Numerical Computing

Lecture 6: Least Squares and QR Decomposition

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics Lugano, Switzerland

Today's Topics

- ► Linear least squares problem formulation
- Normal equations vs QR decomposition
- Gram-Schmidt and Householder algorithms
- Numerical stability analysis
- ► Applications to data fitting and overdetermined systems
- Computational complexity and practical considerations

Linear Least Squares Problem

Problem Statement

Given $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $b \in \mathbb{R}^m$:

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 = \min_{x} \sum_{i=1}^m (a_i^T x - b_i)^2$$

Geometric Interpretation

Find point Ax in column space of A closest to b in Euclidean norm.

Key insight: Overdetermined systems (m > n) generally have no exact solution.

Existence and Uniqueness

Theorem

The least squares problem $\min_{x} ||Ax - b||_2$ always has a solution.

The solution is unique $\Leftrightarrow A$ has full column rank.

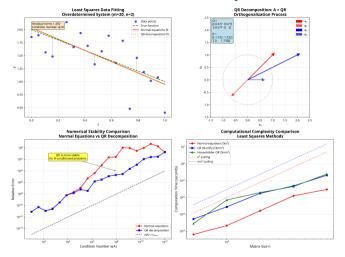
Optimality Condition

 x^* is optimal \Leftrightarrow residual $r^* = b - Ax^*$ is orthogonal to column space of A:

$$A^T r^* = A^T (b - Ax^*) = 0$$

Orthogonal projection: $Ax^* = P_A b$ where $P_A = A(A^T A)^{-1} A^T$

Least Squares: Geometric and Numerical Analysis



Visualization: Data fitting, QR vs normal equations stability, computational complexity, and conditioning effects.

Normal Equations Approach

Normal Equations

 x^* minimizes $||Ax - b||_2$ if and only if:

$$A^T A x^* = A^T b$$

Algorithm

- 1. Form A^TA and A^Tb
- 2. Solve $(A^T A)x = A^T b$ (e.g., Cholesky if SPD)

Cost: $mn^2 + \frac{n^3}{3}$ operations

Problem: $\kappa(A^TA) = \kappa(A)^2$ (condition number squared!)

QR Decomposition

Definition

For $A \in \mathbb{R}^{m \times n}$ with $m \ge n$:

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

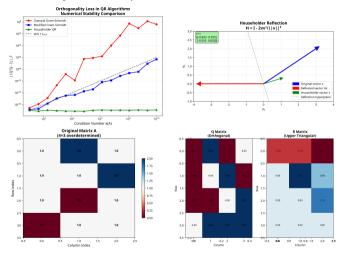
Reduced QR

$$A = Q_1 R_1$$

where $Q_1 \in \mathbb{R}^{m \times n}$ has orthonormal columns and $R_1 \in \mathbb{R}^{n \times n}$.

Key property: Orthogonal matrices preserve norms and conditioning.

QR Algorithms: Stability and Implementation



Comparison: Classical vs Modified Gram-Schmidt vs Householder reflections for numerical stability.

Gram-Schmidt Orthogonalization

Classical Gram-Schmidt

$$v_1 = a_1, \quad q_1 = \frac{v_1}{\|v_1\|}$$
 (1)

$$v_k = a_k - \sum_{j=1}^{k-1} (q_j^T a_k) q_j, \quad q_k = \frac{v_k}{\|v_k\|}$$
 (2)

Modified Gram-Schmidt

More stable: orthogonalize against q_i immediately after computing it.

Stability: Classical GS loses orthogonality for ill-conditioned matrices.

Cost: $2mn^2$ operations for both variants.

Householder Reflections

Definition

For nonzero $v \in \mathbb{R}^m$:

$$H = I - 2 \frac{vv^T}{\|v\|^2}$$

Symmetric, orthogonal matrix that reflects across hyperplane $\perp v$.

QR via Householder

Choose H_1, \ldots, H_n such that:

$$H_n \cdots H_1 A = R \quad \Rightarrow \quad A = QR \text{ with } Q = H_1 \cdots H_n$$

Advantage: Backward stable, optimal numerical properties.

Solving Least Squares via QR

QR Solution Method

If A = QR, then:

$$||Ax - b||_2 = ||QRx - b||_2 = ||Rx - Q^T b||_2$$

Minimum achieved when $Rx^* = Q^T b$.

