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Week #12: Partial Differential Equations

Numerical Methods: Mathematical Foundations

June 22, 2025

Overview
Partial differential equations (PDEs) model phenomena involving multiple independent variables, from
heat conduction and wave propagation to fluid dynamics and quantum mechanics. This week we develop
the mathematical foundations for numerical PDE methods, exploring finite difference, finite element, and
spectral approaches while analyzing their stability, accuracy, and computational properties.

The numerical solution of PDEs presents unique challenges compared to ODEs, including the curse of
dimensionality, the need for appropriate boundary condition treatment, and the delicate balance between
accuracy and computational efficiency. We examine how different discretization strategies address these
challenges and investigate the mathematical principles that guide method selection.

Our analysis emphasizes the mathematical theory underlying PDE discretizations, the crucial role of
stability analysis in multidimensional problems, and the convergence theory that ensures reliable numerical
solutions.

Partial Differential Equations
Auxx + Buxy + Cuyy + · · ·

Elliptic
Auxx + Cuyy > 0

Example: uxx + uyy = 0
Data: BC on boundary

Phenomena: steady-state

Parabolic
onehalfspacingTime

evolution + diffusion
Example: ut = α(uxx + uyy)

Data: IC in time + BC in space
Phenomena: smoothing

Hyperbolic
Wave/transport propagation

Example: utt = c2(uxx + uyy)
Data: IC in time + BC in space
Phenomena: finite-speed signals

Well-posedness
Elliptic: BC on boundary Parabolic/Hyperbolic:

IC in time + BC in space

Figure 1: Compact classification: elliptic (steady-state), parabolic (diffusion), hyperbolic (waves), with
canonical examples and data requirements.

1 Classification of PDEs

1.1 Mathematical Classification

Definition. Second-Order Linear PDE
A general second-order linear PDE in two variables has the form:

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G
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where A, B, C, D, E, F, G may depend on x and y.

Figure 2: Five-point stencil layout on a uniform grid for the Poisson equation.

Definition. PDE Classification
The PDE is classified by the discriminant ∆ = B2 − 4AC:

• Elliptic: ∆ < 0 (e.g., Laplace equation)

• Parabolic: ∆ = 0 (e.g., heat equation)

• Hyperbolic: ∆ > 0 (e.g., wave equation)

1.2 Model Problems

Definition. Heat Equation (Parabolic)
∂u

∂t
= α

∂2u

∂x2
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Models diffusion processes with initial condition u(x, 0) = f(x) and boundary conditions.

Definition. Wave Equation (Hyperbolic)
∂2u

∂t2 = c2 ∂2u

∂x2

Models wave propagation with initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x).

Definition. Laplace Equation (Elliptic)
∂2u

∂x2 + ∂2u

∂y2 = 0

Models steady-state phenomena with boundary conditions on the domain boundary.

2 Finite Difference Methods

2.1 Basic Finite Difference Approximations

Definition. Finite Difference Operators
For uniform grid spacing h:

δ+ui = ui+1 − ui (forward difference) (1)
δ−ui = ui − ui−1 (backward difference) (2)

δ0ui = ui+1 − ui−1
2 (central difference) (3)

Theorem 2.1 (Finite Difference Accuracy). The truncation errors are:

u′(xi) − δ+ui

h
= −h

2 u′′(xi) + O(h2) (4)

u′(xi) − δ0ui

h
= −h2

6 u′′′(xi) + O(h4) (5)

u′′(xi) − δ+δ−ui

h2 = −h2

12u(4)(xi) + O(h4) (6)
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Figure 3: Von Neumann amplification factor |ξ(β)| for the forward Euler heat scheme as a function of
r = α∆t/(∆x)2 and wavenumber. Stable for r ≤ 1/2.

2.2 Heat Equation Discretization

Definition. Forward Euler for Heat Equation
Un+1

i − Un
i

∆t
= α

Un
i+1 − 2Un

i + Un
i−1

(∆x)2

where Un
i ≈ u(xi, tn).

Theorem 2.2 (Stability of Forward Euler for Heat Equation). The forward Euler scheme is stable if and
only if:

r = α∆t

(∆x)2 ≤ 1
2

Definition. Backward Euler for Heat Equation
Un+1

i − Un
i

∆t
= α

Un+1
i+1 − 2Un+1

i + Un+1
i−1

(∆x)2

This implicit scheme is unconditionally stable.

2.3 Wave Equation Discretization

Definition. Leapfrog Scheme for Wave Equation
Un+1

i − 2Un
i + Un−1

i

(∆t)2 = c2 Un
i+1 − 2Un

i + Un
i−1

(∆x)2
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Theorem 2.3 (CFL Condition for Wave Equation). The leapfrog scheme is stable if and only if:

c
∆t

∆x
≤ 1

This is the Courant-Friedrichs-Lewy (CFL) condition.

Figure 4: CFL diagram for the leapfrog scheme showing the stable region c ∆t/∆x ≤ 1.

3 Stability Analysis

3.1 Von Neumann Stability Analysis

Definition. Fourier Mode Analysis
Assume solutions of the form Un

j = ξneiβj∆x where ξ is the amplification factor and β is the wave number.

Theorem 3.1 (Von Neumann Stability Condition). A finite difference scheme is stable if |ξ(β)| ≤ 1 for
all wave numbers β.

Example 3.1 (Forward Euler Stability Analysis). For the forward Euler heat equation scheme:

ξ = 1 − 4r sin2
(

β∆x

2

)
Stability requires |ξ| ≤ 1, giving r ≤ 1/2.
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3.2 Matrix Stability Analysis

Definition. Method of Lines
Semi-discretize in space to obtain a system of ODEs:

dU
dt

= AU + b

where A is the spatial discretization matrix.

