposition fails, meaning that linear combinations of solutions are generally not
solutions. This breakdown of linearity leads to several distinctive features:

41



CHAPTER 5. LECTURE 5: NONLINEAR DYNAMICS AND PHASE PLANE
ANALYSIS

5 Van der Pol Osallator( =2) . Nonlinear Pendulum
v~ \ ¥ ;
Vv N i : , :’ -« \\ = Separatrix
24 L oA\ 4+ g .
2 A 1A [ P -
Voo vl g /
Voo 270~ - ~ N
11 B e e ] ' — 21 Z ~
Yoy ~ v\ N o N
- 7 t t 1 R P 'g -~ \
0 O_H‘T S N | vk s ol \
3 bl oy NS A—— 5 ) ]
(O Y| N (S Sy LU <) N -
14 7 © 4
! \ ' < X 4t 2 o - -
¥ ~ L -]
A L ;™ LONE | -~ _ -~
2 ' X L, o~ v 41 - . -
e PR L
3 | N\ ' U N 6L | | | | | :
-3 -2 -1 0 1 2 3 -6 -4 -2 0 2 4 6
X 0 (radians)
1e89 Duffing Oscillator Lorenz Attractor (x-y projection)
77 @® Start "'\
6 20
5
10
2 41
S >
o 34 0+
5]
.‘]0_
14
-20 A \
o 4
0 2 2 6 8 15 10 5 0 5 10 15 20
X 1e74 X

Figure 5.1: Nonlinear system examples: Van der Pol oscillator limit cycle, nonlinear
pendulum with separatrices, Duffing oscillator multiple equilibria, and Lorenz attractor

chaotic dynamics.

Multiple Equilibria: While linear systems have at most one equilibrium point (ex-
cluding degenerate cases), nonlinear systems can have arbitrarily many equilibria. Each
equilibrium can have different stability properties, creating a complex landscape of at-
tracting and repelling regions in phase space.

Limit Cycles: Nonlinear systems can exhibit isolated periodic orbits called limit cy-
cles. These are closed trajectories in phase space that attract or repel nearby trajectories.
Limit cycles represent sustained oscillations that are structurally stable, meaning they
persist under small perturbations of the system parameters.

Separatrices: Special trajectories called separatrices divide phase space into regions
with qualitatively different behavior. These curves often connect saddle points and form
boundaries between basins of attraction for different equilibria or limit cycles.

Sensitive Dependence: Some nonlinear systems exhibit chaotic behavior, where
trajectories starting from nearby initial conditions diverge exponentially over time. This
sensitive dependence on initial conditions makes long-term prediction impossible despite
the deterministic nature of the equations.
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5.2 Phase Plane Analysis

The phase plane provides the primary tool for analyzing two-dimensional nonlinear sys-
tems. By plotting trajectories in the (x,y) plane, we can visualize the global behavior of
the system and identify key features such as equilibria, limit cycles, and separatrices.

5.2.1 Nullclines and Flow Patterns

Nullclines play a crucial role in organizing the phase plane structure. The z-nullclines
are curves where 2 =0, so f(z,y) = 0. Similarly, y-nullclines satisfy g(z,y) = 0. These
curves divide the phase plane into regions where the flow has consistent direction.

On z-nullclines, trajectories move purely vertically since % = 0 but dy # 0 in general.
On y-nullclines, motion is purely horizontal. The mtersectlons of x- and y-nullclines
correspond to equilibrium points where both derivatives vanish.

The direction of flow in each region can be determined by evaluating the signs of
f(z,y) and g(z,y). This creates a systematic method for sketching the global flow pattern
without solving the differential equation explicitly.

Example Van der Pol Oscillator. The Van der Pol oscillator is a classic example of
a nonlinear system with a limit cycle:

dx
d
dgj p(l— 2%y — (5.4)

The x-nullcline is y = 0, and the y-nullcline is the cubic curve y = e :v2) for x # +1.

For p > 0, the origin is an unstable focus, and the system has a unique, stable limit
cycle. The parameter p controls the nonlinearity strength: for small p, the limit cycle
is nearly circular, while for large p, it becomes increasingly distorted with fast and slow
phases.

5.2.2 Poincaré-Bendixson Theory

The Poincaré-Bendixson theorem provides fundamental results about the long-term be-
havior of trajectories in two-dimensional systems. This theorem is unique to planar sys-
tems and does not extend to higher dimensions.

Theorem 5.1 (Poincaré-Bendixson Theorem). Let R be a bounded region in the plane
with the property that trajectories cannot escape from R. If R contains no equilibrium
points, then every trajectory in R approaches a periodic orbit as t — oo.

More generally, if a trajectory is trapped in a bounded region R and does not approach
an equilibrium point, then its w-limit set is either:

1. A periodic orbit, or
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2. A graphic (a union of equilibria and trajectories connecting them)

This theorem has profound implications for planar dynamics. It guarantees that
bounded trajectories that don’t approach equilibria must exhibit periodic behavior. This
rules out chaotic behavior in two-dimensional autonomous systems, as chaos requires at
least three dimensions.

The theorem also provides a systematic method for proving the existence of limit cy-
cles. By constructing appropriate trapping regions and showing they contain no equilibria,
we can guarantee the existence of periodic orbits without finding them explicitly.

5.3 Equilibria and Linear Stability Analysis

Equilibrium points are solutions where the vector field vanishes: f(z*,y*) = 0 and
g(x*,y*) = 0. The behavior near equilibria is crucial for understanding global dynamics,
as equilibria often organize the phase space structure.

5.3.1 Linearization and the Jacobian Matrix

Near an equilibrium point (z*,y*), we can approximate the nonlinear system by its lin-
earization. Let u = x —2* and v = y — y* represent small displacements from equilibrium.
Taylor expansion gives:

du * * * *
= = L@y u At fy (@7 o + O(u?,v*, uv) (5.5)
dv * * * *
= = 9=(a" Y )ut gy (a7 y)o + O(u?,v*, uv) (5.6)

The linear approximation is:

where the Jacobian matrix is:

of  9f
- (4

dr By

5.3.2 Classification of Equilibria

The eigenvalues of the Jacobian matrix determine the local behavior near equilibria. Let
A1 and Ay be the eigenvalues, with 7 = A; + Ay (trace) and A = A\ Ay (determinant).

Hyperbolic Equilibria: When both eigenvalues have nonzero real parts, the equi-
librium is hyperbolic. The classification depends on the signs of the eigenvalues:

e Stable Node: A\, Ay < 0 (both real and negative)
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e Unstable Node: A\, \; > 0 (both real and positive)
e Saddle Point: A\; < 0 < Ay (real with opposite signs)
e Stable Focus: Re(\;2) < 0 (complex with negative real part)

e Unstable Focus: Re()\;2) > 0 (complex with positive real part)

Non-hyperbolic Equilibria: When one or both eigenvalues have zero real part,
linearization fails to determine stability. These cases require nonlinear analysis:

e Center: )\, = +iw (purely imaginary)
e Degenerate Cases: One or both eigenvalues equal zero

Theorem 5.2. Near a hyperbolic equilibrium point, the nonlinear system is topologically
equivalent to its linearization. This means there exists a homeomorphism that maps trajec-
tories of the nonlinear system to trajectories of the linear system, preserving the direction
of time.

This theorem justifies the use of linear stability analysis for hyperbolic equilibria. The
local phase portrait of the nonlinear system near a hyperbolic equilibrium has the same
qualitative structure as the linearized system.

5.4 Bifurcation Theory

Bifurcations occur when small changes in system parameters cause qualitative changes in
the dynamics. At bifurcation points, the system undergoes structural changes such as the
creation or destruction of equilibria, changes in stability, or the birth of periodic orbits.

Hopf Bifurcation

Pitchfork Bifurcation

2.0 1.5
= Stable : = Stable equilibrium
1.5{ == Unstable : = Stable limit cycle
----- Bifurcation point 107 — = Unstable equilibrium

oy = e Hopf bifurcation

*
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Figure 5.2: Bifurcation diagrams: (left) pitchfork bifurcation showing symmetry breaking,
(right) Hopf bifurcation demonstrating transition from equilibrium to oscillatory behavior.
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5.4.1 Local Bifurcations

Local bifurcations occur when equilibria change stability or when new equilibria are cre-
ated or destroyed. The most common local bifurcations in planar systems are:

Saddle-Node Bifurcation: Two equilibria (one stable, one unstable) collide and
annihilate each other. This is the generic mechanism for the creation and destruction of
equilibria.

Consider the normal form: J

d—? = p— 2 (5.9)

For p > 0, there are two equilibria at x = 4, /u. At u = 0, they collide at the origin.
For < 0, no equilibria exist.

Transcritical Bifurcation: Two equilibria exchange stability as they pass through
each other. This bifurcation preserves the number of equilibria but changes their stability
properties.

The normal form is: p
d_:tc = px — 2* (5.10)

There are always two equilibria at * = 0 and z = p. Their stability exchanges at
w=0.
Pitchfork Bifurcation: A single equilibrium splits into three equilibria. This bifur-

cation often occurs in systems with symmetry.
The supercritical pitchfork has normal form:

d
d—f = px — 2° (5.11)

For p < 0, there is one stable equilibrium at x = 0. For g > 0, the origin becomes
unstable and two new stable equilibria appear at = 4 /u.

5.4.2 Hopf Bifurcation

The Hopf bifurcation is particularly important as it represents the transition between equi-
librium and oscillatory behavior. It occurs when a pair of complex conjugate eigenvalues
crosses the imaginary axis.

Theorem 5.3. Consider a system Ccll_>t{ = f(x, ) with an equilibrium at x = 0 for all p.
Suppose the Jacobian J(1) has eigenvalues N(p) = a(p) £ if(p) with:

1. a(0) =0, B(0) =wy #0

2.2 #0
=0

n=

Then a unique branch of periodic orbits bifurcates from the equilibrium at = 0. The
bifurcation is supercritical (stable limit cycle) if the first Lyapunov coefficient is negative,
and subcritical (unstable limit cycle) if it is positive.
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The Hopf bifurcation explains the emergence of oscillations in many physical systems.
Examples include the onset of oscillations in chemical reactions, predator-prey cycles in
ecology, and business cycles in economics.

5.5 Conservative Systems and Hamiltonian Dynamics

Conservative systems form an important class of nonlinear systems where energy is pre-
served. These systems arise naturally in mechanics and have special geometric properties
that constrain their dynamics.

5.5.1 Hamiltonian Systems

A Hamiltonian system in the plane has the form:

dr  0OH
— = 5.12
dt dy ( )
dy OH
7 5.13
dt ox ( )

where H(x,y) is the Hamiltonian function, typically representing total energy.

The key property of Hamiltonian systems is energy conservation:

dH 0Hd OH d OHOH OHOH
_ ditar 4 _onon dnYn (5.14)

g Oxdt T oydt  ox 0y 0y 0w

This means trajectories lie on level curves of the Hamiltonian, H(x,y) = constant.

Example. The equation for a nonlinear pendulum is:

d*0 g .
ﬁijSlnH:O (5.15)
Converting to first-order form with z = 6 and y = Z—f:
dz
i 5.16
=Y (5.16)
d
d_i = —‘(l—]sinx (5.17)
The Hamiltonian is: .
H(z,y) = §y2 — %cosx (5.18)

Level curves of H give the phase portrait. Small oscillations correspond to closed orbits
around the stable equilibrium at (0,0). Large energy trajectories include separatrices
connecting saddle points at (+m,0).
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5.5.2 Liouville’s Theorem and Phase Space Volume

Hamiltonian systems preserve phase space volume, a property known as Liouville’s theo-
rem. This has profound implications for the dynamics:

Theorem 5.4. The flow of a Hamiltonian system preserves phase space volume. If D(t)
s a region in phase space evolved under the Hamiltonian flow, then:

a drdy = 0 (5.19)
dt Jp
This theorem implies that Hamiltonian systems cannot have attracting equilibria or
limit cycles, as these would require phase space volume to contract. All equilibria in
Hamiltonian systems are centers or saddles.

5.6 Gradient Systems and Lyapunov Functions

Gradient systems represent another special class where the vector field derives from a
scalar potential function. These systems have the form:

dx
i —VV(x) (5.20)

where V(x) is a potential function.

5.6.1 Properties of Gradient Systems

Gradient systems have several distinctive properties:
Monotonic Energy Decrease: The potential function V' decreases monotonically

along trajectories:
av dx
— =VV.—=—|VVP<0 5.21
dt dt IVVIE < (5:21)
No Closed Orbits: Since V' decreases along trajectories, closed orbits are impossible
(except at equilibria where VV = 0).
Simple Equilibria: All equilibria are either sinks or sources, determined by the

Hessian matrix of V. Saddle points cannot occur in gradient systems.

Example. Consider the potential:

V(z,y) =2* +y* — 22% — 2° (5.22)
The gradient system is:
d
d—f = —(42® — dz) = —da(2® — 1) (5.23)
dy
o =~y —dy) = —dy(y" - 1) (5.24)

Equilibria occur at (£1,£1) and (0,0). The Hessian analysis shows that (+1,+1) are
stable nodes (local minima of V') while (0,0) is an unstable node (local maximum of V).
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5.7 Computational Methods for Nonlinear Analysis

While analytical methods provide fundamental insights, computational tools are essential
for studying complex nonlinear systems. Modern software packages enable detailed phase
portrait analysis, bifurcation studies, and numerical continuation of solution branches.

