Numerical Computing

Lecture 7: Iterative Methods for Linear Systems

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics, Lugano, Switzerland

Lecture Overview

- ► Matrix Splitting Framework
- ► Classical Methods: Jacobi, Gauss-Seidel, SOR
- ► Convergence Theory: Spectral radius analysis
- ► Krylov Subspace Methods: CG and GMRES
- **▶** Preconditioning Techniques
- ► Practical Implementation

Matrix Splitting Framework

Basic Idea

Split matrix A = M - N where M is easily invertible

$$Ax = b (1)$$

$$(M-N)x=b (2)$$

$$Mx = Nx + b (3)$$

$$x = M^{-1}Nx + M^{-1}b (4)$$

Iterative scheme: $x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b$

Convergence condition: $\rho(M^{-1}N) < 1$

Classical Iterative Methods

Let A = D - L - U where:

- ▶ D: diagonal part
- L: strictly lower triangular
- ► *U*: strictly upper triangular

Method Definitions

Jacobi:
$$x^{(k+1)} = D^{-1}(L+U)x^{(k)} + D^{-1}b$$
 (5)
Gauss-Seidel: $x^{(k+1)} = (D-L)^{-1}Ux^{(k)} + (D-L)^{-1}b$ (6)
SOR: $x^{(k+1)} = (D-\omega L)^{-1}[(1-\omega)D + \omega U]x^{(k)} + \omega(D-\omega L)^{-1}b$ (8)

Classical Methods: Convergence Analysis

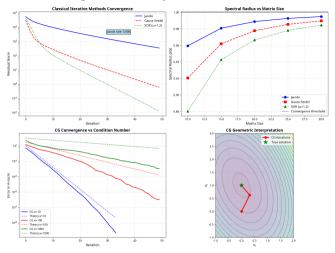


Figure: Comparison of classical iterative methods showing convergence rates, spectral radius behavior, SOR optimization, and geometric CG interpretation

Convergence Theory

Theorem (Convergence Condition)

The iterative method $x^{(k+1)} = Gx^{(k)} + c$ converges for any initial guess if and only if $\rho(G) < 1$.

Key Results

- ► Jacobi: Converges if A is strictly diagonally dominant
- ► Gauss-Seidel: Converges if A is SPD or strictly diagonally dominant
- **SOR**: Optimal parameter $\omega_{opt} = \frac{2}{1 + \sqrt{1 \rho(G_J)^2}}$

Asymptotic convergence rate: $R = -\ln(\rho(G))$

Krylov Subspace Methods

Krylov Subspace

$$\mathcal{K}_k(A, r_0) = \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0\}$$

► Conjugate Gradient (CG): For SPD matrices

$$\|x_k - x^*\|_A \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x_0 - x^*\|_A$$
 (9)

► **GMRES**: For general matrices

$$||r_k|| = \min_{p \in \mathcal{P}_k} ||p(A)r_0|| \tag{10}$$

Key advantage: Optimal approximation in Krylov subspace

Krylov Methods: CG vs GMRES Analysis

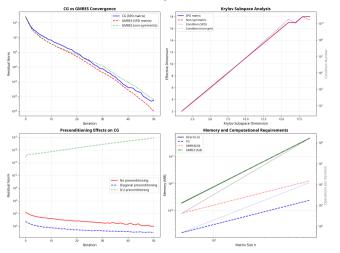


Figure: Comprehensive comparison of CG and GMRES methods showing convergence behavior, condition number effects, memory requirements, and subspace growth

Conjugate Gradient Algorithm

CG Algorithm for Ax = b (A SPD)

- 1. $r_0 = b Ax_0$, $p_0 = r_0$
- 2. For $k = 0, 1, 2, \dots$ until convergence:

$$\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k} \tag{11}$$

$$x_{k+1} = x_k + \alpha_k p_k \tag{12}$$

$$r_{k+1} = r_k - \alpha_k A p_k$$

$$\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$$

$$p_{k+1} = r_{k+1} + \beta_k p_k \tag{15}$$

Memory: Only 4 vectors of length *n*

(13)

(14)

GMRES Algorithm

GMRES for General Matrices

- ▶ Build orthonormal basis $\{v_1, v_2, ..., v_k\}$ for $\mathcal{K}_k(A, r_0)$
- ► Solve least squares problem:

$$\min_{\mathbf{y} \in \mathbb{R}^k} \|\beta \mathbf{e}_1 - H_k \mathbf{y}\|_2 \tag{16}$$

where H_k is upper Hessenberg matrix

▶ Update: $x_k = x_0 + V_k y_k$

Advantages: Works for any matrix, minimizes residual norm

Disadvantages: Growing memory, restart needed

Preconditioning

Basic Idea

Solve $M^{-1}Ax = M^{-1}b$ instead of Ax = b

Goals:

- ▶ Reduce condition number: $\kappa(M^{-1}A) \ll \kappa(A)$
- ► *M* should be easy to invert

Common Preconditioners

- ▶ Diagonal: M = diag(A)
- ▶ Incomplete LU: $M \approx LU$ (sparse)
- Multigrid: Optimal for elliptic PDEs
- ▶ Domain Decomposition: Parallel-friendly

Practical Implementation Guidelines

Method Selection

- ► SPD matrices: Use CG with good preconditioner
- General matrices: Use GMRES with restart
- ► Large sparse: Classical methods with good ordering

Stopping Criteria

$$\frac{\|r_k\|}{\|r_0\|} < \text{tol} \quad \text{or} \quad \frac{\|r_k\|}{\|b\|} < \text{tol}$$
 (17)

Typical tolerance: 10^{-6} to 10^{-12}

Computational Complexity

Cost per Iteration

- ▶ Jacobi/Gauss-Seidel: $O(n^2)$ for dense, O(nnz) for sparse
- ▶ **CG**: $O(n^2) + 1$ matrix-vector product
- ▶ GMRES: O(kn) + 1 matrix-vector product (k = iteration)

Total Complexity

- ▶ **CG**: $O(n^{3/2})$ for well-conditioned SPD
- ▶ GMRES: $O(n^2)$ to $O(n^3)$ depending on restart
- ightharpoonup Multigrid: O(n) optimal complexity

Key Takeaways

- Matrix splitting provides unified framework for classical methods
- ▶ Spectral radius determines convergence: $\rho(G) < 1$
- Krylov methods are optimal for their respective matrix classes
- **CG** is ideal for SPD systems with $O(\sqrt{\kappa})$ convergence
- ► GMRES handles general matrices but requires restarts
- ▶ Preconditioning is essential for practical performance
- Method selection depends on matrix structure and resources

Next lecture: Eigenvalue problems and power methods