Theorem 3.2 (Stability via Eigenvalue Analysis). For the forward Euler time discretization, stability
requires 1 + ∆tλi ≥ −1 for all eigenvalues λi of A.

4 Elliptic Problems

4.1 Poisson Equation

Definition. Five-Point Stencil for Poisson Equation
For −∇2u = f on a rectangular grid:

−Ui+1,j − 2Ui,j + Ui−1,j

h2 − Ui,j+1 − 2Ui,j + Ui,j−1
h2 = fi,j

This leads to a large sparse linear system AU = b.

4.2 Iterative Methods for Elliptic Problems

Definition. Gauss-Seidel for Poisson Equation

U
(k+1)
i,j = 1

4
[
U

(k)
i+1,j + U

(k+1)
i−1,j + U

(k)
i,j+1 + U

(k+1)
i,j−1 + h2fi,j

]
Definition. Successive Over-Relaxation (SOR)

U
(k+1)
i,j = (1 − ω)U (k)

i,j + ω

4
[
U

(k)
i+1,j + U

(k+1)
i−1,j + U

(k)
i,j+1 + U

(k+1)
i,j−1 + h2fi,j

]
Theorem 4.1 (Optimal SOR Parameter). For the Poisson equation on a rectangle with Dirichlet boundary
conditions, the optimal relaxation parameter is:

ωopt = 2
1 +

√
1 − ρ2

where ρ is the spectral radius of the Jacobi iteration matrix.

5 Finite Element Methods

5.1 Weak Formulation

Definition. Weak Form of Poisson Equation
Find u ∈ H1

0 (Ω) such that: ∫
Ω

∇u · ∇v dx =
∫

Ω
fv dx

for all v ∈ H1
0 (Ω).
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5.2 Galerkin Approximation

Definition. Finite Element Approximation
Seek uh ∈ Vh ⊂ H1

0 (Ω) such that: ∫
Ω

∇uh · ∇vh dx =
∫

Ω
fvh dx

for all vh ∈ Vh, where Vh is a finite-dimensional subspace.

5.3 Linear Elements

Definition. Piecewise Linear Elements
On a triangulation Th of Ω:

Vh = {v ∈ C(Ω̄) : v|T is linear for each T ∈ Th, v = 0 on ∂Ω}

Theorem 5.1 (Finite Element Error Estimate). If u ∈ H2(Ω) and uh is the finite element approximation
using linear elements:

∥u − uh∥H1(Ω) ≤ Ch∥u∥H2(Ω)

where h is the maximum element diameter.

6 Spectral Methods

6.1 Fourier Spectral Methods

Definition. Fourier Series Approximation
For periodic problems, approximate:

u(x, t) ≈
N/2−1∑

k=−N/2
ûk(t)eikx

Theorem 6.1 (Spectral Accuracy). For smooth periodic functions, Fourier spectral methods achieve
exponential convergence: the error decreases faster than any polynomial in 1/N .

6.2 Chebyshev Spectral Methods

Definition. Chebyshev Polynomial Approximation
For non-periodic problems on [−1, 1]:

u(x, t) ≈
N∑

k=0
ak(t)Tk(x)

where Tk(x) are Chebyshev polynomials.

Intuition: Why Spectral Methods Work

Spectral methods use global basis functions (trigonometric or polynomial) that can represent smooth
functions very efficiently. They achieve high accuracy with relatively few degrees of freedom, but
require smooth solutions to be effective.
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7 Advanced Topics

7.1 Adaptive Mesh Refinement

Definition. h-Refinement
Reduce element size h in regions where the error is large, maintaining the same polynomial degree.

Definition. p-Refinement
Increase polynomial degree p while keeping the mesh fixed.

Definition. hp-Refinement
Optimally combine h and p refinement based on solution regularity.

7.2 Multigrid Methods

Definition. Geometric Multigrid
Use a hierarchy of grids to accelerate convergence:

1. Smooth on fine grid

2. Restrict residual to coarse grid

3. Solve coarse grid problem

4. Interpolate correction to fine grid

Theorem 7.1 (Multigrid Convergence). Under appropriate smoothing and approximation properties,
multigrid methods achieve convergence rates independent of grid size, leading to optimal O(N) complexity.

7.3 Discontinuous Galerkin Methods

Definition. Discontinuous Galerkin Formulation
Allow discontinuities across element boundaries and enforce continuity weakly through numerical fluxes.

DG methods combine advantages of finite elements (geometric flexibility) and finite differences (local
conservation).

8 Nonlinear PDEs

8.1 Newton’s Method for PDEs

Definition. Newton Iteration for Nonlinear PDEs
For F (u) = 0, iterate:

J(u(k))δu(k) = −F (u(k))

u(k+1) = u(k) + δu(k)

where J is the Jacobian matrix.
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8.2 Time-Dependent Nonlinear Problems

Definition. Implicit-Explicit (IMEX) Methods
Treat stiff linear terms implicitly and nonlinear terms explicitly:

un+1 − un

∆t
= Lun+1 + N(un)

where L is linear and N is nonlinear.

Practice Problems

1. Derive the stability condition for the forward Euler scheme applied to the heat equation using
von Neumann analysis.

2. Prove that the backward Euler scheme for the heat equation is unconditionally stable.

3. Implement the five-point stencil for the Poisson equation and solve using SOR with optimal
relaxation parameter.

4. Analyze the dispersion properties of finite difference schemes for the wave equation.

5. Compare the accuracy of finite difference and spectral methods for solving the heat equation
with smooth initial data.
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