5.7.1 Numerical Phase Portrait Construction

Constructing accurate phase portraits requires careful numerical integration of trajectories
from multiple initial conditions. Key considerations include:

Initial Condition Selection: Strategic placement of initial conditions near equi-
libria, along nullclines, and in different regions of phase space ensures comprehensive
coverage of the dynamics.

Integration Methods: Adaptive step-size methods like Runge-Kutta-Fehlberg pro-
vide good accuracy while maintaining computational efficiency. For Hamiltonian systems,
symplectic integrators preserve energy conservation properties.

Long-term Integration: Some features like limit cycles or chaotic attractors require
long integration times to become apparent. Careful monitoring of numerical accuracy is
essential for reliable results.

Computational Note: The file lecture5.py contains comprehensive implementa-
tions for phase portrait analysis, including nullcline computation, equilibrium finding,
linear stability analysis, and bifurcation detection. The code demonstrates both analyti-
cal calculations and numerical methods for studying nonlinear dynamics.

5.8 Applications in Science and Engineering

Nonlinear dynamics appears throughout science and engineering, providing models for
phenomena ranging from mechanical vibrations to biological rhythms. Understanding
nonlinear behavior is crucial for predicting and controlling complex systems.

5.8.1 Mechanical Systems

Nonlinear mechanical systems exhibit rich dynamics including multiple equilibria, limit
cycles, and chaos. The Duffing oscillator, with equation:

d> d
d_tf + 5d—f + az + B* = 7 cos(wt) (5.25)

demonstrates phenomena such as jump resonance, hysteresis, and chaotic motion de-
pending on parameter values.
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5.8.2 Biological Systems

Population dynamics, neural networks, and biochemical reactions all exhibit nonlinear
behavior. The FitzHugh-Nagumo model for neural excitation:

dv v?

= = — I 2
U g W + (5.26)
% =€(v+a— bw) (5.27)

captures the essential features of action potential generation and propagation in neu-
rons.

5.8.3 Chemical Reactions

Autocatalytic chemical reactions can exhibit oscillations, bistability, and spatial patterns.
The Brusselator model:

dx

pri A—(B+ 1)z + 2%y (5.28)
d
d—‘:{ = Bz — 2’y (5.29)

demonstrates how simple reaction schemes can produce complex temporal dynamics.

5.9 Chapter Summary

This lecture has introduced the fundamental concepts and methods of nonlinear dynamics.
Key insights include:

Qualitative Methods: Phase plane analysis, nullcline construction, and linearization
provide powerful tools for understanding nonlinear systems without requiring explicit
solutions.

Bifurcation Theory: Parameter-dependent changes in system structure reveal how
complex behavior emerges from simple models. Bifurcations organize the parameter space
and predict transitions between different dynamical regimes.

Special System Classes: Conservative and gradient systems have distinctive proper-
ties that constrain their possible behaviors. Understanding these constraints helps classify
and analyze specific systems.

Computational Integration: Numerical methods extend analytical insights to com-
plex systems that resist exact analysis. Modern computational tools enable detailed ex-
ploration of parameter space and long-term dynamics.

The study of nonlinear dynamics reveals that deterministic systems can exhibit ex-
traordinarily complex behavior. This complexity is not due to external randomness but
emerges from the intrinsic nonlinear interactions within the system. Understanding these
mechanisms provides insight into phenomena across all areas of science and engineering,
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from the onset of turbulence in fluid flow to the dynamics of ecosystems and financial
markets.

The next lecture will build on these foundations by examining stability theory and
Lyapunov methods, which provide rigorous tools for analyzing the long-term behavior of
nonlinear systems.
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Chapter 6

Lecture 6: Stability Theory and Lya-
punov Methods

6.1 Introduction to Stability Theory

Stability theory addresses one of the most fundamental questions in dynamical systems:
given a solution to a differential equation, what happens to nearby solutions? This ques-
tion is crucial for understanding the robustness of system behavior and predicting long-
term dynamics. While linearization provides local stability information near equilibria,
Lyapunov theory offers global methods that can analyze stability over large regions of
phase space.

The concept of stability has profound practical implications. In engineering, we need
to ensure that control systems remain stable under perturbations. In ecology, we want to
understand whether population equilibria can persist under environmental fluctuations.
In economics, stability analysis helps predict whether market equilibria are robust to
external shocks.

Stability theory provides rigorous mathematical frameworks for addressing these ques-
tions. The methods developed by Aleksandr Lyapunov in the late 19th century remain the
cornerstone of modern stability analysis, offering both theoretical insights and practical
tools for system design and analysis.

6.1.1 Types of Stability

Stability comes in several forms, each capturing different aspects of system behavior under
perturbations. Understanding these distinctions is crucial for applying the appropriate
analytical tools.

Lyapunov Stability: A solution x(¢) is Lyapunov stable if solutions starting near
x(0) remain near x(t) for all future times. Formally, for every € > 0, there exists 6 > 0
such that if |xg — x(0)| < J, then |x(¢;x0) — x(t)| < € for all £ > 0.

Asymptotic Stability: A solution is asymptotically stable if it is Lyapunov stable
and nearby solutions actually converge to it as ¢ — oco. This requires lim; o, |x(¢;x0) —
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Quadratic Lyapunov Function Energy Function for Pendulum
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Figure 6.1: Lyapunov function examples: quadratic functions for linear systems, energy
functions for conservative systems, basin of attraction analysis, and gradient system dy-
namics illustrating LaSalle invariance principle.

x(t)| = 0 for initial conditions sufficiently close to x(0).

Exponential Stability: The strongest form of stability, where nearby solutions con-
verge exponentially fast. There exist constants M > 0 and o > 0 such that |x(t;x0) —
x(t)| < M|xq — x(0)]e .

Global Stability: When stability properties hold for all initial conditions in the
phase space, not just those in a neighborhood of the reference solution.

For autonomous systems, we typically focus on the stability of equilibrium points,
where the reference solution is constant: x(t) = x* for all ¢.

6.2 Lyapunov’s Direct Method

Lyapunov’s direct method (also called the second method) provides a way to determine
stability without solving the differential equation explicitly. The method is based on
constructing auxiliary functions, called Lyapunov functions, that capture the essential
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stability properties of the system.

6.2.1 Lyapunov Functions for Autonomous Systems

Consider the autonomous system 2 = f(x) with an equilibrium at x* (so f(x*) = 0).
A Lyapunov function is a scalar function V' (x) that satisfies certain properties related to

the system’s energy or distance from equilibrium.

Definition 6.1. A function V' : D — R is a Lyapunov function for the system Cfi—’t‘ = f(x)
on domain D containing equilibrium x* if:

1. V(x*) =0
2. V(x) >0 forall x € D\ {x*} (positive definite)

3. V is continuously differentiable on D

The function V(x) = VV - f(x) is called the orbital derivative of V along system
trajectories.

The orbital derivative measures how V' changes along solution trajectories. If x(¢) is
a solution, then:
d dx

SVx(t) = VV(x(0) - 5 =

7 VV(x(t)) - f(x(1)) = V(x(1)) (6.1)

dx

Theorem 6.2. Let V(x) be a Lyapunov function for system S = f(x) on domain D

containing equilibrium x*. Then:

1. If V(X) <0 for all x € D, then x* is Lyapunov stable.
2. If V(x) <0 for allx € D\ {x*}, then x* is asymptotically stable.

3. If additionally V (x) — o0 as |x| — oo, then x* is globally asymptotically stable.

The intuition behind this theorem is that V' acts like an energy function. If V' decreases
along trajectories (V < 0), then solutions lose "energy" and must approach the minimum
at x*. If V merely doesn’t increase (V < 0), solutions remain bounded but may not
converge.

Example. Consider the linear system ‘fl—’t‘ = Ax where A has eigenvalues with negative

real parts. We can construct a quadratic Lyapunov function:
V(x) = x"Px (6.2)
where P is a positive definite matrix satisfying the Lyapunov equation:

ATP + PA = -Q (6.3)
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for some positive definite matrix Q.
The orbital derivative is:

V(x) =2x"PAx = —x"Qx < 0 (6.4)

This proves global asymptotic stability of the origin.

6.2.2 Construction of Lyapunov Functions

Finding appropriate Lyapunov functions is often the most challenging aspect of stability
analysis. Several systematic approaches exist:

Physical Energy: For mechanical systems, total energy (kinetic plus potential) often
serves as a natural Lyapunov function. For electrical circuits, energy stored in capacitors
and inductors provides similar functions.

Quadratic Forms: For systems near equilibria, quadratic functions V(x) = x?Px
are often effective. The matrix P can be determined by solving Lyapunov equations or
using optimization methods.

Sum of Squares: For polynomial systems, Lyapunov functions can be constructed
as sums of squares of polynomials. This approach connects to semidefinite programming
and computational methods.

Control Lyapunov Functions: In control theory, Lyapunov functions are designed
to guide the construction of stabilizing feedback controllers.

6.3 LaSalle’s Invariance Principle

While Lyapunov’s direct method requires V < 0 for asymptotic stability, many systems
have Lyapunov functions where V' < 0 with equality on some set. LaSalle’s invariance
principle extends Lyapunov theory to handle these cases.

Theorem 6.3. Let Q be a compact positively invariant set for system 2 = f(x). Let

. dt
Vi Q — R be continuously differentiable with V(x) <0 for all x € 2.
Define E = {x € Q : V(x) = 0} and let M be the largest invariant set in E. Then
every solution starting in 0 approaches M as t — oo.

This principle is particularly powerful for analyzing systems where energy is conserved
along some directions but dissipated along others.

Example. Consider a damped pendulum:

df
d
d—i = —sinf — cw (6.6)

where ¢ > 0 is the damping coefficient.
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The total energy is:

V(0,w) = ~w* + (1 — cosb) (6.7)

The orbital derivative is:
V =w(—sinf — cw) +sinf-w=—cw? <0 (6.8)
We have V = 0 only when w = 0. On this set, % = —sin 6, which equals zero only at

0=0,72m,...
The largest invariant set in {w = 0} consists of the equilibria (§,w) = (27k,0) for
integer k. By LaSalle’s principle, all trajectories approach one of these equilibria.
Further analysis using linearization shows that (0, 0) is stable while (7, 0) is unstable,
so trajectories approach (0,0) from a neighborhood and (+27,0) from trajectories that
cross the separatrices.

Linearization vs Nonlinear

Parameter-Dependent Stability

1.50
—— Nonlinear == = Stability boundary
1.254 === Linear Stable region
Unstable region
1.00 4 ~_ |
/
,/
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Figure 6.2: Stability analysis: (left) comparison of linearization with nonlinear behavior
showing validity regions, (right) parameter-dependent stability boundaries demonstrating
critical parameter values.

6.4 Instability and Chetaev’s Theorem

While Lyapunov theory provides tools for proving stability, proving instability requires
different approaches. Chetaev’s theorem offers a method for establishing instability using
auxiliary functions.

dx

Theorem 6.4. Consider system % = f(x) with equilibrium at origin. Suppose there

exists a function V(x) and a region U containing the origin such that:
1. V(0)=0

2. InU, the set {x: V(x) > 0} is nonempty and V(x) > 0 whenever V(x) > 0
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3. Every neighborhood of the origin contains points where V(x) > 0

Then the origin is unstable.

The idea is to find a function that increases along some trajectories starting arbitrarily
close to the equilibrium, forcing these trajectories to move away from equilibrium.

6.5 Basin of Attraction and Region of Stability

For asymptotically stable equilibria, the basin of attraction (or region of attraction) is the
set of all initial conditions whose trajectories converge to the equilibrium. Determining
this region is crucial for understanding the practical stability of systems.

6.5.1 Estimating Basins of Attraction

Lyapunov functions provide a systematic way to estimate basins of attraction. If V(x) is
a Lyapunov function with V(x) < 0 for x # x*, then any level set {x : V(x) < ¢} that
doesn’t contain other equilibria lies within the basin of attraction.

The largest such level set provides an estimate of the basin. While this estimate may
be conservative, it gives a guaranteed region of stability.

Example. Consider the system:

d

d—f =—x+xYy (6.9)
dy 2

Rl A 1
=Y (6.10)

The origin is an equilibrium. The linearization has matrix:

J = <_01 _01) (6.11)

This shows local asymptotic stability. To estimate the basin of attraction, try the
quadratic Lyapunov function:

Viz,y) =2 +9° (6.12)

The orbital derivative is:
V = 2x(—x 4 2y) + 2y(—y — 2%) = =222 + 222y — 2% — 227y = —22% — 2> < 0 (6.13)

for (z,y) # (0,0). Since V(x) — oo as |x| — oo, the origin is globally asymptotically
stable.
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6.5.2 Multiple Equilibria and Competing Basins

When systems have multiple stable equilibria, their basins of attraction partition the
phase space. The boundaries between basins often contain unstable equilibria or limit
cycles and represent separatrices in the dynamics.

Understanding these boundaries is crucial for predicting system behavior. Small per-
turbations that move initial conditions across basin boundaries can lead to dramatically
different long-term behavior.

6.6 Converse Lyapunov Theorems

While Lyapunov’s direct method provides sufficient conditions for stability, converse the-
orems establish that these conditions are also necessary. These results guarantee that
stable systems always have Lyapunov functions, even if finding them explicitly may be
difficult.

