
Numerical Methods – Week 11 1

Week #11: Ordinary Differential Equations

Numerical Methods: Mathematical Foundations

June 22, 2025

Overview
Ordinary differential equations (ODEs) model dynamic systems across virtually every field of science and
engineering. This week we develop the mathematical theory underlying numerical methods for solving
initial value problems, exploring both single-step and multistep methods while analyzing their stability,
accuracy, and convergence properties.

The fundamental challenge in numerical ODE solving is to approximate continuous evolution with
discrete time steps while maintaining essential properties of the solution such as stability and conservation
laws. We examine how different discretization strategies balance accuracy and computational efficiency,
and investigate the mathematical principles that determine method performance.

Our analysis emphasizes the mathematical foundations of ODE solver design, the crucial role of
stability analysis in method selection, and the error analysis that guides adaptive step size strategies and
method implementation.

1 Initial Value Problems

1.1 Mathematical Framework

Definition. Initial Value Problem
An initial value problem (IVP) for a first-order ODE is:

y′(t) = f(t, y(t)), t ∈ [t0, T] (1)
y(t0) = y0 (2)

where f : R × Rd → Rd and y0 ∈ Rd.

Numerical Methods – Week 11 2

Figure 1: Absolute stability regions for Forward Euler and Trapezoidal (implicit midpoint) methods in
the complex z = hλ plane.

Theorem 1.1 (Existence and Uniqueness - Picard-Lindelöf). If f and ∂f/∂y are continuous in a
neighborhood of (t0, y0), then the IVP has a unique solution in some interval [t0, t0 + h].

1.2 Well-Posedness and Conditioning

Definition. Lipschitz Condition
Function f(t, y) satisfies a Lipschitz condition in y if there exists L > 0 such that:

∥f(t, y1) − f(t, y2)∥ ≤ L∥y1 − y2∥

for all t in the domain and y1, y2 in the region of interest.

Theorem 1.2 (Sensitivity to Initial Conditions). If y(t) and z(t) are solutions to the IVP with initial
conditions y0 and z0 respectively, then:

∥y(t) − z(t)∥ ≤ eL(t−t0)∥y0 − z0∥

where L is the Lipschitz constant.

2 Euler Methods

2.1 Forward Euler Method

Definition. Forward Euler Method
The simplest numerical method for ODEs:

yn+1 = yn + hf(tn, yn) (3)
tn+1 = tn + h (4)

where h is the step size and yn ≈ y(tn).

Numerical Methods – Week 11 3

Theorem 2.1 (Forward Euler Local Truncation Error). If y ∈ C2[tn, tn+1], then the local truncation error
is:

τn+1 = y(tn+1) − y(tn) − hf(tn, y(tn)) = h2

2 y′′(ξn)

for some ξn ∈ (tn, tn+1).

Figure 2: Comparison between Forward Euler and RK4 on a harmonic oscillator. Left: solution component
x(t). Right: phase portrait (x, v).

2.2 Backward Euler Method

Definition. Backward Euler Method
An implicit method:

yn+1 = yn + hf(tn+1, yn+1)

This requires solving a (generally nonlinear) equation at each step.

2.3 Improved Euler Method

Definition. Improved Euler (Heun’s) Method
A predictor-corrector method:

ỹn+1 = yn + hf(tn, yn) (predictor) (5)

yn+1 = yn + h

2 [f(tn, yn) + f(tn+1, ỹn+1)] (corrector) (6)

3 Runge-Kutta Methods
Runge-Kutta methods achieve higher accuracy by evaluating the right-hand side at multiple points within
each step.

Numerical Methods – Week 11 4

3.1 Second-Order Runge-Kutta

Definition. RK2 Method
The general second-order Runge-Kutta method:

k1 = f(tn, yn) (7)
k2 = f(tn + αh, yn + βhk1) (8)

yn+1 = yn + h(a1k1 + a2k2) (9)
where parameters satisfy a1 + a2 = 1, a2α = 1/2, a2β = 1/2.

3.2 Classical Fourth-Order Runge-Kutta

Definition. RK4 Method
The most popular Runge-Kutta method:

k1 = f(tn, yn) (10)
k2 = f(tn + h/2, yn + hk1/2) (11)
k3 = f(tn + h/2, yn + hk2/2) (12)
k4 = f(tn + h, yn + hk3) (13)

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4) (14)

Theorem 3.1 (RK4 Local Truncation Error). The classical RK4 method has local truncation error O(h5),
making it a fourth-order method.

Figure 3: Embedded Runge–Kutta illustrative error trend showing ∼ h4 behavior for a fourth-order
method.

Numerical Methods – Week 11 5

3.3 Butcher Tableaux

Definition. Butcher Tableau
A Runge-Kutta method can be represented by its Butcher tableau:

c A

bT

where ci = ∑s
j=1 aij , and the method is:

ki = f

tn + cih, yn + h
s∑

j=1
aijkj

 (15)

yn+1 = yn + h
s∑

i=1
biki (16)

4 Multistep Methods
Multistep methods use information from several previous points to achieve higher accuracy.

4.1 Adams Methods

Definition. Adams-Bashforth Methods
Explicit multistep methods based on polynomial extrapolation:

yn+1 = yn + h
k−1∑
j=0

βjf(tn−j , yn−j)

Definition. Adams-Moulton Methods
Implicit multistep methods:

yn+1 = yn + h
k−1∑
j=0

β∗
j f(tn+1−j , yn+1−j)

4.2 Backward Differentiation Formulas

Definition. BDF Methods
Implicit methods particularly suited for stiff problems:

k∑
j=0

αjyn+1−j = hf(tn+1, yn+1)

The coefficients αj are chosen so that the method has maximum order of accuracy.

