
Numerical Computing
Lecture 8: Eigenvalue Problems

Francisco Richter Mendoza

Università della Svizzera Italiana
Faculty of Informatics, Lugano, Switzerland

1 / 14



QR Algorithm: Off-diagonal Decay

Figure: Illustrative off-diagonal Frobenius norm decay under unshifted QR iterations.
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Eigenvalue Perturbation (Bauer–Fike)

Figure: Observed eigenvalue shifts versus perturbation norm compared with κ(X ) ∥E∥ bound.
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Lecture Overview

▶ Power Iteration and Variants: Power, Inverse, Rayleigh Quotient
▶ QR Algorithm: Shifts and Hessenberg reduction
▶ Symmetric Problems: Tridiagonal reduction, Wilkinson shift
▶ Perturbation Theory: Weyl, Bauer–Fike, eigenvector sensitivity
▶ Large-Scale Methods: Lanczos (symmetric), Arnoldi (nonsymmetric)
▶ Practical Considerations: Convergence, complexity, accuracy
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Power Iteration

Basic Idea
For Ax = λx , iterate x (k+1) =

Ax (k)

∥Ax (k)∥
to converge to the dominant eigenvector.

Rate ∼
∣∣∣∣λ2

λ1

∣∣∣∣k , |λ1| > |λ2| ≥ · · · ≥ |λn|. (1)

Variants: Inverse iteration, Rayleigh quotient iteration (cubic for symmetric matrices)
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Classical Iterative Methods
Let A = D − L− U where:
▶ D: diagonal part
▶ L: strictly lower triangular
▶ U: strictly upper triangular

Method Definitions

Jacobi: x (k+1) = D−1(L+ U)x (k) + D−1b (2)

Gauss-Seidel: x (k+1) = (D − L)−1Ux (k) + (D − L)−1b (3)

SOR: x (k+1) = (D − ωL)−1[(1 − ω)D + ωU]x (k) (4)

+ ω(D − ωL)−1b (5)

6 / 14



Eigenvalue Methods: Convergence and Geometry

Figure: Comparison of eigenvalue algorithms. Left: convergence rates of power, inverse, and
shifted methods. Right: geometric view of power method convergence to the dominant
eigenvector. 7 / 14



QR Algorithm

Basic QR
Iterate A(k) = Q(k)R(k), A(k+1) = R(k)Q(k). With shifts and reduction to
Hessenberg/tridiagonal forms, converges efficiently to Schur/diagonal form.

▶ Shifts: Wilkinson shift accelerates convergence
▶ Complexity: O(n3) setup, O(n2) per iteration on Hessenberg
▶ Symmetric case: Tridiagonal reduction and fast QR
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Krylov Subspace Methods

Krylov Subspace
Kk(A, r0) = span{r0,Ar0,A2r0, . . . ,A

k−1r0}
▶ Conjugate Gradient (CG): For SPD matrices

∥xk − x∗∥A ≤ 2
(√

κ− 1√
κ+ 1

)k

∥x0 − x∗∥A (6)

▶ GMRES: For general matrices

∥rk∥ = min
p∈Pk

∥p(A)r0∥ (7)

Key advantage: Optimal approximation in Krylov subspace
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Perturbation and Large-Scale Methods

▶ Perturbation: Weyl’s theorem, Bauer–Fike bounds
▶ Lanczos: Symmetric matrices, tridiagonal projection, Ritz values
▶ Arnoldi: Nonsymmetric matrices, Hessenberg projection
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Conjugate Gradient Algorithm
CG Algorithm for Ax = b (A SPD)

1. r0 = b − Ax0, p0 = r0

2. For k = 0, 1, 2, . . . until convergence:

αk =
rTk rk

pTk Apk
(8)

xk+1 = xk + αkpk (9)
rk+1 = rk − αkApk (10)

βk =
rTk+1rk+1

rTk rk
(11)

pk+1 = rk+1 + βkpk (12)

Memory: Only 4 vectors of length n
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GMRES Algorithm

GMRES for General Matrices
▶ Build orthonormal basis {v1, v2, . . . , vk} for Kk(A, r0)

▶ Solve least squares problem:

min
y∈Rk

∥βe1 − Hky∥2 (13)

where Hk is upper Hessenberg matrix
▶ Update: xk = x0 + Vkyk

Advantages: Works for any matrix, minimizes residual norm
Disadvantages: Growing memory, restart needed
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Preconditioning

Basic Idea
Solve M−1Ax = M−1b instead of Ax = b

Goals:
▶ Reduce condition number: κ(M−1A) ≪ κ(A)

▶ M should be easy to invert

Common Preconditioners
▶ Diagonal: M = diag(A)
▶ Incomplete LU: M ≈ LU (sparse)
▶ Multigrid: Optimal for elliptic PDEs
▶ Domain Decomposition: Parallel-friendly
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Practical Implementation Guidelines

Method Selection
▶ SPD matrices: Use CG with good preconditioner
▶ General matrices: Use GMRES with restart
▶ Large sparse: Classical methods with good ordering

Stopping Criteria

∥rk∥
∥r0∥

< tol or
∥rk∥
∥b∥

< tol (14)

Typical tolerance: 10−6 to 10−12
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Computational Complexity

Cost per Iteration
▶ Jacobi/Gauss-Seidel: O(n2) for dense, O(nnz) for sparse
▶ CG: O(n2) + 1 matrix-vector product
▶ GMRES: O(kn) + 1 matrix-vector product (k = iteration)

Total Complexity
▶ CG: O(n3/2) for well-conditioned SPD
▶ GMRES: O(n2) to O(n3) depending on restart
▶ Multigrid: O(n) optimal complexity
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Key Takeaways

▶ Power/Inverse/RQI: foundational iterative eigenvalue solvers
▶ QR with shifts: robust all-eigenvalues method; structure reduction is key
▶ Sensitivity: eigenvalues/eigenvectors can be ill-conditioned
▶ Lanczos/Arnoldi: scalable approaches for large sparse problems

Next lecture: Singular Value Decomposition (SVD) and PCA
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