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Lecture Overview

▶ Quadrature Basics: Nodes, weights, degree of precision
▶ Newton–Cotes: Midpoint, Trapezoid, Simpson; composite rules
▶ Gaussian Quadrature: Gauss–Legendre optimality
▶ Adaptive Methods: Adaptive Simpson; Romberg overview
▶ Multi-D Integration: Tensor products; Monte Carlo
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Numerical Quadrature

Problem
Approximate I [f ] =

∫ b
a f (x) dx by Q[f ] =

∑n
i=0 wi f (xi ).

▶ Degree of precision: highest degree integrated exactly
▶ Peano kernel: general error representation
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Newton–Cotes Nodes

Figure: Node layouts for midpoint (open), trapezoid (closed), and Simpson’s rules.
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Convergence: Trapezoid vs Simpson

Figure: Composite trapezoid (O(h2)) vs composite Simpson (O(h4)) on f (x) = ex .
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Gaussian Quadrature vs Composite Simpson

Figure: Gauss–Legendre achieves far higher accuracy for smooth integrands.
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Adaptive Simpson (Illustrative)

Figure: Subdivision concentrates where features are sharp.
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Integration Methods Overview

Figure: Geometric intuition and convergence behavior of quadrature families.
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Key Takeaways

▶ Order: higher order reduces error faster for smooth f

▶ Optimality: Gaussian quadrature attains degree 2n − 1
▶ Adaptivity: adjust effort where the integrand is complex
▶ Practical: composite Simpson is a strong baseline
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