Theorem 6.5. If the origin is asymptotically stable for system Cé—’: = f(x), then there

exists a Lyapunov function V(x) such that V(x) > 0 for x # 0 and V(x) < 0 for x # 0
i some netghborhood of the origin.

Furthermore, if the origin is exponentially stable, then there exists a Lyapunov function
satisfying:

arlx? < V(x) < as|x? (6.14)
V(x) < —aslx|? (6.15)
for positive constants oy, an, as.

These converse theorems provide theoretical completeness to Lyapunov theory and
justify the search for Lyapunov functions in stability analysis.

6.7 Stability of Periodic Orbits

Extending stability analysis to periodic orbits requires modifications of the basic Lyapunov
approach. The key insight is to study the behavior of nearby trajectories relative to the
periodic orbit.

6.7.1 Poincaré Maps and Floquet Theory

For a periodic orbit x,(t) with period 7', we can analyze stability using a Poincaré map.
Choose a cross-section Y transverse to the orbit and define the map P : 3 — 3 that takes
points to their next intersection with .

The periodic orbit corresponds to a fixed point of P, and its stability is determined
by the eigenvalues of DP (the multipliers). The orbit is stable if all multipliers have
magnitude less than one.
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Alternatively, Floquet theory analyzes the linearization around the periodic orbit. The
fundamental matrix solution ®(t) satisfies ®(t+71") = ®(¢)M where M is the monodromy
matrix. The eigenvalues of M (Floquet multipliers) determine stability.

6.7.2 Lyapunov Functions for Periodic Orbits

Constructing Lyapunov functions for periodic orbits is more complex than for equilibria.
One approach uses the distance to the orbit:

= min |x — 2 1
V(x) in, |x — %, (s)| (6.16)

However, this function may not be differentiable everywhere. Alternative approaches
include using energy-like functions or constructing functions in orbital coordinates.

6.8 Input-to-State Stability

Modern control theory extends classical stability concepts to systems with inputs or dis-
turbances. Input-to-state stability (ISS) provides a framework for analyzing how external
inputs affect system stability.

Definition 6.6. System ‘fi—’t‘ = f(x,u) is input-to-state stable if there exist functions
p € KL and v € K such that for all initial conditions xo and inputs u(t):
x(8)] < B(Ixol, ) +~( sup [u(s)]) (6.17)

0<s<t

Here IC denotes class K functions (continuous, strictly increasing, with v(0) = 0) and
KL denotes class KL functions (decreasing in the second argument for each fixed first
argument).

ISS captures the intuitive notion that bounded inputs should produce bounded out-
puts, with the bound depending continuously on the input magnitude.

6.9 Computational Methods in Stability Analysis

Modern computational tools have revolutionized stability analysis, enabling the study
of high-dimensional systems and the construction of Lyapunov functions for complex
nonlinear systems.

6.9.1 Sum of Squares Programming

For polynomial systems, Lyapunov functions can be constructed as sums of squares (SOS)
of polynomials. This approach reformulates the search for Lyapunov functions as a
semidefinite programming problem, which can be solved efficiently using interior-point
methods.
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The key insight is that a polynomial p(x) is positive if and only if it can be written
as:

p(x) = Z%‘(X)Q (6.18)

for some polynomials ¢;(x). This condition can be expressed as a semidefinite con-
straint on the coefficients.

6.9.2 Numerical Construction of Lyapunov Functions

For general nonlinear systems, numerical methods can construct piecewise-linear or radial
basis function Lyapunov functions. These approaches discretize the state space and solve
optimization problems to find functions satisfying the Lyapunov conditions.

Machine learning techniques, including neural networks, have also been applied to
learn Lyapunov functions from simulation data. These methods show promise for high-
dimensional systems where traditional approaches become computationally intractable.

Computational Note: The file lecture6.py implements various stability analysis
methods, including Lyapunov function construction for linear systems, numerical basin
of attraction estimation, and SOS-based methods for polynomial systems. The code
demonstrates both theoretical concepts and practical computational techniques.

6.10 Applications in Control and Engineering

Stability theory forms the foundation of modern control system design. Controllers are
designed not just to achieve desired performance but to guarantee stability under uncer-
tainties and disturbances.

6.10.1 Lyapunov-Based Control Design

Control Lyapunov functions (CLFs) provide a systematic approach to controller synthesis.
Given a system ‘fj—’; =f(x) + g(x)u, a CLF is a function V(x) such that for each x # 0,
there exists a control u making V' < 0. _

The control law can then be chosen to minimize V', ensuring stability while optimizing

performance criteria.

6.10.2 Robust Stability Analysis

Real systems always contain uncertainties in parameters, unmodeled dynamics, and ex-
ternal disturbances. Robust stability analysis extends Lyapunov methods to guarantee
stability despite these uncertainties.

Techniques include: - **Quadratic Stability:** Using a single quadratic Lyapunov
function for all possible parameter values - **Parameter-Dependent Lyapunov Func-
tions:** Allowing the Lyapunov function to depend on uncertain parameters - **Integral
Quadratic Constraints:** Incorporating information about the structure of uncertainties
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6.11 Chapter Summary

This lecture has developed the fundamental theory and methods of stability analysis for
dynamical systems. The key contributions include:

Lyapunov’s Direct Method: Provides a systematic framework for analyzing sta-
bility without solving differential equations explicitly. The method’s power lies in its
generality and its ability to provide global stability results.

LaSalle’s Invariance Principle: Extends Lyapunov theory to systems where energy
is conserved along some directions. This principle is particularly valuable for mechanical
and physical systems with natural conservation laws.

Basin of Attraction Analysis: Determines the region of initial conditions leading
to stable behavior. Understanding these regions is crucial for predicting system behavior
and designing robust controllers.

Computational Methods: Modern optimization and machine learning techniques
enable stability analysis of complex, high-dimensional systems that were previously in-
tractable.

Stability theory provides both theoretical insights and practical tools for system anal-
ysis and design. The methods developed here form the foundation for advanced topics in
control theory, including adaptive control, robust control, and nonlinear control design.

The concepts introduced in this lecture will be essential for understanding the numer-
ical methods and applications discussed in subsequent lectures. The interplay between
stability theory and computational methods continues to drive advances in our ability to
analyze and control complex dynamical systems.
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Chapter 7

Lecture 7: Numerical Methods for Dif-
ferential Equations

7.1 Introduction to Numerical Methods

The vast majority of differential equations encountered in scientific and engineering appli-
cations cannot be solved analytically. Even when analytical solutions exist, they may be
too complex for practical use or may not provide insight into system behavior. Numerical
methods bridge this gap by providing approximate solutions with controlled accuracy,
enabling the study of complex systems that would otherwise remain intractable.

Numerical methods for differential equations have evolved dramatically since the pio-
neering work of Euler in the 18th century. Modern algorithms incorporate sophisticated
error control, adaptive step sizing, and specialized techniques for different classes of prob-
lems. The development of high-performance computing has further expanded the scope
of problems that can be addressed numerically, from weather prediction and climate mod-
eling to molecular dynamics and financial risk analysis.

The fundamental challenge in numerical integration is balancing accuracy, stability,
and computational efficiency. Different methods excel in different regimes: explicit meth-
ods are simple and efficient for non-stiff problems, while implicit methods are essential
for stiff systems. Adaptive methods automatically adjust step sizes to maintain accuracy
while minimizing computational cost.

Understanding the theoretical foundations of numerical methods is crucial for their
effective application. Concepts such as consistency, stability, and convergence provide the
mathematical framework for analyzing method performance and selecting appropriate
algorithms for specific problems.
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Figure 7.1: Numerical method comparison: Euler vs RK4 accuracy for different step sizes,
global error analysis showing theoretical convergence rates, and stability region analysis
for different integration schemes.

7.1.1 Fundamental Concepts

Before examining specific algorithms, we establish the basic framework for numerical
integration of initial value problems. Consider the general first-order system:

dy
Bty (1)
y(to) = yo (7.2)

where y € R" is the state vector and f : R x R” — R" is the vector field. Higher-order
equations can always be converted to this first-order form through the introduction of
auxiliary variables.

Numerical methods approximate the solution at discrete time points t,, = ty + nh
where h is the step size. The approximate solution at t,, is denoted y,, ~ y(t¢,). The goal
is to construct a sequence {y,} that converges to the true solution as h — 0.

Local Truncation Error: The error introduced in a single step, assuming all previous
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values are exact. For a method with local truncation error O(h**1), we say the method
has order p.

Global Error: The accumulated error after many steps, typically O(h?) for a method
of order p.

Stability: The property that small perturbations in the initial data or intermedi-
ate calculations do not grow unboundedly. Stability is essential for reliable long-term
integration.

7.2 Single-Step Methods

Single-step methods compute y,, 11 using only information from the current point (t,,y,).
These methods are self-starting and have simple error analysis, making them the founda-
tion for more advanced techniques.

7.2.1 Euler’s Method and Its Variants

Euler’s method is the simplest numerical integration scheme, based on the first-order
Taylor expansion:

Geometrically, this follows the tangent line at (¢,,y,) for a distance h. The method
has order 1, meaning the global error is O(h).
Backward Euler Method: The implicit variant uses the derivative at the new point:

VYot1 =Yn + AE(tni1, Yni1) (7.4)

This requires solving a nonlinear system at each step but provides superior stability
properties, especially for stiff problems.

Improved Euler Method (Heun’s Method): This predictor-corrector scheme
achieves second-order accuracy:

v\ =¥ + hf(te,ya)  (predictor) (7.5)

h
Yner = Yo+ 5[t ya) + £t y220)] - (corrector) (7.6)

The predictor step estimates the solution at ¢,,.1, while the corrector uses this estimate
to compute a more accurate derivative average.

7.2.2 Runge-Kutta Methods

Runge-Kutta methods achieve higher-order accuracy by evaluating the derivative at mul-
tiple points within each step. The general s-stage explicit Runge-Kutta method has the
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form:
i—1
kZ:f<tn+Clh,yn+hzaUk]>, 221,2,,8 (77)
j=1
Ynt1 =Yn+h Z bik; (7.8)

=1

The coefficients a;j, b;, and ¢; are chosen to maximize the order of accuracy. These
coefficients are typically presented in a Butcher tableau:

% (7.9)

Classical Fourth-Order Runge-Kutta (RK4): The most widely used Runge-
Kutta method:

= f(tn, yn) (7.10)
:f(t +h/2,y, + hki/2) (7.11)
:f(t + h/2,y, + hks/2) (7.12)

h
Yntl = Yn + E(kl + 2ky + 2ks + ky) (7.14)

RK4 achieves fourth-order accuracy with four function evaluations per step, providing
an excellent balance of accuracy and computational cost for many problems.

Example. Consider the Duffing oscillator:
dx

- 7.15
=Y (7.15)
dy

dt——:c—:c — 0.1y + 0.3 cos(t) (7.16)

Converting to vector form: y = (z,y)T and

fty) = <—[E —x® - O.%y +0.3 cos(t)) (7.17)

The RK4 method provides accurate integration of this chaotic system, capturing the
complex dynamics that would be missed by lower-order methods or large step sizes.

7.2.3 Embedded Runge-Kutta Methods

Embedded methods compute two approximations of different orders using the same func-
tion evaluations, enabling automatic error estimation and step size control. The Runge-
Kutta-Fehlberg method (RKF45) embeds a fourth-order and fifth-order method:
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The error estimate is:

€nt1 = ygﬁl - ygﬁl = hZ(bz(‘S) - b§4))ki (7.18)

i=1
This error estimate guides adaptive step size selection without additional function
evaluations.

7.3 Multi-Step Methods

Multi-step methods use information from several previous points to achieve higher accu-
racy or better stability properties. These methods can be more efficient than single-step
methods for smooth problems but require special starting procedures.

7.3.1 Adams Methods

Adams methods are based on polynomial interpolation of the derivative. The Adams-
Bashforth methods are explicit:

k—1
Yor1 =Yn+0 Y Bifa; (7.19)

=0
where f,,_; = f(t,_;,yn—;) and the coefficients §; are determined by the interpolation

conditions.
The Adams-Moulton methods are implicit:

k—1
Ynt1 =¥Yn+h Z Bitni1—; (7.20)

j=—1

Predictor-Corrector Schemes: Combining Adams-Bashforth (predictor) and Adams-
Moulton (corrector) methods provides the efficiency of explicit methods with the stability
of implicit methods:

k-1
yfloll =y, +h Z Bif.—; (predict) (7.21)
=0
k-1
VYot1 =Yn+h |55 f(th, yg]ll) + Z Bif._j| (correct) (7.22)

J=0

7.3.2 Backward Differentiation Formulas (BDF)

BDF methods are particularly effective for stiff problems. They approximate the deriva-
tive using backward differences:

k
Z ¥ni1—j = "M (tni1, Ynr1) (7.23)

J=0
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The coefficients «; are chosen so that the method has maximum order for the given
number of steps. BDF methods up to order 6 are stable, making them suitable for stiff
problems where stability is more important than high-order accuracy.

7.4 Stiff Differential Equations

Stiff equations are characterized by the presence of multiple time scales, with some com-
ponents evolving much faster than others. These problems pose significant challenges for
explicit methods, which require impractically small step sizes to maintain stability.

