Numerical Computing Lecture 12: Partial Differential Equations

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics, Lugano, Switzerland

Lecture Overview

- ► Classification: elliptic, parabolic, hyperbolic
- ► Finite Differences: heat and wave discretizations
- ► Stability: von Neumann, CFL
- ► Elliptic Solvers: Poisson stencil, iterative methods
- ► FEM and Spectral: weak form, accuracy

PDE Landscape

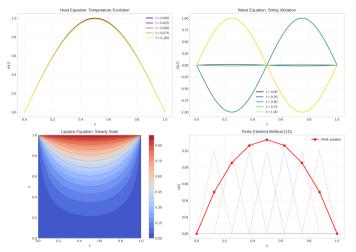


Figure: Elliptic vs Parabolic vs Hyperbolic: data and phenomena.

Classification of Second-Order Linear PDEs

General form

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

Discriminant $\Delta = B^2 - 4AC$:

lacksquare Elliptic ($\Delta < 0$) Parabolic ($\Delta = 0$) Hyperbolic ($\Delta > 0$)

Heat Equation: Forward/Backward Euler

Forward Euler
$$\frac{U_i^{n+1}-U_i^n}{\Delta t}=\alpha\frac{U_{i+1}^n-2U_i^n+U_{i-1}^n}{(\Delta x)^2}; \text{ stable if } r\leq 1/2.$$

Backward Euler
$$U_i^{n+1} - U_i^n$$
 $U_{i+1}^{n+1} - 2U_i^{n+1} + U_{i-1}^{n+1}$

 $\frac{U_i^{n+1} - U_i^n}{\Delta t} = \alpha \frac{U_{i+1}^{n+1} - 2U_i^{n+1} + U_{i-1}^{n+1}}{(\Delta x)^2}; \text{ A-stable}.$

Stability: Heat (Forward Euler)

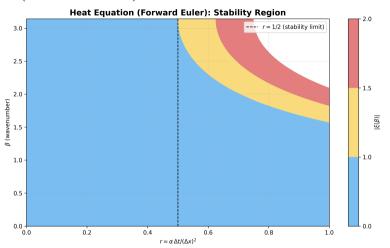


Figure: Amplification factor $|\xi(\beta)|$ vs r and wavenumber; stable if $r \le 1/2$.

Wave Equation: Leapfrog

$$\frac{\text{Scheme}}{U_i^{n+1} - 2U_i^n + U_i^{n-1}} = c^2 \frac{U_{i+1}^n - 2U_i^n + U_{i-1}^n}{(\Delta x)^2}.$$
CFL: $c \Delta t / \Delta x \le 1$.

CFL Stability Diagram

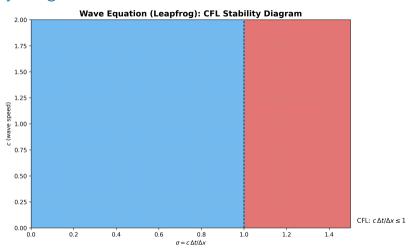


Figure: Stable region for leapfrog: $\sigma = c \, \Delta t / \Delta x \leq 1$.

Poisson: Five-Point Stencil

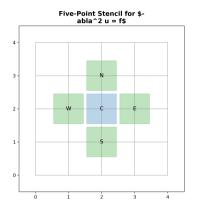


Figure: Stencil layout for $-\nabla^2 u = f$ on a uniform grid.

Iterative Solvers for Elliptic Problems

- ightharpoonup Gauss–Seidel; SOR with relaxation ω
- ► Multigrid: smooth, restrict, coarse solve, prolongate

Finite Element: Weak Form

Poisson

Find $u \in H^1_0(\Omega)$: $\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} fv \, dx$ for all $v \in H^1_0(\Omega)$.

Discretization Families

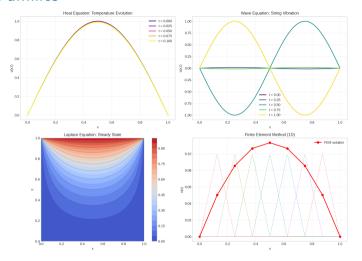


Figure: Families at a glance; see notes for detailed comparison (FD/FEM/Spectral).

Spectral Methods

- ► Fourier (periodic): exponential accuracy for smooth solutions
- ► Chebyshev (nonperiodic): global polynomials; clustering at boundaries

Key Takeaways

- ▶ PDE classes dictate admissible discretizations and data
- ► Stability (von Neumann, CFL) is central
- Elliptic solvers: iterative and multigrid options
- ► FEM/Spectral: weak formulations and accuracy