Numerical Computing Lecture 10: Numerical Integration

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics, Lugano, Switzerland

Lecture Overview

- Quadrature Basics: Nodes, weights, degree of precision
- ▶ Newton–Cotes: Midpoint, Trapezoid, Simpson; composite rules
- ► Gaussian Quadrature: Gauss—Legendre optimality
- Adaptive Methods: Adaptive Simpson; Romberg overview
- Multi-D Integration: Tensor products; Monte Carlo

Numerical Quadrature

Problem

Approximate $I[f] = \int_a^b f(x) dx$ by $Q[f] = \sum_{i=0}^n w_i f(x_i)$.

- ▶ Degree of precision: highest degree integrated exactly
- ▶ Peano kernel: general error representation

Newton-Cotes Nodes

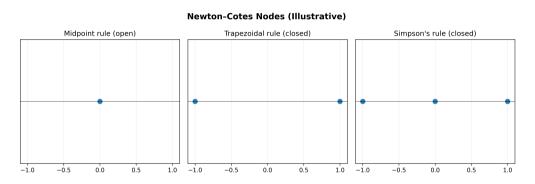


Figure: Node layouts for midpoint (open), trapezoid (closed), and Simpson's rules.

Convergence: Trapezoid vs Simpson

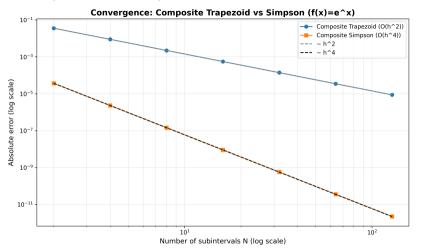


Figure: Composite trapezoid $(O(h^2))$ vs composite Simpson $(O(h^4))$ on $f(x) = e^x$.

Gaussian Quadrature vs Composite Simpson

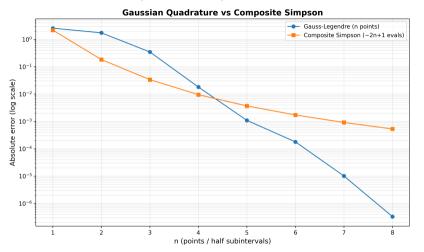


Figure: Gauss-Legendre achieves far higher accuracy for smooth integrands.

Adaptive Simpson (Illustrative)

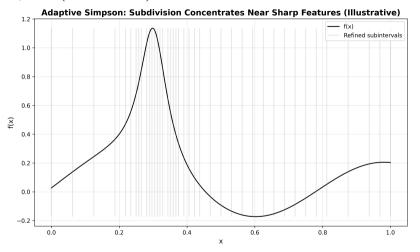


Figure: Subdivision concentrates where features are sharp.

Integration Methods Overview

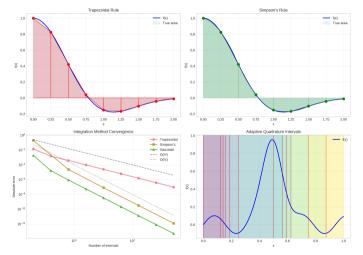


Figure: Geometric intuition and convergence behavior of quadrature families.

Key Takeaways

- ▶ Order: higher order reduces error faster for smooth f
- **Optimality**: Gaussian quadrature attains degree 2n-1
- Adaptivity: adjust effort where the integrand is complex
- ► Practical: composite Simpson is a strong baseline