Stiff System Solution Adaptive Step Size Control
1.01 i %} Solution
—_y 3.01 e Step points
0.8 1
251
0.6 2.0
) )
> >15
0.4
1.01
0.2
0.5 g
0.0 0.0
O.OIOO O.OIOZ 0.(;04 O.OIOG O.OIOS 0.610 0:0 0:2 0:4 0:6 0:8 1:0
t t

Figure 7.2: Advanced numerical techniques: (left) stiff system solution showing multiple
time scales, (right) adaptive step size control demonstrating automatic error management.

7.4.1 Characterization of Stiffness

A system is stiff if the eigenvalues of the Jacobian matrix g—; have widely separated
magnitudes. The stiffness ratio is defined as:

_ max; [Re(Ay)] (7.24)
min; |[Re(\;)|
where \; are the eigenvalues. Large stiffness ratios (S > 1) indicate stiff problems.

Physical Origins of Stiffness: Stiffness commonly arises in: - Chemical kinetics
with fast and slow reactions - Electrical circuits with different RC time constants - Struc-
tural dynamics with high-frequency vibrations - Fluid dynamics with boundary layers -
Control systems with fast actuator dynamics

Example. The Van der Pol equation with large u:

d*x dx
=5~ (1—1’2)E+x:0 (7.25)
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For ;1 > 1, the system exhibits relaxation oscillations with fast transitions and slow
evolution phases. Explicit methods require step sizes h ~ 1/u for stability, making
integration extremely expensive.

Converting to first-order form and analyzing the Jacobian reveals eigenvalues of order
1, confirming the stiff nature of the problem.

7.4.2 Implicit Methods for Stiff Problems

Implicit methods are essential for stiff problems because their stability regions include
large portions of the left half-plane. The backward Euler method, despite its low order,
is often preferred for highly stiff problems due to its excellent stability properties.

A-Stability: A method is A-stable if its stability region includes the entire left half-
plane {\ : Re(A) < 0}. This ensures stability for any step size when applied to the test
equation y' = Ay with Re(\) < 0.

L-Stability: A stronger condition requiring that the amplification factor approaches
zero as |Ah| — oco. L-stable methods effectively damp high-frequency components.

Solving Nonlinear Systems: Implicit methods require solving nonlinear systems at
each step. Newton’s method is typically used:

G(Yn+1) = Yns1 — Yn — Pf(tny1,yn1) =0 (7.26)
The Newton iteration is:
of] !
A =y -] G (727

7.5 Adaptive Step Size Control

Adaptive methods automatically adjust the step size to maintain a specified accuracy
while minimizing computational cost. This is essential for problems with varying solution
smoothness or when high accuracy is required over long integration intervals.

7.5.1 Error Estimation and Control

Most adaptive methods use embedded formulas to estimate the local truncation error.
Given error tolerance tol, the step size is adjusted according to:

tol

1/(p+1)
W) - safety factor (7.28)
e

hnew = hold <

where p is the order of the lower-order method and the safety factor (typically 0.8-0.9)
provides a margin for error.

Error Norms: For vector problems, appropriate error norms must be chosen. Com-

mon choices include: - Maximum norm: |e|., = max; |e;| - Weighted RMS norm: |e|gms =

VEZL (efwry

where weights w; account for the different scales of solution components.
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7.5.2 Step Size Selection Strategies

Effective step size control requires balancing several competing objectives:

Accuracy Control: Maintain local error below specified tolerance Efficiency: Use
the largest possible step size consistent with accuracy requirements Stability: Avoid
step sizes that lead to numerical instability Smoothness: Prevent excessive step size
variations that can degrade accuracy

Advanced controllers use PI (proportional-integral) or PID (proportional-integral-
derivative) control theory to achieve smooth, efficient step size adaptation.

7.6 Geometric Integration

Traditional numerical methods focus on achieving high-order accuracy but may not pre-
serve important geometric properties of the continuous system. Geometric integrators are
designed to preserve specific structural properties such as energy, momentum, or symplec-
tic structure.

7.6.1 Symplectic Integration

Hamiltonian systems have a special geometric structure that should be preserved during
numerical integration. Symplectic integrators maintain the symplectic structure, ensuring
long-term stability and energy conservation properties.

For separable Hamiltonian systems H (p, q) = T'(p) + V' (q), the Stérmer-Verlet method
is a simple symplectic integrator:

h
Pn+1/2 = Pn — §V,(Qn) (729)
Gn+1 = Gn + hT'(pn+1/2) (7.30)
h
Dn+1 = Pnt1/2 — §V/(Qn+1) (7.31)

This method exactly preserves the symplectic structure and exhibits excellent long-
term energy behavior.

7.6.2 Emnergy-Preserving Methods

For conservative systems, preserving energy exactly can be more important than achieving
high-order accuracy. Energy-preserving methods are designed to satisfy discrete energy
conservation laws.

d

The discrete gradient method for systems % = VH(y) uses:

Ynt1 = Y¥Yn T th(Ym Yn+1> (732)
where VH is a discrete gradient satisfying:

This ensures exact energy conservation: H(y,1) = H(yn).

70



7.7. BOUNDARY VALUE PROBLEMS

7.7 Boundary Value Problems

Many applications require solving boundary value problems (BVPs) where conditions are
specified at multiple points. Unlike initial value problems, BVPs generally require global
methods that satisfy all boundary conditions simultaneously.

7.7.1 Shooting Methods

Shooting methods convert BVPs to sequences of initial value problems. For the two-point
BVP:

y =f(t,y), t€]la,b] (7.34)
g(y(a),y(0)) =0 (7.35)

The shooting method guesses initial conditions y(a) = s and integrates to t = b. The
parameter s is adjusted using Newton’s method to satisfy the boundary conditions.

Multiple Shooting: For better numerical stability, the interval can be divided into
subintervals with continuity conditions enforced at the interfaces. This reduces sensitivity
to initial condition errors and improves convergence for difficult problems.

7.7.2 Finite Difference Methods

Finite difference methods discretize the differential equation directly on a grid. For the
BVP ¢’ = f(t,y,y') with y(a) = «a, y(b) = B, the second derivative is approximated by:

h
This leads to a system of nonlinear algebraic equations that can be solved using New-
ton’s method or other root-finding techniques.

7.8 Partial Differential Equations: Method of Lines

Many PDEs can be solved by discretizing in space to obtain a system of ODEs, which is
then integrated using standard ODE methods. This approach, called the method of lines,
leverages the sophisticated ODE solvers developed for temporal integration.

7.8.1 Spatial Discretization

Consider the heat equation:

ou 0*u

— =a— 7.37
ot~ “ox? (7.37)

Discretizing in space using finite differences:
du; Ui — 2u; + Uiy (7.38)

at Y (Axp

71



CHAPTER 7. LECTURE 7: NUMERICAL METHODS FOR DIFFERENTIAL
EQUATIONS

This produces a system of ODEs that can be integrated using any suitable method.
The choice of spatial discretization (finite differences, finite elements, spectral methods)
depends on the problem geometry and accuracy requirements.

7.8.2 Stability Considerations

The method of lines can produce stiff ODE systems, especially for parabolic PDEs with
fine spatial grids. The stiffness arises from the high-frequency spatial modes, which have
large eigenvalues proportional to 1/(Ax)?.

Implicit time integration is often necessary for stability, leading to the need to solve
large linear systems at each time step. Efficient linear algebra techniques and precondi-
tioning become crucial for computational performance.

7.9 Software and Implementation

Modern scientific computing relies heavily on robust, efficient ODE solver libraries. Un-
derstanding the capabilities and limitations of these tools is essential for effective problem
solving.

7.9.1 Popular ODE Solver Libraries

MATLAB: The ode45, odelbs, and related functions provide high-quality adaptive
Runge-Kutta and BDF methods with automatic stiffness detection and method switching.

Python: The scipy.integrate module includes solve_ivp with multiple method
options, event detection, and dense output capabilities.

Fortran/C: Libraries like ODEPACK, SUNDIALS, and CVODE provide highly op-
timized implementations for production computing environments.

Julia: The DifferentialEquations.jl ecosystem offers a unified interface to numerous
solvers with excellent performance and extensive method selection.

7.9.2 Method Selection Guidelines

Choosing appropriate methods requires understanding problem characteristics:

Non-stiff problems: Explicit Runge-Kutta methods (RK45, Dormand-Prince) pro-
vide excellent accuracy and efficiency.

Stiff problems: BDF methods or implicit Runge-Kutta methods are essential for
stability.

Conservative systems: Symplectic or energy-preserving methods maintain physical
properties over long integrations.

Oscillatory problems: Specialized methods that account for the oscillatory nature
can be more efficient than general-purpose solvers.

Computational Note: The file lecture7.py provides comprehensive implementa-
tions of the numerical methods discussed in this lecture. The code includes basic methods
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(Euler, RK4), adaptive algorithms (RKF45), stiff solvers (backward Euler with Newton
iteration), and geometric integrators (Stormer-Verlet). FError analysis, stability region
plotting, and performance comparisons demonstrate the practical aspects of method se-
lection and implementation.

7.10 Error Analysis and Convergence Theory

Understanding the theoretical foundations of numerical methods is crucial for reliable
implementation and effective problem solving. Convergence theory provides the math-
ematical framework for analyzing method performance and predicting behavior as step
sizes decrease.

7.10.1 Consistency, Stability, and Convergence

The fundamental theorem of numerical analysis for ODEs establishes the relationship
between these three concepts:

Consistency: A method is consistent if the local truncation error approaches zero as
the step size decreases. Formally, the method y, 11 =y, + h®(t,, yn, h) is consistent if:

lim [y (tn + h) — y(tn) — h®(t, y(t0), )] = O (7.39)
h—0 h

Stability: A method is stable if small perturbations in the initial data or intermediate
calculations do not grow unboundedly. For linear problems, this can be analyzed using
the amplification factor.

Convergence: A method converges if the global error approaches zero as the step
size decreases: limy,_,o max, |y, —y(t,)| = 0.

Theorem 7.1. For a consistent numerical method applied to a well-posed linear initial
value problem, stability is necessary and sufficient for convergence.

This theorem provides the theoretical foundation for numerical method analysis and
guides the development of new algorithms.

7.10.2 Order of Accuracy and Error Bounds

The order of accuracy determines how rapidly the error decreases as the step size is
reduced. For a method of order p, the global error satisfies:

Vo — ¥(ta)] < CR” (7.40)

for some constant C' independent of A (but depending on the problem and integration
interval).

Higher-order methods provide better accuracy for smooth problems but may not be
advantageous for problems with limited smoothness or when high precision is not required.
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7.11 Advanced Topics and Current Research

The field of numerical methods for differential equations continues to evolve, driven by
new applications and computational architectures. Several areas represent active research
frontiers with significant practical impact.

7.11.1 Exponential Integrators

For problems with linear stiff components, exponential integrators can provide excellent
efficiency by treating the linear part exactly. These methods have the form:

Vol = ehAyn + hp1(hA)N(y,) (7.41)

where A is the linear part and N represents nonlinear terms. The function ¢(z) =
(e* — 1)/z and its generalizations can be computed efficiently using Krylov subspace
methods.

7.11.2 Structure-Preserving Methods

Beyond symplectic integration, researchers have developed methods that preserve other
important structures:

Lie Group Methods: For problems evolving on manifolds, methods that respect the
geometric structure can provide superior long-term behavior.

Discrete Variational Methods: Based on discrete versions of variational principles,
these methods automatically preserve conservation laws and symplectic structure.

Energy-Momentum Methods: For mechanical systems, methods that preserve
both energy and momentum provide excellent long-term stability.

7.11.3 Parallel and High-Performance Computing

Modern computational demands require methods that can exploit parallel architectures:

Parallel-in-Time Methods: Techniques like parareal and PFASST enable temporal
parallelization by solving multiple time intervals simultaneously.

GPU Acceleration: Explicit methods with high arithmetic intensity can achieve
significant speedups on graphics processing units.

Adaptive Mesh Refinement: For PDE applications, dynamic grid adaptation can
focus computational effort where needed most.

7.12 Chapter Summary

This lecture has provided a comprehensive overview of numerical methods for differential
equations, covering both fundamental algorithms and advanced techniques. The key
insights include:
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Method Selection: The choice of numerical method depends critically on problem
characteristics such as stiffness, required accuracy, conservation properties, and compu-
tational constraints. No single method is optimal for all problems.

Adaptive Control: Modern solvers automatically adjust step sizes and even switch
methods to maintain accuracy while minimizing computational cost. Understanding these
adaptive mechanisms is crucial for effective use of numerical software.

Stability and Accuracy: The interplay between stability and accuracy determines
method performance. Stiff problems require implicit methods despite their higher com-
putational cost per step.

Geometric Structure: For problems with special structure (Hamiltonian, conser-
vative, etc.), specialized methods that preserve these properties often provide superior
long-term behavior compared to general-purpose methods.

Implementation Considerations: Practical implementation involves many details
beyond the basic algorithm: error control, linear algebra, event detection, and output
management all affect overall performance and reliability.

The numerical solution of differential equations remains an active area of research,
with new methods and applications continually emerging. The principles and techniques
covered in this lecture provide the foundation for understanding both current methods
and future developments in this essential area of scientific computing.

