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Today's Topics

▶ Linear least squares problem formulation

▶ Normal equations vs QR decomposition

▶ Gram-Schmidt and Householder algorithms

▶ Numerical stability analysis

▶ Applications to data �tting and overdetermined systems

▶ Computational complexity and practical considerations
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Linear Least Squares Problem

Problem Statement
Given A ∈ Rm×n with m ≥ n and b ∈ Rm:

min
x∈Rn

∥Ax − b∥22 = min
x

m∑
i=1

(aTi x − bi )
2

Geometric Interpretation

Find point Ax in column space of A closest to b in Euclidean norm.

Key insight: Overdetermined systems (m > n) generally have no exact solution.
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Existence and Uniqueness

Theorem
The least squares problem minx ∥Ax − b∥2 always has a solution.

The solution is unique ⇔ A has full column rank.

Optimality Condition

x∗ is optimal ⇔ residual r∗ = b − Ax∗ is orthogonal to column space of A:

AT r∗ = AT (b − Ax∗) = 0

Orthogonal projection: Ax∗ = PAb where PA = A(ATA)−1AT
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Least Squares: Geometric and Numerical Analysis

Visualization: Data �tting, QR vs normal equations stability, computational

complexity, and conditioning e�ects.
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Normal Equations Approach

Normal Equations

x∗ minimizes ∥Ax − b∥2 if and only if:

ATAx∗ = ATb

Algorithm

1. Form ATA and ATb

2. Solve (ATA)x = ATb (e.g., Cholesky if SPD)

Cost: mn2 + n3

3 operations

Problem: κ(ATA) = κ(A)2 (condition number squared!)
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QR Decomposition

De�nition
For A ∈ Rm×n with m ≥ n:

A = QR

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular.

Reduced QR

A = Q1R1

where Q1 ∈ Rm×n has orthonormal columns and R1 ∈ Rn×n.

Key property: Orthogonal matrices preserve norms and conditioning.
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QR Algorithms: Stability and Implementation

Comparison: Classical vs Modi�ed Gram-Schmidt vs Householder re�ections for

numerical stability.
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Gram-Schmidt Orthogonalization

Classical Gram-Schmidt

v1 = a1, q1 =
v1

∥v1∥
(1)

vk = ak −
k−1∑
j=1

(qTj ak)qj , qk =
vk

∥vk∥
(2)

Modi�ed Gram-Schmidt
More stable: orthogonalize against qj immediately after computing it.

Stability: Classical GS loses orthogonality for ill-conditioned matrices.

Cost: 2mn2 operations for both variants.
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Householder Re�ections

De�nition
For nonzero v ∈ Rm:

H = I − 2
vvT

∥v∥2

Symmetric, orthogonal matrix that re�ects across hyperplane ⊥ v .

QR via Householder

Choose H1, . . . ,Hn such that:

Hn · · ·H1A = R ⇒ A = QR with Q = H1 · · ·Hn

Advantage: Backward stable, optimal numerical properties.
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Solving Least Squares via QR

QR Solution Method

If A = QR , then:

∥Ax − b∥2 = ∥QRx − b∥2 = ∥Rx − QTb∥2
Minimum achieved when Rx∗ = QTb.

Algorithm

1. Compute QR decomposition: A = QR

2. Compute c = QTb

3. Solve upper triangular system: Rx = c

Cost: 2mn2 − 2n3

3 operations (QR) + O(n2) (solve)
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Numerical Stability Comparison

Condition Numbers

▶ Normal equations: κ(ATA) = κ(A)2

▶ QR decomposition: κ(A) (preserved)

Backward Error Analysis

▶ Normal equations: (ATA+∆(ATA))x̃ = ATb

▶ QR decomposition: (A+∆A)x̃ = b

Rule of thumb: Lose ≈ log10(κ) digits of accuracy.
QR advantage: Works directly with A, not ATA.
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Applications and Conditioning E�ects

Applications: Polynomial �tting, rank-de�cient problems, regularization, and L-curve

analysis.
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Polynomial Fitting Example

1 # Polynomial fitting using QR decomposition

2 import numpy as np

3 from scipy.linalg import lstsq

4

5 # Generate data

6 t = np.linspace(0, 1, 20)

7 y = 1 - 2*t + 3*t**2 - t**3 + noise

8

9 # Create Vandermonde matrix for degree n

10 def fit_polynomial(t, y, degree):

11 A = np.vander(t, degree + 1, increasing=True)

12 coeffs = lstsq(A, y)[0] # Uses QR internally

13 return coeffs

14

15 # Fit different degrees

16 coeffs = fit_polynomial(t, y, degree =3)

Key insight: Higher degree ⇒ higher condition number ⇒ less stable �t.
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Rank-De�cient Least Squares

Problem
When rank(A) < n, in�nitely many solutions exist.

SVD Solution
A = UΣV T gives minimum norm solution:

x+ = VΣ+UTb

where Σ+ is Moore-Penrose pseudoinverse.

Numerical Rank
Singular values σi > tol · σ1 determine e�ective rank.

Applications: Image reconstruction, data compression, regularization.
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Computational Performance Analysis

Analysis: Memory usage, accuracy vs conditioning, cost breakdown, and parallel

scalability.
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Regularization: Ridge Regression

Ridge Problem

min
x

∥Ax − b∥22 + λ∥x∥22

Equivalent to solving augmented system:(
A√
λI

)
x =

(
b

0

)

L-Curve Method
Plot ∥Ax − b∥2 vs ∥x∥2 for di�erent λ.
Optimal λ at corner of L-shaped curve.

E�ect: Trades o� residual minimization vs solution smoothness.
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When to Use Each Method

Normal Equations

Use when:

▶ A is well-conditioned (κ(A) ≲ 106)

▶ Multiple right-hand sides

▶ ATA has special structure (sparse, banded)

QR Decomposition

Use when:

▶ A is ill-conditioned

▶ Numerical stability is critical

▶ General-purpose robust solver needed

SVD
Use when:

▶ Rank-de�cient problems

▶ Need pseudoinverse or condition number

▶ Maximum numerical stability required
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Computational Complexity Summary

Operation Counts

▶ Normal equations: mn2 + n3

3 operations

▶ QR (Householder): 2mn2 − 2n3

3 operations

▶ SVD: ≈ 4mn2 + 8n3 operations

Memory Requirements

▶ Normal equations: O(n2) (store ATA)

▶ QR: O(mn) (store Q,R)

▶ Householder vectors: O(mn) (implicit Q)

Trade-o�: Stability vs computational cost vs memory usage.
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Key Takeaways

1. Least squares provides optimal solutions for overdetermined systems

2. Normal equations are fast but numerically unstable for ill-conditioned A

3. QR decomposition preserves conditioning and provides stable solutions

4. Householder re�ections o�er optimal backward stability

5. Condition number determines accuracy: lose ≈ log10(κ) digits

6. Regularization trades o� �t quality vs solution smoothness

Next lecture: Iterative Methods for Linear Systems
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