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Overview
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Gaussian Elimination and LU Decomposition
Pivoting Strategies for numerical stability

Cholesky Decomposition for symmetric positive definite
matrices

Stability Analysis and growth factors
Special Matrix Structures (tridiagonal, band matrices)

Iterative Refinement for improved accuracy

Goal: Understand the mathematical foundations and stability
properties of direct methods for solving linear systems Ax = b.



LU Decomposition

Definition
For matrix A € R"*", the LU decompaosition is:

A=LU

where L is lower triangular with unit diagonal and U is upper
triangular.

Theorem (Existence)

LU decomposition exists and is unique if and only if all leading
principal minors of A are nonzero.

Key insight: Gaussian elimination systematically computes the LU
factorization.



LU Decomposition Process
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Figure: LU decomposition visualization showing the factorization
A =L x U, pivoting strategy comparison, Cholesky efficiency analysis,
and condition number effects on stabilitv.



Computational Complexity

Theorem (Operation Count)
LU decomposition of an n X n matrix requires:
2n3

5 + O(n?) operations

Proof sketch.
Column k elimination requires ~ 2(n — k)? operations:

n—1 n—1 2”3
20n—k)? =2 j2="140(n?
kZ:; (n—k) JZIJ 3 (n)

Practical implication: Doubling matrix size increases
computation by factor of 8.



Pivoting for Numerical Stability

Definition (Partial Pivoting)
At step k, choose pivot row p such that:

(k) (k)
= max |a;
p;k k<i<n ’ i,k ‘

|a

Definition (Growth Factor)

max; j k |a,(-5.)\
p= max;  |aj /|

measures element growth during elimination.

Without pivoting: p can be 2! (exponential growth)
With partial pivoting: p typically O(n) in practice



Cholesky Decomposition

Definition
For symmetric positive definite A:

A=1LLT
where L is lower triangular with positive diagonal.

Theorem (Computational Advantage)

Cholesky decomposition requires:
n3
3 + O(n?) operations

Exactly half the cost of LU decomposition!

Algorithm: L; = \/2—ng i LL,,( - Yo

Ljk le)



Special Matrix Structures

Tridiagonal Matrix Structure
(Bandwidth = 3)

Band Matrix
(Bandwidth = 7)
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Figure: Special matrix structures: tridiagonal systems with Thomas
algorithm O(n) complexity, band matrices, Cholesky decomposition
visualization. and iterative refinement convergcence analvsis.



Thomas Algorithm for Tridiagonal Systems

For tridiagonal matrix:

by «a X1 d1
a b o X2 d>
a, bn Xn dn

Forward elimination:
for i=2tondo
cl = ci/(bj — ajc/_;)
di = (dj — aidi_;)/(b;i — aicj_;)

end for

Back substitution:

Xy =d

for i=n—1 down to 1 do

! /
Xj = d; — cixjq1
end for




Backward Stability Analysis

Theorem (Backward Stability)
Gaussian elimination with partial pivoting is backward stable:

(A+ AA)X = b
where HAAHOO < 'an”AHoo with Yn = O(nﬁmach)-

Theorem (Forward Error Bound)

X —x
H”X’” < Ynph(A) + O€mach)
Key insight: Error depends on both algorithm stability (p) and
problem conditioning (k(A)).



Stability Analysis
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Figure: Comprehensive stability analysis: growth factor comparison across
matrix types, backward error analysis for different algorithms, forward
error vs condition number relationshio. and residual-error correlation.



[terative Refinement

Algorithm 1 Iterative Refinement

Given: A, b, initial solution x(0)

for k=0,1,2,... do
Compute residual: r(k) = p — Ax(K)
Solve correction: A§K) = (k)
Update solution: x(k+1) = x(k) 4 (k)

end for

Theorem (Convergence)

If e(A) < 1 where € is the backward error of LU, then iterative
refinement converges and can recover full machine precision.

Practical benefit: Can improve accuracy from O(k(A)€mach) to
O(Emach)-



Computational Complexity Comparison

Computational Complexity:

Operation Count

Execution Time (seconds)
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Different Matrix Types

Memory Usage:
Storage Schemes
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Figure: Computational complexity analysis: operation count comparison
for different matrix types, memory requirements for various storage
schemes execution time combarisons. and scalabilitv analvsis showing



Practical Implementation

# LU decomposition with partial pivoting
from scipy.linalg import lu_factor, lu_solve
import numpy as np

# Create system
A = np.random.randn (100, 100)
b = np.random.randn (100)

# Factor once, solve many times
lu, piv = lu_factor(A4)
x = lu_solve((lu, piv), b)

# For SPD matrices, use Cholesky
from scipy.linalg import cholesky, solve_triangular
A_spd = A.T @ A + np.eye(100) # Make SPD

L = cholesky(A_spd, lower=True)
y = solve_triangular(L, b, lower=True)
x = solve_triangular(L.T, y, lower=False)

Key principle: Factor once, solve many times for multiple
right-hand sides.



Rule of Thumb: Conditioning and Accuracy

» Well-conditioned: x(A) < 10% (lose < 3 digits)
» Moderately conditioned: 103 < x(A) < 102 (lose 3-12
digits)
» lll-conditioned: x(A) > 102 (lose > 12 digits)
Theorem (Accuracy Estimate)

For condition number k(A), expect to lose approximately
log1o(k(A)) decimal digits of accuracy.

Example: If x(A) = 10° and you start with 16 digits precision,
solution has ~ 10 accurate digits.



When to Use Direct Methods

» Advantages:
» Exact solution (in exact arithmetic)
» Predictable computational cost: O(n%)
» Robust for well-conditioned systems
» Factor once, solve for multiple RHS
» Disadvantages:
» High memory requirements: O(n?)
» Expensive for large sparse systems
» Sensitive to ill-conditioning
» Fill-in destroys sparsity structure

Best for: Dense systems, multiple RHS, well-conditioned
problems, n < 10*



Key Takeaways

LU decomposition is the foundation of direct methods
Pivoting is essential for numerical stability

Cholesky is 2x faster for symmetric positive definite matrices
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Special structures (tridiagonal, band) enable O(n) or
O(np?) algorithms

Stability depends on growth factor and condition number

o o

. Iterative refinement can recover lost accuracy

Next lecture: Least Squares Problems and QR Decomposition