The next lecture will explore applications of these numerical methods to real-world
problems in science and engineering, demonstrating how the theoretical concepts translate
to practical problem solving.
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Chapter 8

Lecture 8: Applications in Science and
Engineering

8.1 Introduction to ODE Applications

Ordinary differential equations serve as the mathematical foundation for modeling dy-
namic processes across virtually every field of science and engineering. From the micro-
scopic behavior of molecules to the macroscopic evolution of galaxies, from the spread of
diseases to the dynamics of financial markets, ODEs provide the language for describing
how systems change over time. This universality stems from the fundamental nature of
differential equations as mathematical expressions of physical laws, conservation princi-
ples, and empirical relationships.

The power of ODE modeling lies not merely in describing observed phenomena but in
predicting future behavior, understanding system sensitivity to parameters, and design-
ing interventions to achieve desired outcomes. Modern computational capabilities have
dramatically expanded the scope of problems that can be addressed, enabling the study
of complex, multi-scale systems that were previously intractable.

This lecture explores representative applications that demonstrate both the breadth of
ODE applications and the depth of insight they provide. We examine mechanical systems
that exhibit the full spectrum of dynamical behavior, biological systems that reveal the
complexity of living processes, electrical circuits that form the basis of modern technology,
and chemical reactions that drive both industrial processes and biological function.

Each application area presents unique modeling challenges and opportunities. Me-
chanical systems often involve conservation laws and geometric constraints that must
be respected in both analytical and numerical treatments. Biological systems typically
exhibit nonlinear interactions, multiple time scales, and stochastic effects that require
sophisticated modeling approaches. Electrical circuits combine linear and nonlinear ele-
ments in networks that can exhibit complex dynamics. Chemical systems involve mass
action kinetics and thermodynamic constraints that shape their temporal evolution.
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Figure 8.1: Mechanical system applications: damped harmonic oscillator with different
damping regimes, forced oscillator showing resonance, linear vs nonlinear pendulum com-
parison, and chaotic double pendulum dynamics.

8.1.1 Modeling Principles and Methodology

Effective mathematical modeling requires a systematic approach that balances physical
realism with mathematical tractability. The modeling process typically involves several
key steps that transform real-world phenomena into mathematical frameworks amenable
to analysis and computation.

Problem Identification and Scope Definition: The first step involves clearly
defining the system of interest, identifying the key variables and parameters, and estab-
lishing the temporal and spatial scales relevant to the problem. This scoping process
determines which physical effects must be included and which can be neglected or ap-
proximated.

Physical Principle Identification: Most ODE models derive from fundamental
physical principles such as conservation of mass, energy, and momentum, Newton’s laws
of motion, Kirchhoff’s laws for electrical circuits, or empirical relationships like Fick’s law
for diffusion. Identifying the relevant principles provides the foundation for mathematical
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formulation.

Mathematical Formulation: The physical principles are translated into mathe-
matical equations involving derivatives of the system variables. This step often requires
making simplifying assumptions about system geometry, material properties, or interac-
tion mechanisms.

Dimensionless Analysis: Converting equations to dimensionless form reveals the
fundamental parameter groups that control system behavior and enables the identification
of different dynamical regimes. This analysis often provides crucial insights into system
scaling and parameter sensitivity.

Model Validation and Refinement: Comparing model predictions with experi-
mental data or known analytical solutions validates the model and identifies areas where
refinement may be needed. This iterative process gradually improves model fidelity and
predictive capability.

The applications examined in this lecture illustrate these principles while demonstrat-
ing the rich variety of phenomena that can be captured by ODE models.

8.2 Mechanical Systems

Mechanical systems provide some of the most intuitive and well-understood applications
of differential equations. The fundamental principles of Newtonian mechanics translate
directly into second-order ODEs that describe the motion of particles and rigid bodies
under the influence of forces.

8.2.1 Harmonic Oscillators and Vibrations

The harmonic oscillator represents one of the most important and ubiquitous models in
physics and engineering. Its mathematical simplicity belies its fundamental importance
in understanding oscillatory phenomena across many disciplines.
Simple Harmonic Motion: The undamped harmonic oscillator is governed by:
dx
m—s +kxr =0 8.1
o (8.1)
where m is mass and k is the spring constant. The solution z(¢) = A cos(wpt + ¢) with
Wy = \/k/_m describes sinusoidal motion with amplitude A and phase ¢ determined by
initial conditions.
Damped Oscillations: Real systems always involve energy dissipation, typically
modeled by viscous damping;:
d*x dx
— —+kxr=0 8.2
maE T TR (82)
The damping coefficient ¢ determines the system behavior. Defining the damping ratio
¢ = ¢/(2v/mk) and natural frequency wyg = \/k/m, the characteristic equation becomes:

s% 4 2Cwps +wi =0 (8.3)
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The roots s = —Cwy £ wgy/(? — 1 determine three distinct regimes:
Underdamped (¢ < 1): Oscillatory motion with exponentially decaying amplitude

x(t) = Ae™ %" cos(wyt + @) (8.4)

where wy = wpy/1 — (? is the damped frequency.

Critically Damped (¢ = 1): Fastest return to equilibrium without oscillation
x(t) = (A + Bt)e 0! (8.5)

Overdamped (¢ > 1): Slow, non-oscillatory return to equilibrium with two exponential
time constants.
Forced Oscillations and Resonance: External forcing leads to rich dynamical

behavior: ,
chZle + ccjl—:f + kx = Fy cos(wt) (8.6)

The steady-state response has amplitude:

Fy/k
V(1 = w?/w§)? + (26w /wo)?
Resonance occurs near w = wg, where the amplitude is maximized. The sharpness of

the resonance peak depends on the damping ratio, with lightly damped systems exhibiting
sharp, high-amplitude resonances that can lead to system failure if not properly controlled.

Alw) = (8.7)

Example. Modern buildings in earthquake-prone regions use base isolation systems that
can be modeled as damped oscillators. Consider a building of mass M supported by
isolators with stiffness K and damping C, subject to ground acceleration &,(t).

The equation of motion for the building displacement x relative to the ground is:

Mi + Ci + Kz = —Mi,(t) (8.8)

The isolation system is designed so that the building’s natural frequency is much
lower than the dominant frequencies in earthquake ground motion. This ensures that the
building remains relatively stationary while the ground moves beneath it, dramatically
reducing seismic forces transmitted to the structure.

Optimal damping (typically ¢ ~ 0.1 — 0.2) balances the competing requirements of
reducing resonant amplification while maintaining isolation effectiveness at higher fre-
quencies.

8.2.2 Nonlinear Oscillators

Real mechanical systems often exhibit nonlinear behavior that leads to phenomena im-
possible in linear systems. These nonlinearities can arise from geometric effects, material
properties, or force characteristics.
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Duffing Oscillator: The Duffing equation models oscillators with nonlinear restoring
forces:

2

(fin - 5% + az + B = 7 cos(wt) (8.9)

For $ > 0 (hardening spring), the restoring force increases more rapidly than linearly

with displacement, leading to amplitude-dependent frequency. For f < 0 (softening
spring), the opposite occurs.

The unforced Duffing oscillator (v = 0) conserves energy:

1, 1 5, 1

The period depends on amplitude, unlike the linear oscillator. For large amplitudes
in the hardening case, the frequency increases as w oc AY2.

Forced Duffing oscillators can exhibit multiple coexisting steady states, hysteresis, and
chaotic behavior depending on parameter values. The system can jump between different
response branches as the forcing frequency is slowly varied, demonstrating the complex
dynamics possible in nonlinear systems.

Van der Pol Oscillator: This system models self-sustained oscillations with nonlin-
ear damping:

d*x dx

> (1—x2)E+x:0 (8.11)

The damping term —pu(1 — 2?)& provides energy input for small amplitudes (x| < 1)
and energy dissipation for large amplitudes (|z| > 1). This creates a stable limit cycle
representing sustained oscillation.

For small p, the limit cycle is nearly sinusoidal with amplitude approximately 2. For
large u, relaxation oscillations occur with distinct fast and slow phases, resembling a
square wave.

8.2.3 Pendulum Dynamics

The pendulum provides a classic example of nonlinear dynamics with rich behavior de-
pending on energy and parameter values.
Simple Pendulum: The equation for a pendulum of length [ is:

20
er%sine:o (8.12)

For small angles, sin@ ~ 6 gives the linear approximation with period 7" = 2m+/l/g.
For finite amplitudes, the period increases with amplitude according to:

reafin (%) 51)

where K is the complete elliptic integral of the first kind and 6y is the maximum angle.
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The phase portrait reveals three types of motion: small oscillations around the stable
equilibrium, large oscillations that don’t reach the top, and rotational motion for energies
exceeding the separatrix value.

Damped Driven Pendulum: Adding damping and driving creates one of the most
studied chaotic systems:

d*0 do
— 4+ 77— +sinf = f cos(wt 8.14
e f cos(wt) (314

For appropriate parameter values, this system exhibits chaotic behavior with sensitive
dependence on initial conditions, strange attractors, and fractal basin boundaries. The
transition to chaos occurs through period-doubling cascades and other well-characterized
routes.

8.3 Biological Systems

Biological systems present unique modeling challenges due to their complexity, nonlin-
earity, and multi-scale nature. ODE models have proven invaluable for understanding
population dynamics, epidemiology, biochemical networks, and physiological processes.

8.3.1 Population Dynamics

Population models form the foundation of ecology, conservation biology, and resource
management. These models capture the essential dynamics of birth, death, and interaction
processes that determine population changes over time.

Exponential and Logistic Growth: The simplest population model assumes ex-
ponential growth:

dN
— =N 8.15
7 =7 (8.15)

where N(t) is population size and r is the intrinsic growth rate. This gives unlimited
exponential growth N (t) = Nye™, which is unrealistic for finite environments.
The logistic model incorporates carrying capacity K:

dN N

The solution approaches the carrying capacity sigmoidally:
B K
1+ <N£0 - 1) e-rt

The logistic model exhibits a single stable equilibrium at N = K, representing the
balance between growth potential and environmental limitations.

N(t) (8.17)
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Figure 8.2: Biological applications: SIR epidemic model with varying reproduction num-
bers, predator-prey dynamics with different parameters, logistic growth with harvesting
effects, and FitzHugh-Nagumo neural excitation model.

Predator-Prey Dynamics: The Lotka-Volterra model describes interacting preda-
tor and prey populations:

d
d—f = azr — bxy (8.18)
d
d_:g = —cy +dxy (8.19)

where x is prey density, y is predator density, and a,b,c,d > 0 are rate parameters.
This system conserves the quantity:

H(z,y)=dx+by—clnz —alny (8.20)

The phase portrait consists of closed orbits around the equilibrium (¢/d, a/b), repre-
senting periodic oscillations in both populations. The predator population lags behind the

prey population, creating the characteristic phase relationship observed in many natural
systems.
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More realistic models include carrying capacity for prey, predator saturation effects,
and additional mortality terms:

dx x axy

ot _ 1— ) — 21
at " ( K) 1+ ha (8.21)
dy eaxy

7 _ — 22
it~ 1+ha (8.22)

These modifications can lead to stable equilibria, limit cycles, or more complex dy-
namics depending on parameter values.

Example. Consider a fish population subject to harvesting at rate H:

dN N

For constant harvesting, equilibria occur where growth equals harvest rate. The max-
imum sustainable yield occurs at N = K/2, giving Hyax = rK/4.

If H > H,.., no equilibrium exists and the population crashes to extinction. This
demonstrates the critical importance of harvest rate control in sustainable resource man-
agement.

More sophisticated models include age structure, spatial distribution, and economic
factors, but the basic principle of balancing growth and harvest remains fundamental to
fisheries science.

8.3.2 Epidemiological Models

Mathematical epidemiology uses ODE models to understand disease spread and evaluate
intervention strategies. These models have become increasingly important for public
health planning and policy development.

SIR Model: The basic SIR (Susceptible-Infected-Recovered) model divides the pop-
ulation into three compartments:

as

— = —pSI (8.24)
% = BSI —~1 (8.25)
dR

where S+ 1+ R = N (constant total population), § is the transmission rate, and = is
the recovery rate.

The basic reproduction number Ry = SN/~ determines epidemic behavior: - If Ry < 1,
the disease dies out - If Ry > 1, an epidemic occurs

The final epidemic size satisfies the transcendental equation:

Soe = Spe o1 =5/N) (8.27)
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This relationship shows that not everyone becomes infected even in a severe epidemic,
as the depletion of susceptibles eventually stops transmission.
SEIR Model: Adding an exposed (latent) class accounts for incubation periods:

% — _BSI (8.28)
% — 8SI - oE (8.29)
% Bl (8.30)
‘;_f ] (8.31)

The exposed class represents individuals who are infected but not yet infectious. This
model better captures diseases with significant incubation periods like COVID-19, in-
fluenza, or measles.

Vaccination and Control: Vaccination can be incorporated by modifying the sus-

ceptible equation:
s = —pBSI —vS (8.32)
dt
where v is the vaccination rate. The critical vaccination coverage needed to prevent
epidemics is: .
pe=1-— o (8.33)
This herd immunity threshold shows that not everyone needs to be vaccinated to

prevent disease spread, but the required coverage increases with disease transmissibility.