Algorithm

- 1. Compute QR decomposition: A = QR
- 2. Compute $c = Q^T b$
- 3. Solve upper triangular system: Rx = c

Cost:
$$2mn^2 - \frac{2n^3}{3}$$
 operations (QR) + $O(n^2)$ (solve)

Numerical Stability Comparison

Condition Numbers

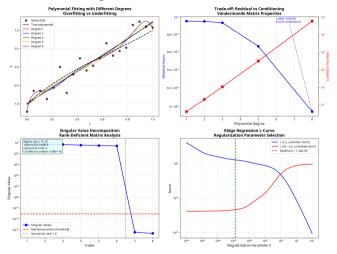
- Normal equations: $\kappa(A^TA) = \kappa(A)^2$
- ▶ QR decomposition: $\kappa(A)$ (preserved)

Backward Error Analysis

- Normal equations: $(A^TA + \Delta(A^TA))\tilde{x} = A^Tb$
- ▶ QR decomposition: $(A + \Delta A)\tilde{x} = b$

Rule of thumb: Lose $\approx \log_{10}(\kappa)$ digits of accuracy. QR advantage: Works directly with A, not A^TA .

Applications and Conditioning Effects



Applications: Polynomial fitting, rank-deficient problems, regularization, and L-curve analysis.

Polynomial Fitting Example

```
# Polynomial fitting using QR decomposition
   import numpy as np
   from scipy.linalg import lstsq
4
   # Generate data
5
   t = np.linspace(0, 1, 20)
   v = 1 - 2*t + 3*t**2 - t**3 + noise
8
   # Create Vandermonde matrix for degree n
   def fit_polynomial(t, y, degree):
10
       A = np.vander(t, degree + 1, increasing=True)
11
       coeffs = lstsq(A, y)[0] # Uses QR internally
12
       return coeffs
13
14
   # Fit different degrees
15
   coeffs = fit_polynomial(t, y, degree=3)
16
```

Key insight: Higher degree \Rightarrow higher condition number \Rightarrow less stable fit.

Rank-Deficient Least Squares

Problem

When rank(A) < n, infinitely many solutions exist.

SVD Solution

 $A = U \Sigma V^T$ gives minimum norm solution:

$$x^+ = V \Sigma^+ U^T b$$

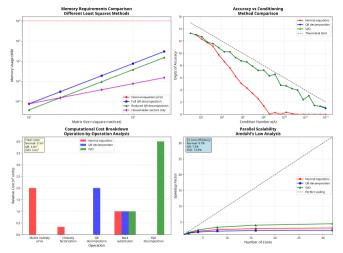
where Σ^+ is Moore-Penrose pseudoinverse.

Numerical Rank

Singular values $\sigma_i > \text{tol} \cdot \sigma_1$ determine effective rank.

Applications: Image reconstruction, data compression, regularization.

Computational Performance Analysis



Analysis: Memory usage, accuracy vs conditioning, cost breakdown, and parallel scalability.

Regularization: Ridge Regression

Ridge Problem

$$\min_{x} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{2}^{2}$$

Equivalent to solving augmented system:

$$\begin{pmatrix} A \\ \sqrt{\lambda}I \end{pmatrix} x = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

L-Curve Method

Plot $||Ax - b||_2$ vs $||x||_2$ for different λ .

Optimal λ at corner of L-shaped curve.

Effect: Trades off residual minimization vs solution smoothness.

When to Use Each Method

Normal Equations

Use when:

- ightharpoonup A is well-conditioned $(\kappa(A) \lesssim 10^6)$
- ► Multiple right-hand sides
- ► A^TA has special structure (sparse, banded)

QR Decomposition

Use when:

- ► A is ill-conditioned
- Numerical stability is critical
- ► General-purpose robust solver needed

SVD

Use when:

► Rank-deficient problems

Computational Complexity Summary

Operation Counts

- Normal equations: $mn^2 + \frac{n^3}{3}$ operations
- ▶ QR (Householder): $2mn^2 \frac{2n^3}{3}$ operations
- **SVD**: $\approx 4mn^2 + 8n^3$ operations

Memory Requirements

- ► Normal equations: $O(n^2)$ (store A^TA)
- $ightharpoonup \mathbf{QR}$: O(mn) (store Q, R)
- ► Householder vectors: O(mn) (implicit Q)

Trade-off: Stability vs computational cost vs memory usage.

Key Takeaways

- 1. Least squares provides optimal solutions for overdetermined systems
- 2. Normal equations are fast but numerically unstable for ill-conditioned A
- 3. QR decomposition preserves conditioning and provides stable solutions
- 4. Householder reflections offer optimal backward stability
- 5. Condition number determines accuracy: lose $pprox \mathsf{log}_{10}(\kappa)$ digits
- 6. Regularization trades off fit quality vs solution smoothness

Next lecture: Iterative Methods for Linear Systems