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Today's Topics

Linear least squares problem formulation
Normal equations vs QR decomposition

Numerical stability analysis
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>

» Gram-Schmidt and Householder algorithms

>

» Applications to data fitting and overdetermined systems
>

Computational complexity and practical considerations
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Linear Least Squares Problem

Problem Statement
Given A € R™*" with m > nand b €¢ R™:

m

: 2 T, 1.\2

min || Ax — b3 = mxlnz;(a,- x — bj)
=

Geometric Interpretation
Find point Ax in column space of A closest to b in Euclidean norm.

Key insight: Overdetermined systems (m > n) generally have no exact solution.
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Existence and Uniqueness

Theorem
The least squares problem miny ||Ax — b||» always has a solution.
The solution is unique < A has full column rank.

Optimality Condition

ATrs = AT(b— Ax*) =0

Orthogonal projection: Ax* = Pab where Py = A(ATA)1AT

x* is optimal < residual r* = b — Ax™ is orthogonal to column space of A:
ptimal dual r* = b — Ax* thogonal to col p fA
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Least Squares: Geometric and Numerical Analysis

Least Squares Data Fitting QR Decomposition: A= QR
i . n=2) lization Process
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Visualization: Data fitting, QR vs normal equations stability, computational
complexity, and conditioning effects.
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Normal Equations Approach

Normal Equations
x* minimizes ||Ax — b||2 if and only if:

AT Ax* = ATh

Algorithm

1. Form ATAand ATh
2. Solve (ATA)x = AT b (e.g., Cholesky if SPD)

Cost: mn® + ’3—3 operations
Problem: x(ATA) = k(A)? (condition number squared!)
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QR Decomposition

Definition
For A € R™" with m > n:
A= QR

where Q € R™*™ is orthogonal and R € R"™*" is upper triangular.

Reduced QR

A=~

where @; € R™*" has orthonormal columns and R; € R7*",

Key property: Orthogonal matrices preserve norms and conditioning.
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QR Algorithms: Stability and Implementation

Orthogonality Loss in QR Algorithms
Numerical Stability Comparison

Householder Reflection
H=1-2w7| v]|*
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Comparison: Classical vs Modified Gram-Schmidt vs Householder reflections for
numerical stability.
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Gram-Schmidt Orthogonalization

Classical Gram-Schmidt

Vi
vi=a1, qi Tl (1)
k—1 ,
k
Vk:ak_Z(quak)qp Ak il (2)
j=1

Modified Gram-Schmidt

More stable: orthogonalize against g; immediately after computing it.

Stability: Classical GS loses orthogonality for ill-conditioned matrices.
Cost: 2mn? operations for both variants.
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Householder Reflections

Definition

For nonzero v € R™:

VVT

H=1-2""
Iv]]2

Symmetric, orthogonal matrix that reflects across hyperplane L v.

QR via Householder
Choose Hy, ..., H, such that:

Hy---HHA=R = A= QRwith Q=H; ---H,

Advantage: Backward stable, optimal numerical properties.

10/1



Solving Least Squares via QR

QR Solution Method
If A= QR, then:
|Ax — bll2 = [|QRx — bl2 = |Rx — QT b|

Minimum achieved when Rx* = Q7 b.

Algorithm

1. Compute QR decomposition: A = QR
2. Compute c=Q"b

3. Solve upper triangular system: Rx = ¢

Cost: 2mn? — 2%3 operations (QR) + O(n?) (solve)
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Numerical Stability Comparison

Condition Numbers
> Normal equations: k(AT A) = k(A)?
» QR decomposition: k(A) (preserved)

Backward Error Analysis
> Normal equations: (ATA+ A(ATA))x =ATb
» QR decomposition: (A+ AA)X = b

Rule of thumb: Lose ~ log;y(x) digits of accuracy.

QR advantage: Works directly with A, not ATA.
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Applications and Conditioning Effects

Polynomial Fitting with Different Degrees Trade-off: Residual vs Conditioning
9 P

singular Value Decomposition Ridge Regression L-Curve
Rank- Matrix Analysis

Applications: Polynomial fitting, rank-deficient problems, regularization, and L-curve
analysis.
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Polynomial Fitting Example
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# Polynomial fitting using QR decomposition
import numpy as np
from scipy.linalg import lstsq

# Generate data
t = np.linspace(0, 1, 20)
y =1 - 2%t + 3*%t**x2 - t**3 + noise

# Create Vandermonde matrix for degree n

def fit_polynomial(t, y, degree):
A = np.vander (t, degree + 1, increasing=True)
coeffs = 1lstsq(A, y)[0] # Uses QR intermally
return coeffs

# Fit different degrees
coeffs = fit_polynomial(t, y, degree=3)

Key insight: Higher degree = higher condition number = less stable fit.
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Rank-Deficient Least Squares

Problem
When rank(A) < n, infinitely many solutions exist.

SVD Solution

A= UXVT gives minimum norm solution:
xT=VETUTh
where YT is Moore-Penrose pseudoinverse.

Numerical Rank
Singular values o; > tol - o1 determine effective rank.

Applications: Image reconstruction, data compression, regularization.
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Computational Performance Analysis

Memory Requirements Comparison Accuracy vs Conditioning
Metho Method Comparison

Memory Usage (MB)
Digits of Accuracy

W W R
Condition Number kA)

Parallel Scalability
\mdahl's Law Analysis

Relative Cost (n* units)
Speedup Facto

Number of Cores.

Analysis: Memory usage, accuracy vs conditioning, cost breakdown, and parallel
scalability.
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Regularization: Ridge Regression

Ridge Problem

min || Ax — b||3 + Al x[I3

Equivalent to solving augmented system:

AN (b
Va7 o
L-Curve Method

Plot ||[Ax — b||2 vs ||x||2 for different A.
Optimal \ at corner of L-shaped curve.

Effect: Trades off residual minimization vs solution smoothness.
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When to Use Each Method

Normal Equations
Use when:
> A is well-conditioned (k(A) < 10°)
» Multiple right-hand sides
» AT A has special structure (sparse, banded)

QR Decomposition
Use when:
» A is ill-conditioned
» Numerical stability is critical

» General-purpose robust solver needed

SvD

Use when:

» Rank-deficient problems
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Computational Complexity Summary

Operation Counts
. 3 .
» Normal equations: mn? + % operations

> QR (Householder): 2mn? — 22 operations

» SVD: =~ 4mn? + 8n® operations

Memory Requirements

» Normal equations: O(n?) (store AT A)
» QR: O(mn) (store @, R)
» Householder vectors: O(mn) (implicit Q)

Trade-off: Stability vs computational cost vs memory usage.
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Key Takeaways

Least squares provides optimal solutions for overdetermined systems
Normal equations are fast but numerically unstable for ill-conditioned A
QR decomposition preserves conditioning and provides stable solutions
Householder reflections offer optimal backward stability

Condition number determines accuracy: lose =~ log;y(x) digits

o0k wh =

Regularization trades off fit quality vs solution smoothness

Next lecture: Iterative Methods for Linear Systems
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