8.3.3 Biochemical Networks

Cellular processes involve complex networks of biochemical reactions that can be modeled
using systems of ODEs based on mass action kinetics and enzyme kinetics.

Enzyme Kinetics: The Michaelis-Menten mechanism describes enzyme-catalyzed
reactions:

E+ST€L1_ESE%E+P (8.34)
The full system of ODEs is:
% = —ki[E][S] + k_1[ES] (8.35)
_d[fts] — Ky [E][S] — k1 [ES] — kol ES] (8.36)
[P} _
~ 7 = halES] (8.37)

with conservation laws [E]y = [E] + [ES] and [S]o = [S] + [ES] + [P].
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d[ES)
dt

Under the quasi-steady-state approximation ( ~ 0), this reduces to the Michaelis-

Menten equation:
d[P] _ Vinax[S]
dt — Ky +[S]
where Vijax = k2[E]o and Ky = (k_1 + ko) /K.
Gene Regulatory Networks: Gene expression can be modeled using Hill functions
to capture cooperative binding;:

(8.38)

d_a: B Q
dt 1+ (y/K)"

where x is the protein concentration, y is a repressor concentration, n is the Hill
coefficient (cooperativity), and «, K, are kinetic parameters.

Networks of such equations can exhibit bistability, oscillations, and other complex
behaviors essential for cellular function. The lac operon, circadian clocks, and cell cycle
control all involve regulatory circuits that can be analyzed using ODE models.

— 0 (8.39)

8.4 Electrical Circuits

Electrical circuits provide excellent examples of ODE applications due to their well-defined
physical laws and practical importance. Circuit analysis demonstrates how Kirchhoft’s
laws translate into systems of differential equations.

8.4.1 Basic Circuit Elements and Laws

Kirchhoff’s Laws: Circuit analysis is based on two fundamental principles: - Kirchhoft’s
Current Law (KCL): The sum of currents entering any node equals zero - Kirchhoff’s
Voltage Law (KVL): The sum of voltage drops around any closed loop equals zero
Constitutive Relations: Each circuit element has a characteristic voltage-current
relationship: - Resistor: v = Ri (Ohm’s law) - Capacitor: i = C’% - Inductor: v = L%
These relationships, combined with Kirchhoff’s laws, generate the differential equa-
tions governing circuit behavior.

8.4.2 RLC Circuits

The series RLC circuit provides a direct electrical analog to the mechanical harmonic
oscillator.
Series RLC Circuit: Applying KVL to a series RLC circuit with voltage source

v (t):
L— —|—R@—|——/zdt—vs (8.40)

Differentiating to eliminate the integral:

L— +R— + =i = (8.41)
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This has the same mathematical form as the damped harmonic oscillator, with natural
frequency wy = 1/ LC and damping ratio ( = R/(2+/L/C).
Parallel RLC Circuit: For the parallel configuration, the voltage across the circuit

satisfies:

v 1dv 1 dig
vy - 42
a2 T Rat " I" (8.42)

L dt

where i,4(t) is the source current.

Resonance and Quality Factor: At resonance (w = wy), the reactive components
cancel and the circuit impedance is minimized (series) or maximized (parallel). The
quality factor Q = wyL/R measures the sharpness of the resonance and the energy storage
capability relative to energy dissipation.

High-Q circuits have sharp resonances and low damping, making them useful for
frequency-selective applications like filters and oscillators. Low-Q circuits have broad
responses and fast transient decay, suitable for applications requiring stability and fast
settling.

C

Example. An LC circuit without resistance exhibits undamped oscillations. Starting
with initial charge )y on the capacitor:
’Q  Q
L—+==0 8.43
at>  C (8.43)
The solution Q(t) = Qg cos(wyt) with wy = 1/+/LC represents energy oscillation be-
tween electric field energy in the capacitor and magnetic field energy in the inductor.
The current i(t) = —% = Qowp sin(wpt) leads the charge by 90°, similar to the velocity-
position relationship in mechanical oscillators.
Real circuits always have some resistance, leading to exponentially decaying oscilla-
tions and eventual energy dissipation as heat.

8.4.3 Nonlinear Circuits

Nonlinear circuit elements like diodes, transistors, and operational amplifiers can create
complex dynamics including bistability, oscillations, and chaos.

Chua’s Circuit: One of the simplest chaotic circuits consists of an inductor, two
capacitors, a resistor, and a nonlinear resistor (Chua’s diode):

dv 1
Cld_tl = E(UQ — Ul) — g(Ul) (844)
dv 1 )
2d_t2 = E(m —vg) +ig (8.45)
di
Ld_tL = vy (8.46)

where g(vy) is the nonlinear characteristic of Chua’s diode, typically a piecewise-linear
function.
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This circuit can exhibit period-doubling routes to chaos, strange attractors, and com-
plex bifurcation structures, demonstrating that chaotic behavior can arise in simple elec-
tronic circuits.

Van der Pol Oscillator Circuit: Electronic implementations of the Van der Pol
oscillator use nonlinear amplifiers to create the negative resistance characteristic:

d*v dv
LO=— — (1 —vH) = = 4
Cdt2 ( v)dt—l—v 0 (8.47)

Such circuits are fundamental to electronic oscillator design and demonstrate how
nonlinear feedback can sustain oscillations.

8.5 Chemical Reaction Systems

Chemical kinetics provides another rich source of ODE applications, with reactions gov-
erned by mass action laws and conservation principles.

8.5.1 Elementary Reaction Kinetics

Mass Action Law: For an elementary reaction aA + bB — c¢C + dD, the reaction rate
is:

r = k[A]"[B]° (8.48)

where k is the rate constant and [X] denotes the concentration of species X.
First-Order Reactions: The simple decay A — B gives:

d[A]
dB]

with solution [A](t) = [A]pe ™ and [B](t) = [A]o(1 — e~*).
Second-Order Reactions: For A+ B — C:

dl4] _

= —k[A][B (8:51)
d[B]

7 = —kA|B (8.52)
dC]

7 = kA|B] (8.53)
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8.5.2 Complex Reaction Networks

Real chemical systems involve networks of coupled reactions that can exhibit complex
dynamics.

. . k k
Consecutive Reactions: For the sequence A — B —% C:

d[A]
— =—kK]A .54
W (8.54)
d|B
AB) _ (4] - kolB) (8.55)
d[C]
—— = ko|B 8.56
= klB) (8.56)
The intermediate B exhibits a maximum concentration at time t,,x = % (for

ko # ky).
Autocatalytic Reactions: Reactions where a product catalyzes its own formation
can exhibit sigmoidal growth:

A+ B —2B (8.57)
gives:
dlA] _
~ o = —kA|B] (8.58)
diB] _
- = kAB (8.59)

With conservation [A] + [B] = [A]o + [Blo, this becomes logistic growth for [B].
Oscillating Reactions: The Brusselator model demonstrates how chemical reactions
can produce sustained oscillations:

A—X (8.60)

2X+Y = 3X (8.61)

B+X—-=Y+D (8.62)

X —F (8.63)

Assuming constant concentrations of A and B, the rate equations are:

d| X

% = A— (B+ 1)[X]+ [X][Y] (8.64)
dY]

— = BIXI = [XP[Y] (8.65)

For appropriate parameter values, this system exhibits limit cycle oscillations, demon-
strating that chemical systems can maintain periodic behavior far from equilibrium.

8.6 Multi-Scale and Coupled Systems

Many real-world applications involve multiple time scales, spatial scales, or coupled sub-
systems that require sophisticated modeling approaches.
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8.6.1 Stiff Systems and Multiple Time Scales

Systems with widely separated time scales pose significant challenges for both analytical
and numerical treatment.
Singular Perturbation Methods: For systems of the form:

dx
d
e = g(x..9) (8.67)

where 0 < € < 1, the variable y evolves much faster than z. Singular perturbation
theory provides systematic methods for analyzing such systems by identifying fast and
slow manifolds.

Quasi-Steady-State Approximation: When some variables equilibrate quickly rel-
ative to others, they can be approximated by their quasi-steady values. This reduces the
system dimension and eliminates stiffness.

In enzyme kinetics, the enzyme-substrate complex reaches quasi-equilibrium quickly
compared to substrate depletion, justifying the Michaelis-Menten approximation.

8.6.2 Coupled Oscillator Systems

Networks of coupled oscillators appear throughout science and engineering, from mechan-
ical systems to biological rhythms to power grids.
Kuramoto Model: A paradigmatic model for synchronization in oscillator networks:

N
db; K .
= =i + N ; sin(6; — 6;) (8.68)
where 6; is the phase of oscillator i, w; is its natural frequency, and K is the coupling
strength.
For weak coupling, oscillators remain incoherent. Above a critical coupling strength,

partial synchronization emerges, with the order parameter:

N

) 1 )

wo_ 10

re = Z ' (8.69)
7=1

measuring the degree of synchronization.

Mechanical Coupled Oscillators: Two masses connected by springs exhibit normal

modes:

md%l——kx + ke(zg — 1) (8.70)
e :
d*x

77’L2?22 = —k‘QZEQ - k?c(ZEQ — .171) (871)

The normal mode frequencies are determined by the eigenvalues of the system matrix,
and general motion is a superposition of these modes.
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8.7 Modern Applications and Emerging Areas

Contemporary applications of ODEs continue to expand into new domains driven by
technological advances and interdisciplinary research.

8.7.1 Systems Biology and Synthetic Biology

Modern molecular biology increasingly relies on quantitative models to understand cellular
processes and design synthetic biological systems.

Circadian Rhythms: Biological clocks involve transcriptional-translational feedback
loops that can be modeled as coupled oscillators:

dm K7

B Y S— 72
at ~ “"Kp+pr Bmm (8.72)
ar

% = opMm — ﬁpP (873)

where m is mRNA concentration and P is protein concentration. The Hill function
captures the repressive effect of the protein on its own transcription.

Synthetic Gene Circuits: Engineered biological systems use ODE models for design
and optimization. Toggle switches, oscillators, and logic gates can all be implemented
using genetic regulatory circuits with predictable dynamics.

8.7.2 Climate and Environmental Modeling

Climate systems involve coupled atmosphere-ocean-land dynamics that can be studied
using ODE models for key processes.
Energy Balance Models: Simple climate models treat Earth’s temperature as gov-

erned by:
ar

O = S(1—a)—oT*+AF (8.74)

where C' is heat capacity, S is solar constant, « is albedo, ¢ is the Stefan-Boltzmann
constant, and AF represents radiative forcing from greenhouse gases.

Carbon Cycle Models: The global carbon cycle can be modeled as a network of

reservoirs (atmosphere, ocean, biosphere) connected by fluxes governed by ODE systems.

8.7.3 Financial Mathematics

Financial markets exhibit complex dynamics that can be modeled using stochastic differ-
ential equations and deterministic ODE models.

Option Pricing: The Black-Scholes equation for option pricing is a parabolic PDE
that can be solved using ODE methods after appropriate transformations.

Market Dynamics: Models of market behavior often involve coupled equations for
price, volume, and volatility that exhibit complex dynamics including bubbles, crashes,
and regime changes.
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8.8 Computational Considerations and Software Tools

Modern ODE applications rely heavily on sophisticated numerical software that can han-
dle large, stiff, and complex systems.

8.8.1 Software Packages

MATLAB/Simulink: Widely used for engineering applications with excellent ODE
solvers and graphical modeling tools.

Python: The SciPy ecosystem provides comprehensive ODE solving capabilities with
good performance and flexibility.

R: Popular in biological applications with specialized packages for systems biology
and pharmacokinetics.

Julia: Emerging as a high-performance platform with the DifferentialEquations.jl
package offering state-of-the-art methods.

8.8.2 Model Development Workflow

Effective application of ODE methods requires systematic approaches to model develop-
ment, validation, and analysis:

1. **Problem Formulation:** Clear definition of objectives, assumptions, and scope 2.
**Mathematical Modeling:** Translation of physical principles into mathematical equa-
tions 3. **Parameter Estimation:** Fitting model parameters to experimental data 4.
**Model Validation:** Testing predictions against independent data 5. **Sensitivity
Analysis:** Understanding parameter importance and uncertainty propagation 6. **Op-
timization and Control:** Using models for system design and control

Computational Note: The file lecture8.py provides comprehensive implementa-
tions of the application examples discussed in this lecture. The code includes mechanical
oscillators, population dynamics, epidemic models, circuit analysis, and chemical kinetics.
Each example demonstrates both the mathematical formulation and numerical solution,
with visualization tools for exploring parameter effects and system behavior.

8.9 Chapter Summary

This lecture has demonstrated the remarkable breadth and depth of ODE applications
across science and engineering. The examples illustrate several key principles that guide
effective mathematical modeling;:

Universal Mathematical Structures: Despite their diverse physical origins, many
systems exhibit similar mathematical structures. Harmonic oscillators appear in mechan-
ical, electrical, and chemical contexts. Logistic growth describes populations, chemical
reactions, and market adoption. This universality reflects fundamental principles under-
lying dynamic processes.
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Nonlinearity and Complexity: Real systems are typically nonlinear, leading to
phenomena like multiple equilibria, limit cycles, bifurcations, and chaos. Understanding
these nonlinear effects is crucial for predicting system behavior and designing effective
interventions.

Multi-Scale Phenomena: Many applications involve multiple time or spatial scales
that require specialized analytical and numerical techniques. Singular perturbation meth-
ods, quasi-steady-state approximations, and stiff solvers are essential tools for handling
multi-scale problems.

