
Numerical Computing
Lecture 7: Iterative Methods for Linear Systems

Francisco Richter Mendoza

Università della Svizzera Italiana
Faculty of Informatics, Lugano, Switzerland

1 / 1



Lecture Overview

▶ Matrix Splitting Framework
▶ Classical Methods: Jacobi, Gauss-Seidel, SOR
▶ Convergence Theory: Spectral radius analysis
▶ Krylov Subspace Methods: CG and GMRES
▶ Preconditioning Techniques
▶ Practical Implementation

2 / 1



Matrix Splitting Framework

Basic Idea
Split matrix A = M − N where M is easily invertible

Ax = b (1)
(M − N)x = b (2)

Mx = Nx + b (3)

x = M−1Nx +M−1b (4)

Iterative scheme: x (k+1) = M−1Nx (k) +M−1b
Convergence condition: ρ(M−1N) < 1

3 / 1



Classical Iterative Methods
Let A = D − L− U where:
▶ D: diagonal part
▶ L: strictly lower triangular
▶ U: strictly upper triangular

Method Definitions

Jacobi: x (k+1) = D−1(L+ U)x (k) + D−1b (5)

Gauss-Seidel: x (k+1) = (D − L)−1Ux (k) + (D − L)−1b (6)

SOR: x (k+1) = (D − ωL)−1[(1 − ω)D + ωU]x (k) (7)

+ ω(D − ωL)−1b (8)

4 / 1



Classical Methods: Convergence Analysis

Figure: Comparison of classical iterative methods showing convergence rates, spectral radius
behavior, SOR optimization, and geometric CG interpretation

5 / 1



Convergence Theory

Theorem (Convergence Condition)
The iterative method x (k+1) = Gx (k) + c converges for any initial guess if and only if
ρ(G ) < 1.

Key Results
▶ Jacobi: Converges if A is strictly diagonally dominant
▶ Gauss-Seidel: Converges if A is SPD or strictly diagonally dominant
▶ SOR: Optimal parameter ωopt =

2
1+
√

1−ρ(GJ)2

Asymptotic convergence rate: R = − ln(ρ(G ))

6 / 1



Krylov Subspace Methods

Krylov Subspace
Kk(A, r0) = span{r0,Ar0,A2r0, . . . ,A

k−1r0}
▶ Conjugate Gradient (CG): For SPD matrices

∥xk − x∗∥A ≤ 2
(√

κ− 1√
κ+ 1

)k

∥x0 − x∗∥A (9)

▶ GMRES: For general matrices

∥rk∥ = min
p∈Pk

∥p(A)r0∥ (10)

Key advantage: Optimal approximation in Krylov subspace

7 / 1



Krylov Methods: CG vs GMRES Analysis

Figure: Comprehensive comparison of CG and GMRES methods showing convergence behavior,
condition number effects, memory requirements, and subspace growth

8 / 1



Conjugate Gradient Algorithm
CG Algorithm for Ax = b (A SPD)

1. r0 = b − Ax0, p0 = r0

2. For k = 0, 1, 2, . . . until convergence:

αk =
rTk rk

pTk Apk
(11)

xk+1 = xk + αkpk (12)
rk+1 = rk − αkApk (13)

βk =
rTk+1rk+1

rTk rk
(14)

pk+1 = rk+1 + βkpk (15)

Memory: Only 4 vectors of length n

9 / 1



GMRES Algorithm

GMRES for General Matrices
▶ Build orthonormal basis {v1, v2, . . . , vk} for Kk(A, r0)

▶ Solve least squares problem:

min
y∈Rk

∥βe1 − Hky∥2 (16)

where Hk is upper Hessenberg matrix
▶ Update: xk = x0 + Vkyk

Advantages: Works for any matrix, minimizes residual norm
Disadvantages: Growing memory, restart needed

10 / 1



Preconditioning

Basic Idea
Solve M−1Ax = M−1b instead of Ax = b

Goals:
▶ Reduce condition number: κ(M−1A) ≪ κ(A)

▶ M should be easy to invert

Common Preconditioners
▶ Diagonal: M = diag(A)
▶ Incomplete LU: M ≈ LU (sparse)
▶ Multigrid: Optimal for elliptic PDEs
▶ Domain Decomposition: Parallel-friendly

11 / 1



Practical Implementation Guidelines

Method Selection
▶ SPD matrices: Use CG with good preconditioner
▶ General matrices: Use GMRES with restart
▶ Large sparse: Classical methods with good ordering

Stopping Criteria

∥rk∥
∥r0∥

< tol or
∥rk∥
∥b∥

< tol (17)

Typical tolerance: 10−6 to 10−12

12 / 1



Computational Complexity

Cost per Iteration
▶ Jacobi/Gauss-Seidel: O(n2) for dense, O(nnz) for sparse
▶ CG: O(n2) + 1 matrix-vector product
▶ GMRES: O(kn) + 1 matrix-vector product (k = iteration)

Total Complexity
▶ CG: O(n3/2) for well-conditioned SPD
▶ GMRES: O(n2) to O(n3) depending on restart
▶ Multigrid: O(n) optimal complexity

13 / 1



Key Takeaways

▶ Matrix splitting provides unified framework for classical methods
▶ Spectral radius determines convergence: ρ(G ) < 1
▶ Krylov methods are optimal for their respective matrix classes
▶ CG is ideal for SPD systems with O(

√
κ) convergence

▶ GMRES handles general matrices but requires restarts
▶ Preconditioning is essential for practical performance
▶ Method selection depends on matrix structure and resources

Next lecture: Eigenvalue problems and power methods

14 / 1


