
Numerical Computing
Lecture 7: Iterative Methods for Linear Systems

Francisco Richter Mendoza

Università della Svizzera Italiana
Faculty of Informatics

1 Introduction

For large sparse linear systems Ax = b, direct methods like Gaussian elimination become compu-
tationally prohibitive due to fill-in and O(n3) complexity. Iterative methods provide an alternative
approach that can achieve O(n2) or even O(n) complexity per iteration while maintaining sparsity.

This lecture covers the mathematical foundations of iterative methods, from classical stationary
methods to modern Krylov subspace techniques, with emphasis on convergence theory and practical
implementation considerations.

2 Matrix Splitting Framework

Definition 1 (Matrix Splitting). For a nonsingular matrix A ∈ Rn×n, a matrix splitting is a
decomposition A = M −N where M is nonsingular.

The corresponding iterative method is:

Mx(k+1) = Nx(k) + b (1)

x(k+1) = M−1N︸ ︷︷ ︸
G

x(k) +M−1b (2)

where G = M−1N is the iteration matrix.

Theorem 1 (Convergence of Matrix Splitting Methods). The iterative method x(k+1) = Gx(k) + c
converges to the unique solution x∗ = (I −G)−1c for any initial guess x(0) if and only if ρ(G) < 1,
where ρ(G) = maxi |λi(G)| is the spectral radius.

Proof. The error e(k) = x(k) − x∗ satisfies e(k+1) = Ge(k), so e(k) = Gke(0). The method converges
if and only if limk→∞Gk = 0, which occurs if and only if ρ(G) < 1.

3 Classical Iterative Methods

Consider the standard decomposition A = D − L− U where:

• D = diagonal part of A

• −L = strictly lower triangular part of A

• −U = strictly upper triangular part of A

1

3.1 Jacobi Method

Definition 2 (Jacobi Method). The Jacobi method uses the splitting M = D, N = L+ U :

x
(k+1)
i =

1

aii

bi −
∑
j ̸=i

aijx
(k)
j

 , i = 1, 2, . . . , n

The iteration matrix is GJ = D−1(L+ U) = I −D−1A.

3.2 Gauss-Seidel Method

Definition 3 (Gauss-Seidel Method). The Gauss-Seidel method uses the splitting M = D − L,
N = U :

x
(k+1)
i =

1

aii

bi −
∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j


The iteration matrix is GGS = (D − L)−1U .

3.3 Successive Over-Relaxation (SOR)

Definition 4 (SOR Method). The SOR method introduces a relaxation parameter ω > 0:

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi −
∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j


The iteration matrix is GSOR = (D − ωL)−1((1− ω)D + ωU).

Theorem 2 (Optimal SOR Parameter). For symmetric positive definite matrices with consistent
ordering, the optimal relaxation parameter is:

ωopt =
2

1 +
√
1− ρ(GJ)2

where GJ is the Jacobi iteration matrix.

4 Krylov Subspace Methods

Definition 5 (Krylov Subspace). For a matrix A ∈ Rn×n and vector v ∈ Rn, the m-th Krylov
subspace is:

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}

Krylov methods seek approximate solutions in affine Krylov subspaces x0 + Km(A, r0) where
r0 = b−Ax0 is the initial residual.

2

Figure 1: Comprehensive analysis of classical iterative methods showing convergence rates, spectral
analysis, condition number effects, and geometric interpretation. The figure demonstrates how
spectral radius determines convergence behavior and illustrates the geometric intuition behind the
conjugate gradient method.

4.1 Conjugate Gradient Method

For symmetric positive definite (SPD) systems, the conjugate gradient (CG) method is optimal.

Theorem 3 (CG Optimality). For SPD matrix A, the CG iterate xk minimizes the A-norm of the
error:

xk = arg min
x∈x0+Kk(A,r0)

∥x− x∗∥A

where ∥x∥A =
√
xTAx is the energy norm.

3

Algorithm 1 Conjugate Gradient Method

1: Input: SPD matrix A, vector b, initial guess x0, tolerance ϵ
2: r0 = b−Ax0, p0 = r0
3: for k = 0, 1, 2, . . . until ∥rk∥ < ϵ do

4: αk =
rTk rk
pTk Apk

5: xk+1 = xk + αkpk
6: rk+1 = rk − αkApk

7: βk =
rTk+1rk+1

rTk rk

8: pk+1 = rk+1 + βkpk
9: end for

10: Output: Approximate solution xk+1

Theorem 4 (CG Convergence Rate). For SPD matrix A with condition number κ = κ(A) =
λmax/λmin:

∥xk − x∗∥A ≤ 2

(√
κ− 1√
κ+ 1

)k

∥x0 − x∗∥A

4.2 GMRES Method

For general nonsymmetric systems, GMRES (Generalized Minimal Residual) minimizes the residual
norm.

Theorem 5 (GMRES Optimality). The GMRES iterate xk minimizes the residual norm:

xk = arg min
x∈x0+Kk(A,r0)

∥b−Ax∥2

GMRES uses the Arnoldi process to build an orthonormal basis Vk = [v1, v2, . . . , vk] forKk(A, r0)
and solves the least squares problem:

min
y

∥βe1 − H̄ky∥2

where H̄k is the (k + 1)× k upper Hessenberg matrix from Arnoldi.