Model Validation and Uncertainty: Successful applications require careful val-
idation against experimental data and systematic treatment of parameter uncertainty.
Models are tools for understanding and prediction, not absolute truth.

Computational Integration: Modern applications rely heavily on numerical meth-
ods and software tools. Understanding the capabilities and limitations of these tools is
essential for effective problem solving.

The applications examined in this lecture represent only a small fraction of the do-
mains where ODEs provide crucial insights. As computational capabilities continue to
advance and new measurement technologies provide unprecedented data, the scope and
sophistication of ODE applications will continue to expand.

The final lecture will explore cutting-edge developments that are shaping the future of
differential equations, including neural ODEs, data-driven discovery methods, and con-
nections to machine learning and artificial intelligence.
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Chapter 9

Lecture 9: Advanced Topics and Current
Research

9.1 Introduction to Modern Developments

The field of differential equations continues to evolve rapidly, driven by advances in com-
putational power, machine learning, and interdisciplinary applications. This final lecture
explores cutting-edge developments that are reshaping how we understand, solve, and
apply differential equations in the 21st century. These advances represent not merely
incremental improvements to existing methods, but fundamental paradigm shifts that are
opening entirely new research directions and application domains.

The convergence of differential equations with artificial intelligence and machine learn-
ing has created particularly exciting opportunities. Neural ordinary differential equations
(Neural ODEs) represent a revolutionary approach that treats neural networks as contin-
uous dynamical systems, enabling new architectures for deep learning and providing fresh
perspectives on both machine learning and differential equations. Data-driven discovery
methods are transforming how we identify governing equations from experimental obser-
vations, potentially automating the modeling process that has traditionally required deep
domain expertise.

Simultaneously, the increasing availability of large-scale datasets and high-performance
computing resources is enabling the study of previously intractable problems. Complex
networks with thousands or millions of nodes, multiscale systems spanning orders of mag-
nitude in time and space, and stochastic systems with high-dimensional noise are now
within reach of systematic investigation. These capabilities are revealing new phenomena
and challenging traditional theoretical frameworks.

The applications driving these developments span an remarkable range of disciplines.
Climate science requires models that couple atmospheric, oceanic, and terrestrial pro-
cesses across multiple scales. Neuroscience seeks to understand how networks of billions
of neurons give rise to cognition and behavior. Systems biology aims to predict cellu-
lar behavior from molecular interactions. Financial mathematics grapples with extreme
events and systemic risks in interconnected markets. Each of these domains presents
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Continuous Normalizing Flow
g o t=0

Neural ODE Trajectory ’ o =2

0.14

~N °
S 0.01 Te o
2 o1 " oo
0.14 o
g R ¥ ]
= -0.29 o~ oo
5 oI IR R N S O
S 031 8 °Oco &
L °
T -0.4- ® Input o % ° ° °
I @® Output 14 o,
0.5 0e® o® N
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 ‘ o
Hidden dimension 1 24
3 2 K 0 1 2
A
SINDy: Data-Driven Discovery Geometric Integration: Energy Conservation
201 — Truex(® — RKk4
Noisy data —— Symplectic Euler
151 0521 === True energy
101 0.511
)
T 51 o
< 2 0.50 -
w
04
0.49
-54
104 0.48
0 2 4 6 8 10 00 25 50 75 100 125 150 175 200
Time Time

Figure 9.1: Advanced topics in differential equations: Neural ODE architecture showing
continuous-time neural networks, data-driven discovery workflow for equation identifica-
tion, network dynamics on complex graphs, and quantum system evolution demonstrating
modern applications.

unique challenges that are spurring methodological innovations with broad applicability.

This lecture examines these developments through several interconnected themes: the
integration of machine learning and differential equations, data-driven approaches to
model discovery, the analysis of complex networks and multiscale systems, and emerg-
ing applications in quantum mechanics, biology, and social sciences. Throughout, we
emphasize both the mathematical foundations and the computational implementations
that make these advances possible.

9.1.1 Historical Context and Motivation

The current renaissance in differential equations research builds on centuries of mathe-
matical development while responding to contemporary challenges that earlier generations
could not have anticipated. Classical differential equations theory, developed primarily in
the 18th and 19th centuries, focused on finding analytical solutions to specific equations
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arising in physics and engineering. The 20th century saw the development of qualitative
theory, numerical methods, and applications to new domains like biology and economics.

The 21st century has brought several transformative changes. First, the exponential
growth in computational power has made it possible to simulate systems of unprecedented
complexity and scale. Second, the emergence of big data has created new opportunities
for data-driven modeling and validation. Third, the success of machine learning has
demonstrated the power of flexible, adaptive models that can learn from data without
requiring explicit mathematical formulation.

These developments have created both opportunities and challenges for differential
equations research. On one hand, we can now tackle problems that were previously
impossible to address. On the other hand, traditional approaches may be inadequate for
systems with millions of variables, incomplete knowledge of governing physics, or complex,
high-dimensional datasets.

The response has been a flowering of new methodologies that combine the rigor and
interpretability of differential equations with the flexibility and learning capabilities of
modern machine learning. These hybrid approaches promise to extend the reach of math-
ematical modeling while maintaining the physical insight and predictive power that make
differential equations so valuable.

9.2 Neural Ordinary Differential Equations

Neural ODEs represent one of the most significant recent innovations in machine learn-
ing, providing a continuous-time perspective on deep neural networks that has profound
implications for both artificial intelligence and differential equations theory.

9.2.1 Conceptual Foundation

Traditional neural networks can be viewed as discrete dynamical systems where each layer
applies a transformation to the previous layer’s output. A residual network with L layers
implements the recursion:

hjy =h + fi(h;,60)) (9.1)

where h; is the hidden state at layer [, f; is the layer transformation, and #; are the
layer parameters.

Neural ODEs take the continuous limit of this process, replacing the discrete layer
index with continuous time:

dh
= = [(h(0),1,6) (9.2)

The network output is obtained by solving this ODE from initial condition h(0) = x
(the input) to final time T

h(T) = h(0) + / : F(n(t),t,0) dt (9.3)
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This continuous formulation provides several advantages over discrete networks: adap-
tive computation (the solver can adjust step sizes based on solution complexity), memory
efficiency (intermediate states need not be stored), and continuous-time modeling capa-
bilities.

9.2.2 Training Neural ODEs

Training Neural ODEs requires computing gradients with respect to the parameters 6. The
adjoint sensitivity method provides an efficient approach that avoids storing intermediate
states during the forward pass.

Define the augmented state z(t) = [h(t),6]" and consider the loss function L(h(T)).
The gradient with respect to initial conditions is:

oL

5n0 = 20 (9.4)

where the adjoint state a(t) satisfies the backward ODE:

da  ,0f
with terminal condition a(7") = 81‘?(LT).
The gradient with respect to parameters is:
oL 0 r0f
— =— t) = dt 9.6
R R (9.

This adjoint method requires only one forward and one backward solve, making it
computationally efficient compared to naive approaches that would require solving the
ODE for each parameter perturbation.

Example. Consider modeling a time series {y1,¥s,...,y,} using a Neural ODE. The
model assumes the observations are generated by an underlying continuous dynamical
system:

dh
= = Jo(h(1)) (97)

where fy is a neural network parameterized by 6.
Given initial condition h(tg) = hg, we solve the ODE to obtain h(t;) for observation
times t;. The observations are related to the hidden state through:

yi = g(h(t:)) + e (9.8)

where ¢ is an observation function and ¢; is noise.

This approach naturally handles irregularly sampled data and can interpolate be-
tween observations, making it particularly valuable for applications like medical monitor-
ing where measurements may be sparse and irregular.
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9.2.3 Augmented Neural ODEs

Standard Neural ODEs can suffer from limited expressivity due to topological constraints.
Augmented Neural ODEs address this by expanding the state space:

£0)-+(()

where a are auxiliary variables that increase the model’s capacity to represent complex
transformations.

The augmentation can be designed to preserve specific properties. For Hamiltonian
systems, the augmentation can maintain symplectic structure. For systems with conser-
vation laws, the augmentation can enforce these constraints.

9.2.4 Applications and Extensions

Neural ODEs have found applications across numerous domains:
Continuous Normalizing Flows: Neural ODEs enable the construction of invertible
transformations for density modeling. The change of variables formula gives:

log p(x) = log p(z) — /0 i (g—ﬁ) dt (9.10)

where z = h(T) is the transformed variable.

Latent ODEs: For modeling sequential data with missing observations, latent ODEs
combine variational autoencoders with Neural ODEs to learn continuous-time latent dy-
namics.

Graph Neural ODEs: Extending Neural ODEs to graph-structured data enables
modeling of continuous-time dynamics on networks, with applications to social networks,
biological systems, and transportation networks.

9.3 Data-Driven Discovery of Differential Equations

The traditional approach to mathematical modeling requires domain expertise to formu-
late governing equations based on physical principles. Data-driven discovery methods aim
to automate this process by identifying differential equations directly from observational
data.

9.3.1 Sparse Identification of Nonlinear Dynamics (SINDy)

SINDy assumes that the governing equations have a sparse representation in a library
of candidate functions. For a system x = f(x), we construct a library matrix 0(X)
containing evaluations of candidate functions at data points:

1 @ xy af mmxy x5 sin(z) ’
OX) = |1 o o (@) 2wy () sin(e}) - (9.11)
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The sparse regression problem is:
X =0(X)Z+E (9.12)

where = contains the sparse coefficients and E is the error matrix.

The Sequential Thresholded Least Squares (STLS) algorithm iteratively solves: 1.
Least squares: = = (070)'©TX 2. Thresholding: Set small coefficients to zero 3.
Repeat until convergence

This approach has successfully identified governing equations for chaotic systems, fluid
dynamics, and biological networks from noisy, limited data.

Example. Given time series data from the Lorenz system without knowing the underlying
equations, SINDy can recover:

dx

= = oy —x) (9.13)
Y mlp—2)—y (9.14)
% =xy — Bz (9.15)

The library includes polynomial terms up to degree 2. SINDy identifies the correct
sparse structure, selecting only the terms y — x, xp — zz — y, and xy — Sz from hundreds
of candidates.

The discovered model accurately reproduces the chaotic dynamics and parameter val-
ues, demonstrating the power of sparse regression for equation discovery.

9.3.2 Physics-Informed Neural Networks (PINNs)

PINNs combine neural networks with physical constraints encoded as differential equa-
tions. The network ug(x,t) approximates the solution while satisfying the PDE:

Nug] = f(x.1) (9.16)

where N is a differential operator.
The loss function combines data fitting and physics constraints:

L = Lyata + AppELPDE + ABcLBC (9.17)

where: - Lgaa measures fit to observations - Lppg penalizes PDE residual - Lpc
enforces boundary conditions

PINNSs can solve forward problems (given PDE, find solution), inverse problems (given
data, find parameters), and data assimilation problems (combine models and observa-
tions).
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9.3.3 Weak SINDy and Integral Formulations

Traditional SINDy requires computing derivatives from noisy data, which can be chal-
lenging. Weak SINDy reformulates the problem using integral constraints that are more
robust to noise.

The weak formulation multiplies the governing equation by test functions ¢ (x) and
integrates:

/gbk(x))'(dx: /gbk(x)f(x) dx (9.18)

Using integration by parts, the time derivative is transferred to the test function,
avoiding numerical differentiation of noisy data.

9.3.4 Ensemble Methods and Uncertainty Quantification

Real data contains noise and measurement errors that can lead to incorrect model iden-
tification. Ensemble methods address this by:

1. **Bootstrap sampling:** Generate multiple datasets by resampling with replace-
ment 2. **Model identification:** Apply SINDy to each bootstrap sample 3. **Ensemble
analysis:** Identify terms that appear consistently across ensemble members

This approach provides uncertainty estimates for discovered equations and improves
robustness to noise.

9.4 Complex Networks and Graph Dynamics
Many modern applications involve dynamics on complex networks where the network

structure itself influences the dynamical behavior. This has led to new theoretical frame-
works and computational methods for analyzing networked systems.

9.4.1 Dynamics on Networks

Consider a network of N nodes with dynamics:

dSEi
dt

N
= fi(z;,t) + ZAz’jgij(il?i, z5,1) (9.19)

Jj=1

where z; is the state of node ¢, f; describes local dynamics, A;; is the adjacency matrix,
and g;; describes coupling between nodes.

The network structure encoded in A;; can dramatically influence system behavior.
Small-world networks facilitate rapid information spread, scale-free networks are robust
to random failures but vulnerable to targeted attacks, and modular networks can exhibit
chimera states with coexisting synchronized and desynchronized regions.
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9.4.2 Synchronization and Consensus

Synchronization is a fundamental phenomenon in networked systems. The master stability
function approach analyzes synchronization by linearizing around the synchronized state.

For identical oscillators with diffusive coupling:

N

= f(z;) + 0 LyH(x;) (9.20)

J=1

d[lﬁ'i
dt

where L;; is the graph Laplacian and H is the coupling function.
The synchronized solution x1(t) = z5(t) = -+ = xn(t) = s(t) satisfies:

ds
= = 1) (9:21)

Stability is determined by the master stability equation:

% — [Df(s) + oAH'(s)]¢ (9.22)

where A are the eigenvalues of the Laplacian and £ represents perturbations from
synchrony.

