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Lecture Overview

Quadrature Basics: Nodes, weights, degree of precision

Newton—Cotes: Midpoint, Trapezoid, Simpson; composite rules

>

>

» Gaussian Quadrature: Gauss—Legendre optimality

» Adaptive Methods: Adaptive Simpson; Romberg overview
>

Multi-D Integration: Tensor products; Monte Carlo
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Numerical Quadrature

Problem
Approximate I[f] = [ f(x) dx by Q[f] = 7o wif (x;).

> Degree of precision: highest degree integrated exactly

» Peano kernel: general error representation
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Newton—Cotes Nodes

Newton-Cotes Nodes (lllustrative)

Midpoint rule (open) Trapezoidal rule (closed) Simpson's rule (closed)
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Figure: Node layouts for midpoint (open), trapezoid (closed), and Simpson's rules.
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Convergence: Trapezoid vs Simpson

Convergence: Composite Trapezoid vs Simpson (f(x)=e”x)
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Figure: Composite trapezoid (O(h?)) vs composite Simpson (O(h*)) on f(x) = e*.
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Gaussian Quadrature vs Composite Simpson
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: Gauss—Legendre achieves far higher accuracy for smooth integrands.
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Adaptive Simpson (Illustrative)

Adaptive Simpson: Subdivision Concentrates Near Sharp Features (lllustrative)
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Figure: Subdivision concentrates where features are sharp.
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Integration Methods Overview

Trapezoidal Rule

Simpson's Rule
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Figure: Geometric intuition and convergence behavior of quadrature families.
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Key Takeaways

» Order: higher order reduces error faster for smooth f
» Optimality: Gaussian quadrature attains degree 2n — 1
» Adaptivity: adjust effort where the integrand is complex

» Practical: composite Simpson is a strong baseline
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