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Lecture Overview
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Matrix Splitting Framework

Classical Methods: Jacobi, Gauss-Seidel, SOR
Convergence Theory: Spectral radius analysis
Krylov Subspace Methods: CG and GMRES

Preconditioning Techniques

Practical Implementation
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Matrix Splitting Framework

Basic Idea
Split matrix A = M — N where M is easily invertible

Ax=b
(M—N)x=b
Mx = Nx+ b

x=M1INx+ M 1p

Iterative scheme: x(kt1) = M~1Nx(K) + p-1p
Convergence condition: p(M~1N) < 1
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Classical Iterative Methods
Let A= D — L — U where:
» D: diagonal part
» L: strictly lower triangular

» U: strictly upper triangular

Method Definitions

Jacobi:  x 1) = D=L + U)xK) + D71p
Gauss-Seidel:  x1) = (D — 1)"LUx(®) + (D — L) b
SOR: x+1) = (D — wL)7!(1 — w)D 4 wU]x)
+w(D—wl) b
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Classical Methods: Convergence Analysis

Classical Iterative Methods Convergence Spectral Radius vs Matrix Size

eration

€6 Convergence vs Condition Number

Figure: Comparison of classical iterative methods showing convergence rates, spectral radius
behavior, SOR optimization, and geometric CG interpretation



Convergence Theory

Theorem (Convergence Condition)

The iterative method x(kt1) = Gx(k) 4+ ¢ converges for any initial guess if and only if
p(G) < 1.

Key Results

» Jacobi: Converges if A is strictly diagonally dominant
» Gauss-Seidel: Converges if A is SPD or strictly diagonally dominant

» SOR: Optimal parameter wopr = ﬁ
Asymptotic convergence rate: R = —In(p(G))
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Krylov Subspace Methods

Krylov Subspace
Kk(A, ro) = span{ry, Arg, A%rg, ... ,Ak_lro}

» Conjugate Gradient (CG): For SPD matrices

* \/E_l ) *
=<2 (YD) o=l )

» GMRES: For general matrices
= mi A 10
[k pE;QkHP( )roll (10)

Key advantage: Optimal approximation in Krylov subspace
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Krylov Methods: CG vs GMRES Analysis

G vs GMRES Convergence Krylov Subspace Analysis

eration Krylov Subspace Dimension
ing Effects on CG Memory and C i

eration MatrixSize n

Figure: Comprehensive comparison of CG and GMRES methods showing convergence behavior,
condition number effects, memory requirements, and subspace growth



Conjugate Gradient Algorithm
CG Algorithm for Ax = b (A SPD)

1. n=b—-Axp, po=np

2. For k=0,1,2,... until convergence:
rlr
pl Apk
Xk+1 = Xk + Ok Pk
rk+1 = rk — akApk

Bk =

Qe =

T
M1 7k+1
T,

I’k r

Pk+1 = rk+1 + BrPk

Memory: Only 4 vectors of length n
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GMRES Algorithm

GMRES for General Matrices
» Build orthonormal basis {vi, vo,. .., vk} for Ki(A, ro)

» Solve least squares problem:

min ||Ser — Hky||2
yERK
where Hy is upper Hessenberg matrix
> Update: xx = xo + Viyk

Advantages: Works for any matrix, minimizes residual norm
Disadvantages: Growing memory, restart needed

(16)
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Preconditioning

Basic Idea
Solve M—YAx = M~1pb instead of Ax = b

Goals:
» Reduce condition number: k(M™1A) < k(A)
» M should be easy to invert

Common Preconditioners
» Diagonal: M = diag(A)
» Incomplete LU: M ~ LU (sparse)
» Multigrid: Optimal for elliptic PDEs

» Domain Decomposition: Parallel-friendly
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Practical Implementation Guidelines

Method Selection
» SPD matrices: Use CG with good preconditioner
» General matrices: Use GMRES with restart

> Large sparse: Classical methods with good ordering

Stopping Criteria

il < tol or Il < tol (17)

o]l 6]

Typical tolerance: 1076 to 10712
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Computational Complexity

Cost per lIteration
» Jacobi/Gauss-Seidel: O(n?) for dense, O(nnz) for sparse

» CG: O(n?) + 1 matrix-vector product
» GMRES: O(kn) + 1 matrix-vector product (k = iteration)

Total Complexity
» CG: O(n®?) for well-conditioned SPD
» GMRES: O(n?) to O(n®) depending on restart
» Multigrid: O(n) optimal complexity
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Key Takeaways

Matrix splitting provides unified framework for classical methods
Spectral radius determines convergence: p(G) <1

Krylov methods are optimal for their respective matrix classes
CG is ideal for SPD systems with O(y/k) convergence

GMRES handles general matrices but requires restarts

Preconditioning is essential for practical performance
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Method selection depends on matrix structure and resources

Next lecture: Eigenvalue problems and power methods
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