5 Preconditioning

Definition 6 (Preconditioning). Instead of solving Ax = b, solve the preconditioned system:

M−1Ax = M−1b

where M ≈ A is chosen so that M−1A has better spectral properties than A.

5.1 Common Preconditioners

1. Diagonal (Jacobi): M = diag(A)

2. Incomplete LU (ILU): M = L̃Ũ where L̃Ũ is a sparse approximation to the LU factoriza-
tion

3. SSOR: M = ω
2−ω (D − ωL)D−1(D − ωU)

4

Figure 2: Analysis of Krylov subspace methods comparing CG and GMRES convergence behavior,
subspace dimension growth, preconditioning effects, and computational requirements. The figure
illustrates the superior convergence of CG for SPD systems and the general applicability of GMRES.

Theorem 6 (Effect of Preconditioning on CG). For preconditioned CG with SPD preconditioner
M :

∥xk − x∗∥A ≤ 2

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k

∥x0 − x∗∥A

6 Multigrid Methods

Multigrid methods achieve optimal O(n) complexity by exploiting the complementary properties
of different solution components.

6.1 Two-Grid Principle

1. Smoothing: Apply a few iterations of a classical method (e.g., Gauss-Seidel) to reduce
high-frequency error components

2. Coarse Grid Correction: Transfer the residual to a coarser grid, solve exactly, and transfer
the correction back

5

Figure 3: Theoretical convergence analysis showing spectral radius relationships, polynomial ap-
proximation theory, eigenvalue clustering effects, and optimal SOR parameters. The figure demon-
strates how eigenvalue distribution affects convergence rates and the importance of preconditioning
for clustering eigenvalues.

3. Post-smoothing: Apply additional smoothing iterations

Theorem 7 (Multigrid Convergence). Under appropriate smoothing and approximation properties,
multigrid methods achieve convergence rates independent of the grid size, resulting in O(n) total
complexity.

7 Practical Implementation

7.1 Method Selection Guidelines

• Small dense systems (n < 1000): Direct methods (LU, Cholesky)

• Large SPD systems: Preconditioned CG

• Large general systems: Preconditioned GMRES with restart

• Elliptic PDEs: Multigrid methods

• Very large sparse systems: Iterative methods with problem-specific preconditioners

6

Figure 4: Practical implementation guide showing algorithm complexity comparison, memory usage
patterns, parallel scalability analysis, and method selection guidelines. The figure provides deci-
sion trees for choosing appropriate methods based on problem characteristics and computational
constraints.

7.2 Computational Considerations

• Memory: Classical methods require O(n) storage, CG requires 4 vectors, GMRES requires
O(mn) for m iterations

• Parallelization: Matrix-vector products and inner products are easily parallelizable

• Stopping criteria: Use relative residual ∥rk∥/∥r0∥ < ϵ or energy norm for CG

7.3 Python Implementation Example

import numpy as np

def conjugate_gradient(A, b, x0 , tol=1e-6, max_iter =1000):

"""

Conjugate Gradient method for SPD systems

Parameters:

A: SPD matrix

b: right -hand side vector

7

x0: initial guess

tol: convergence tolerance

max_iter: maximum iterations

Returns:

x: solution vector

iterations: number of iterations

"""

x = x0.copy()

r = b - A @ x

p = r.copy()

rsold = r.T @ r

for k in range(max_iter):

Ap = A @ p

alpha = rsold / (p.T @ Ap)

x = x + alpha * p

r = r - alpha * Ap

rsnew = r.T @ r

if np.sqrt(rsnew) < tol:

break

beta = rsnew / rsold

p = r + beta * p

rsold = rsnew

return x, k+1

Example usage

n = 100

A = np.random.randn(n, n)

A = A.T @ A + np.eye(n) # Make SPD

b = np.random.randn(n)

x0 = np.zeros(n)

x, iterations = conjugate_gradient(A, b, x0)

print(f"Converged in {iterations} iterations")

print(f"Residual norm: {np.linalg.norm(b - A @ x):.2e}")

8 Convergence Analysis Summary

Method Convergence Rate Memory Conditions

Jacobi ρ(D−1(L+ U)) O(n) Diagonally dominant
Gauss-Seidel ρ((D − L)−1U) O(n) SPD or diag. dominant
SOR ωopt − 1 O(n) Optimal ω

CG
(√

κ−1√
κ+1

)
O(n) SPD matrix

GMRES Problem dependent O(mn) Any nonsingular
Multigrid O(1) O(n) Elliptic problems

Table 1: Comparison of iterative methods showing convergence rates, memory requirements, and
applicability conditions.

8

The choice of iterative method depends critically on the matrix properties, problem size, and
computational resources. Preconditioning is essential for practical performance on ill-conditioned
systems, and modern implementations often combine multiple techniques for optimal efficiency.

9

	Introduction
	Matrix Splitting Framework
	Classical Iterative Methods
	Jacobi Method
	Gauss-Seidel Method
	Successive Over-Relaxation (SOR)

	Krylov Subspace Methods
	Conjugate Gradient Method
	GMRES Method

	Preconditioning
	Common Preconditioners

	Multigrid Methods
	Two-Grid Principle

	Practical Implementation
	Method Selection Guidelines
	Computational Considerations
	Python Implementation Example

	Convergence Analysis Summary

