
Numerical Computing
Lecture 5: Direct Methods for Linear Systems

Francisco Richter Mendoza

Università della Svizzera Italiana
Faculty of Informatics

September 9, 2025

Overview

▶ Gaussian Elimination and LU Decomposition

▶ Pivoting Strategies for numerical stability

▶ Cholesky Decomposition for symmetric positive definite
matrices

▶ Stability Analysis and growth factors

▶ Special Matrix Structures (tridiagonal, band matrices)

▶ Iterative Refinement for improved accuracy

Goal: Understand the mathematical foundations and stability
properties of direct methods for solving linear systems Ax = b.

LU Decomposition

Definition
For matrix A ∈ Rn×n, the LU decomposition is:

A = LU

where L is lower triangular with unit diagonal and U is upper
triangular.

Theorem (Existence)

LU decomposition exists and is unique if and only if all leading
principal minors of A are nonzero.

Key insight: Gaussian elimination systematically computes the LU
factorization.

LU Decomposition Process

Figure: LU decomposition visualization showing the factorization
A = L× U, pivoting strategy comparison, Cholesky efficiency analysis,
and condition number effects on stability.

Computational Complexity

Theorem (Operation Count)

LU decomposition of an n × n matrix requires:

2n3

3
+ O(n2) operations

Proof sketch.
Column k elimination requires ≈ 2(n − k)2 operations:

n−1∑
k=1

2(n − k)2 = 2
n−1∑
j=1

j2 =
2n3

3
+ O(n2)

Practical implication: Doubling matrix size increases
computation by factor of 8.

Pivoting for Numerical Stability

Definition (Partial Pivoting)

At step k , choose pivot row p such that:

|a(k)p,k | = max
k≤i≤n

|a(k)i ,k |

Definition (Growth Factor)

ρ =
maxi ,j ,k |a

(k)
i ,j |

maxi ,j |ai ,j |
measures element growth during elimination.

Without pivoting: ρ can be 2n−1 (exponential growth)
With partial pivoting: ρ typically O(n) in practice

Cholesky Decomposition

Definition
For symmetric positive definite A:

A = LLT

where L is lower triangular with positive diagonal.

Theorem (Computational Advantage)

Cholesky decomposition requires:

n3

3
+ O(n2) operations

Exactly half the cost of LU decomposition!

Algorithm: Lii =
√
Aii −

∑i−1
k=1 L

2
ik , Lji =

1
Lii

(
Aji −

∑i−1
k=1 LjkLik

)

Special Matrix Structures

Figure: Special matrix structures: tridiagonal systems with Thomas
algorithm O(n) complexity, band matrices, Cholesky decomposition
visualization, and iterative refinement convergence analysis.

Thomas Algorithm for Tridiagonal Systems
For tridiagonal matrix:

b1 c1
a2 b2 c2

. . .
. . .

. . .

an bn



x1
x2
...
xn

 =


d1
d2
...
dn


Forward elimination:
for i = 2 to n do

c ′i = ci/(bi − aic
′
i−1)

d ′
i = (di − aid

′
i−1)/(bi − aic

′
i−1)

end for
Back substitution:
xn = d ′

n

for i = n − 1 down to 1 do
xi = d ′

i − c ′i xi+1

end for

Complexity: O(n) operations vs O(n3) for general systems

Backward Stability Analysis

Theorem (Backward Stability)

Gaussian elimination with partial pivoting is backward stable:

(A+∆A)x̃ = b

where ∥∆A∥∞ ≤ γnρ∥A∥∞ with γn = O(nϵmach).

Theorem (Forward Error Bound)

∥x̃ − x∥
∥x∥

≤ γnρκ(A) + O(ϵ2mach)

Key insight: Error depends on both algorithm stability (ρ) and
problem conditioning (κ(A)).

Stability Analysis

Figure: Comprehensive stability analysis: growth factor comparison across
matrix types, backward error analysis for different algorithms, forward
error vs condition number relationship, and residual-error correlation.

Iterative Refinement

Algorithm 1 Iterative Refinement

Given: A, b, initial solution x (0)

for k = 0, 1, 2, . . . do
Compute residual: r (k) = b − Ax (k)

Solve correction: Aδ(k) = r (k)

Update solution: x (k+1) = x (k) + δ(k)

end for

Theorem (Convergence)

If ϵκ(A) < 1 where ϵ is the backward error of LU, then iterative
refinement converges and can recover full machine precision.

Practical benefit: Can improve accuracy from O(κ(A)ϵmach) to
O(ϵmach).

Computational Complexity Comparison

Figure: Computational complexity analysis: operation count comparison
for different matrix types, memory requirements for various storage
schemes, execution time comparisons, and scalability analysis showing
relative performance across problem sizes.

Practical Implementation

LU decomposition with partial pivoting

from scipy.linalg import lu_factor , lu_solve

import numpy as np

Create system

A = np.random.randn (100, 100)

b = np.random.randn (100)

Factor once , solve many times

lu, piv = lu_factor(A)

x = lu_solve ((lu , piv), b)

For SPD matrices , use Cholesky

from scipy.linalg import cholesky , solve_triangular

A_spd = A.T @ A + np.eye (100) # Make SPD

L = cholesky(A_spd , lower=True)

y = solve_triangular(L, b, lower=True)

x = solve_triangular(L.T, y, lower=False)

Key principle: Factor once, solve many times for multiple
right-hand sides.

Rule of Thumb: Conditioning and Accuracy

▶ Well-conditioned: κ(A) ≤ 103 (lose ≤ 3 digits)

▶ Moderately conditioned: 103 < κ(A) ≤ 1012 (lose 3-12
digits)

▶ Ill-conditioned: κ(A) > 1012 (lose > 12 digits)

Theorem (Accuracy Estimate)

For condition number κ(A), expect to lose approximately
log10(κ(A)) decimal digits of accuracy.

Example: If κ(A) = 106 and you start with 16 digits precision,
solution has ≈ 10 accurate digits.

When to Use Direct Methods

▶ Advantages:
▶ Exact solution (in exact arithmetic)
▶ Predictable computational cost: O(n3)
▶ Robust for well-conditioned systems
▶ Factor once, solve for multiple RHS

▶ Disadvantages:
▶ High memory requirements: O(n2)
▶ Expensive for large sparse systems
▶ Sensitive to ill-conditioning
▶ Fill-in destroys sparsity structure

Best for: Dense systems, multiple RHS, well-conditioned
problems, n ≲ 104

Key Takeaways

1. LU decomposition is the foundation of direct methods

2. Pivoting is essential for numerical stability

3. Cholesky is 2Ö faster for symmetric positive definite matrices

4. Special structures (tridiagonal, band) enable O(n) or
O(np2) algorithms

5. Stability depends on growth factor and condition number

6. Iterative refinement can recover lost accuracy

Next lecture: Least Squares Problems and QR Decomposition