5 Stability Analysis
Stability is crucial for reliable numerical integration, especially for stiff problems.

Numerical Methods – Week 11 6

5.1 Linear Stability Analysis

Definition. Test Equation
The Dahlquist test equation:

y′ = λy, y(0) = 1

where λ ∈ C with Re(λ) ≤ 0 for stability.

Definition. Stability Function
For a numerical method applied to the test equation, the stability function R(z) is defined by:

yn+1 = R(hλ)yn

where z = hλ.

5.2 Stability Regions

Definition. Stability Region
The stability region S is the set of complex numbers z for which |R(z)| ≤ 1.

Theorem 5.1 (A-Stability). A method is A-stable if its stability region contains the entire left half-plane:
S ⊇ {z ∈ C : Re(z) ≤ 0}.

Theorem 5.2 (Dahlquist Barriers). • No explicit multistep method can be A-stable

• The maximum order of an A-stable multistep method is 2

• A-stable multistep methods of order 2 are unique (trapezoidal rule)

5.3 Stiff Differential Equations

Definition. Stiffness
A system is stiff if it contains solution components with vastly different time scales, requiring very small
step sizes for explicit methods to maintain stability.

Intuition: Why Stiffness Matters

Stiff problems have fast-decaying transient components that don’t affect the long-term solution but
severely restrict step sizes for explicit methods. Implicit methods can take much larger steps by
being unconditionally stable.

Numerical Methods – Week 11 7

Figure 4: Stiff ODE example: explicit Euler becomes unstable for large hλ, while Trapezoidal remains
stable.

6 Error Analysis and Convergence

6.1 Global Error Analysis

Theorem 6.1 (Global Error for One-Step Methods). For a consistent one-step method with local truncation
error O(hp+1) applied to a Lipschitz continuous problem:

∥y(tn) − yn∥ ≤ Chp

L
(eL(tn−t0) − 1)

where C depends on bounds on the solution derivatives.

6.2 Convergence of Multistep Methods

Theorem 6.2 (Dahlquist Equivalence Theorem). For a multistep method, the following are equivalent:
1. The method is convergent

2. The method is consistent and zero-stable

Definition. Zero-Stability
A multistep method is zero-stable if the roots of its characteristic polynomial ρ(r) = ∑k

j=0 αjrj satisfy
|ri| ≤ 1, with simple roots on the unit circle.

7 Adaptive Methods
Adaptive methods automatically adjust step size to maintain accuracy while minimizing computational
cost.

Numerical Methods – Week 11 8

7.1 Error Estimation

Definition. Embedded Runge-Kutta Methods
Use two RK methods of different orders with the same function evaluations:

yn+1 = yn + h
s∑

i=1
biki (order p) (17)

ŷn+1 = yn + h
s∑

i=1
b̂iki (order p + 1) (18)

The difference ŷn+1 − yn+1 estimates the local error.

7.2 Step Size Control

Definition. PI Controller for Step Size
A proportional-integral controller for step size adjustment:

hn+1 = hn

(TOL
ERRn

)kP
(ERRn−1

ERRn

)kI

where TOL is the desired tolerance and ERRn is the estimated error.

8 Systems of ODEs and Higher-Order Equations

8.1 Systems of First-Order ODEs

Definition. System of ODEs

y′(t) = f(t, y(t)) (19)
y(t0) = y0 (20)

where y, f ∈ Rd.

All methods extend naturally to systems by treating y as a vector.

8.2 Higher-Order ODEs

Definition. Reduction to First-Order System
The n-th order ODE y(n) = f(t, y, y′, . . . , y(n−1)) can be written as:

y1
y2
...

yn


′

=


y2
y3
...

f(t, y1, y2, . . . , yn)



Numerical Methods – Week 11 9

9 Boundary Value Problems

9.1 Shooting Method

Definition. Shooting Method
Convert the BVP to an IVP by guessing initial conditions and adjusting until boundary conditions are
satisfied.

9.2 Finite Difference Methods

Definition. Finite Difference for BVPs
Discretize the domain and replace derivatives with finite differences, leading to a system of algebraic
equations.

Practice Problems

1. Derive the stability function for the forward Euler method and determine its stability region.

2. Prove that the trapezoidal rule (implicit midpoint method) is A-stable.

3. Implement the classical RK4 method and verify its fourth-order convergence rate.

4. Analyze the stability properties of the Adams-Bashforth methods of orders 1-4.

5. Design an adaptive RK method using embedded formulas and test it on both smooth and stiff
problems.

	Initial Value Problems
	Mathematical Framework
	Well-Posedness and Conditioning

	Euler Methods
	Forward Euler Method
	Backward Euler Method
	Improved Euler Method

	Runge-Kutta Methods
	Second-Order Runge-Kutta
	Classical Fourth-Order Runge-Kutta
	Butcher Tableaux

	Multistep Methods
	Adams Methods
	Backward Differentiation Formulas

	Stability Analysis
	Linear Stability Analysis
	Stability Regions
	Stiff Differential Equations

	Error Analysis and Convergence
	Global Error Analysis
	Convergence of Multistep Methods

	Adaptive Methods
	Error Estimation
	Step Size Control

	Systems of ODEs and Higher-Order Equations
	Systems of First-Order ODEs
	Higher-Order ODEs

	Boundary Value Problems
	Shooting Method
	Finite Difference Methods