9.4.3 Epidemic Spreading on Networks

Network structure profoundly influences epidemic dynamics. The basic SIR model on
networks becomes:

ds;

J
dl;
J
dR;
= =71 (9.25)

The epidemic threshold depends on the network’s largest eigenvalue:

Te = m (926)

Scale-free networks have particularly low epidemic thresholds due to the presence of
highly connected hubs.
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9.4.4 Adaptive Networks

In many real systems, the network structure evolves based on the node dynamics. Adap-
tive networks couple topological and dynamical evolution:

del‘
dA;;
7] = gij(i, v5, Aij) (9.28)

This coupling can lead to rich phenomena including network fragmentation, emergence
of community structure, and co-evolution of dynamics and topology.

9.5 Multiscale Methods and Homogenization

Many applications involve multiple spatial or temporal scales that require specialized
analytical and computational approaches.

9.5.1 Multiple Time Scale Analysis

Systems with multiple time scales often have the form:

d
d
ed—‘z = g(r,y,¢) (9.30)

where 0 < € < 1 creates a separation between fast (y) and slow (z) variables.
Multiple scale analysis introduces slow time 7' = et and expands:

2(t) = 2o(t, T) + exr (6, T) + wa(t, T) + - -- (9.31)
y(t) = yo(t,T) + ey (t, T) + Eya(t, T) + - - (9.32)

This leads to a hierarchy of equations that can be solved systematically to obtain
uniformly valid approximations.

9.5.2 Homogenization Theory

For PDEs with rapidly varying coefficients, homogenization theory derives effective equa-
tions that capture the macroscopic behavior.
Consider the elliptic equation:

=V - (a(x/e)Vu) = f(x) (9.33)

where a(y) is periodic with period 1. As e — 0, the solution converges to the solution
of the homogenized equation:

—V - (a*Vu°) = f(x) (9.34)

where a* is the effective coefficient tensor determined by solving cell problems on the
unit period.
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9.5.3 Equation-Free Methods

When microscopic models are available but macroscopic equations are unknown, equation-
free methods enable macroscopic analysis without deriving the macroscopic equations
explicitly.

The approach involves: 1. **Lifting:** Initialize microscopic simulations from macro-
scopic initial conditions 2. **Evolution:** Run microscopic simulations for short times 3.
**Restriction:** Extract macroscopic observables from microscopic states 4. **Process-
ing:** Use the macroscopic data for bifurcation analysis, optimization, etc.

This enables the study of systems where the microscopic rules are known but the
macroscopic behavior is complex or unknown.

9.6 Stochastic Differential Equations

Real systems are inevitably subject to random fluctuations that can significantly influ-
ence their behavior. Stochastic differential equations (SDEs) provide the mathematical
framework for modeling such systems.

9.6.1 Ito6 and Stratonovich Calculus

SDEs have the general form:
dX; = f(Xy, t)dt + g(Xy, t)dW, (9.35)

where W, is a Wiener process (Brownian motion) and g is the noise intensity matrix.
The stochastic integral f(f g(Xs, s)dW, requires careful definition due to the non-
differentiability of Brownian motion. The It6 and Stratonovich interpretations lead to
different stochastic calculi with different transformation rules.
[to’s formula for a function f(Xy,t) gives:
of

df = (E FEVS %tr(gTHfg)) dt + (V1) gdW, (9.36)

where Hy is the Hessian matrix of f.

9.6.2 Fokker-Planck Equations
The probability density p(x,t) of an SDE solution satisfies the Fokker-Planck equation:

X V(i) + 5V (DY) (9.37)

where D = gg” is the diffusion tensor.
This PDE describes how the probability distribution evolves under the combined ef-
fects of deterministic drift f and stochastic diffusion D.
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9.6.3 Noise-Induced Phenomena

Noise can qualitatively change system behavior, leading to phenomena impossible in de-
terministic systems:

Stochastic Resonance: Weak periodic signals can be amplified by optimal noise
levels, enhancing signal detection in nonlinear systems.

Noise-Induced Transitions: Random fluctuations can cause transitions between
stable states, with rates determined by large deviation theory.

Noise-Induced Oscillations: Systems with stable equilibria can exhibit sustained
oscillations when subjected to appropriate noise.

9.7 Quantum Differential Equations

Quantum mechanics provides another frontier for differential equations research, with
applications ranging from quantum computing to many-body physics.

9.7.1 Schrodinger Equation

The time-dependent Schrodinger equation governs quantum evolution:

Lo
ih, = Hu (9.38)

where ¢ is the wave function and H is the Hamiltonian operator.
For finite-dimensional quantum systems, this becomes a linear ODE:

Ldlv)
ih= = HJ) (9.39)

with solution [(t)) = e~™#t/"2)(0)).

9.7.2 Open Quantum Systems

Real quantum systems interact with their environment, leading to decoherence and dissi-
pation. The master equation for the density matrix p is:

dp _ 1

o = ~ Rl el + L) (9.40)

where L is the Lindblad superoperator describing environmental effects:
1
£l = 3 (ot - {den}) (9.41)
k

The operators Ly describe different decoherence channels with rates ;.
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9.7.3 Quantum Control

Optimal control theory for quantum systems seeks to find time-dependent Hamiltonians
that achieve desired quantum operations. The control problem is:

min J[H] = ' L(H (1), t)dt + (p(T)) (9.42)

H(t) 0

subject to the Schrodinger equation constraint.
Using Pontryagin’s maximum principle, the optimal control satisfies:

Hop(t) = arg mhi[n tr(A(t)[H, p(t)]) + L(H, 1) (9.43)

where A(t) is the costate variable.

9.8 Machine Learning and AI Applications

The intersection of differential equations and artificial intelligence continues to generate
new insights and applications.

9.8.1 Differentiable Programming

Modern deep learning frameworks enable automatic differentiation through complex com-
putational graphs, including ODE solvers. This "differentiable programming" paradigm
allows gradient-based optimization of systems involving differential equations.

Applications include: - **Optimal Control:** Learning control policies by differenti-
ating through forward simulations - **Parameter Estimation:** Fitting ODE parameters
to data using gradient descent - **Inverse Problems:** Reconstructing initial conditions
or model parameters from observations

9.8.2 Reinforcement Learning and Control

Reinforcement learning (RL) provides a framework for learning optimal control policies
through interaction with the environment. For continuous-time systems, the Hamilton-
Jacobi-Bellman equation:

% +min [f(x, u) - VV + L(x,u)] = 0 (9.44)

can be solved using neural networks, connecting optimal control theory with modern
RL algorithms.
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9.8.3 Generative Models

Differential equations provide powerful tools for generative modeling:
Score-Based Models: Learn the score function Vy log p(x) and generate samples by
solving the reverse-time SDE:

dX; = [£(Xs,t) — g(t)*Vx log pe(Xy)]dt + g(t)dW, (9.45)

Diffusion Models: Use forward and reverse diffusion processes to gradually add and
remove noise, enabling high-quality image and audio generation.

9.9 Computational Frontiers

Advances in computing hardware and algorithms continue to expand the scope of tractable
problems.

9.9.1 High-Performance Computing

Modern supercomputers enable simulations with billions of variables and complex multi-
physics coupling. Key developments include:

Exascale Computing: Systems capable of 10'® operations per second enable un-
precedented simulation scales.

GPU Acceleration: Graphics processing units provide massive parallelism for suit-
able algorithms.

Quantum Computing: Emerging quantum computers may enable exponential speedups
for certain classes of differential equations.

9.9.2 Adaptive Mesh Refinement

For PDEs with localized features, adaptive mesh refinement (AMR) concentrates com-
putational effort where needed most. The method dynamically refines and coarsens the
computational grid based on solution gradients or error estimates.

AMR enables simulations spanning multiple scales, from global climate models to
detailed turbulence simulations.

9.9.3 Machine Learning Acceleration

ML techniques are increasingly used to accelerate traditional numerical methods:

Learned Solvers: Neural networks trained to approximate ODE solutions can be
orders of magnitude faster than traditional solvers.

Surrogate Models: ML models can replace expensive simulations in optimization
and uncertainty quantification workflows.

Reduced-Order Modeling: Autoencoders and other dimensionality reduction tech-
niques enable efficient simulation of high-dimensional systems.
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9.10 Future Directions and Open Problems

Several major challenges and opportunities will likely shape future research in differential
equations.

9.10.1 Interpretable AI and Scientific Discovery

As ML models become more powerful, ensuring their interpretability and scientific validity
becomes crucial. Key challenges include:

- Developing ML models that respect physical constraints and conservation laws -
Creating interpretable representations of learned dynamics - Validating ML-discovered
equations against physical principles - Quantifying uncertainty in data-driven models

9.10.2 Multiscale and Multiphysics Modeling

Real-world systems often involve multiple physical processes operating at different scales.
Future research directions include:

- Developing unified frameworks for multiscale modeling - Creating efficient algorithms
for multiphysics coupling - Understanding emergent behavior in complex systems - Bridg-
ing quantum and classical descriptions

9.10.3 Quantum-Classical Interfaces

As quantum technologies mature, understanding the interface between quantum and clas-
sical dynamics becomes increasingly important:

- Quantum-classical hybrid algorithms - Decoherence and the quantum-to-classical
transition - Quantum machine learning applications - Quantum simulation of classical
systems

9.10.4 Biological and Social Systems

Living systems and human societies present unique modeling challenges:

- Multi-agent systems with learning and adaptation - Evolution and selection in bi-
ological networks - Social dynamics and collective behavior - Personalized medicine and
precision agriculture

9.11 Ethical and Societal Considerations

The increasing power and ubiquity of mathematical models raise important ethical ques-
tions that the differential equations community must address.
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9.11.1 Model Transparency and Accountability

As models influence important decisions in healthcare, finance, and policy, ensuring their
transparency and accountability becomes crucial. This includes:

- Documenting model assumptions and limitations - Providing uncertainty quantifica-
tion - Enabling model auditing and validation - Protecting against misuse and manipula-
tion

9.11.2 Bias and Fairness

Data-driven models can perpetuate or amplify existing biases in training data. Addressing
this requires:

- Developing bias detection and mitigation techniques - Ensuring diverse and represen-
tative datasets - Creating fair and equitable modeling practices - Engaging with affected
communities

9.11.3 Privacy and Security

Models trained on sensitive data must protect individual privacy while enabling scientific
progress:

- Differential privacy techniques - Federated learning approaches - Secure multi-party
computation - Data governance frameworks

9.12 Educational Implications

The rapid evolution of the field has significant implications for how differential equations
should be taught and learned.

9.12.1 Computational Literacy

Modern practitioners need both theoretical understanding and computational skills:
- Programming and software development - Data analysis and visualization - Machine
learning fundamentals - High-performance computing concepts

9.12.2 Interdisciplinary Perspectives

The increasing importance of applications requires broader interdisciplinary training:
- Domain knowledge in application areas - Collaboration and communication skills -
Systems thinking and complexity science - Ethics and responsible innovation

9.12.3 Lifelong Learning

The rapid pace of change necessitates continuous learning throughout one’s career:
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- Staying current with new developments - Adapting to new tools and technologies -
Engaging with the broader scientific community - Contributing to open science initiatives

9.13 Chapter Summary

This final lecture has surveyed the rapidly evolving landscape of modern differential equa-
tions research, highlighting the transformative impact of machine learning, data science,
and high-performance computing on the field. Several key themes emerge from this sur-
vey:

Convergence of Disciplines: The boundaries between differential equations, ma-
chine learning, and domain sciences are increasingly blurred. This convergence is gener-
ating new insights and capabilities that exceed what any single discipline could achieve
alone.

Data-Driven Discovery: The ability to discover governing equations directly from
data represents a paradigm shift that could democratize mathematical modeling and
accelerate scientific discovery across disciplines.

Scale and Complexity: Modern computational capabilities enable the study of sys-
tems with unprecedented scale and complexity, revealing new phenomena and challenging
traditional theoretical frameworks.

Interpretability and Trust: As models become more powerful and influential, en-
suring their interpretability, reliability, and ethical use becomes increasingly important.

Interdisciplinary Applications: The most exciting developments often occur at
the interfaces between disciplines, requiring researchers who can bridge multiple domains.

The field of differential equations continues to evolve rapidly, driven by technological
advances and new application domains. The methods and perspectives introduced in this
course provide a foundation for engaging with these developments, but the journey of
learning and discovery is far from over.

As we conclude this course, it’s worth reflecting on the remarkable journey from the
basic concepts of derivatives and integrals to the cutting-edge applications in artificial
intelligence and quantum mechanics. This progression illustrates the enduring power and
relevance of mathematical thinking in understanding and shaping our world.

The future of differential equations research will be shaped by the creativity, curiosity,
and dedication of the next generation of researchers and practitioners. The tools and
concepts covered in this course provide a starting point for that journey, but the most
important ingredient is the willingness to ask deep questions, challenge existing paradigms,
and pursue new frontiers of knowledge.

Computational Note: The file lecture9.py provides implementations of several
advanced topics discussed in this lecture, including basic Neural ODE examples, SINDy
for equation discovery, network dynamics simulations, and stochastic differential equa-
tion solvers. These examples demonstrate both the theoretical concepts and practical
implementation challenges involved in modern differential equations research.
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