Numerical Computing

Lecture 5: Direct Methods for Linear Systems

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics

September 9, 2025

Overview

- ► Gaussian Elimination and LU Decomposition
- Pivoting Strategies for numerical stability
- Cholesky Decomposition for symmetric positive definite matrices
- Stability Analysis and growth factors
- ► Special Matrix Structures (tridiagonal, band matrices)
- ► **Iterative Refinement** for improved accuracy

Goal: Understand the mathematical foundations and stability properties of direct methods for solving linear systems Ax = b.

LU Decomposition

Definition

For matrix $A \in \mathbb{R}^{n \times n}$, the **LU decomposition** is:

$$A = LU$$

where L is lower triangular with unit diagonal and U is upper triangular.

Theorem (Existence)

LU decomposition exists and is unique if and only if all leading principal minors of A are nonzero.

Key insight: Gaussian elimination systematically computes the LU factorization.

LU Decomposition Process

105

105

104

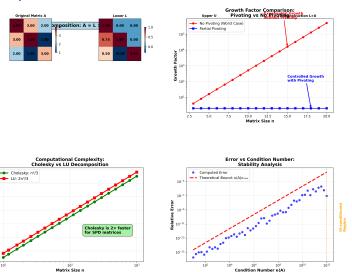


Figure: LU decomposition visualization showing the factorization $A = L \times U$, pivoting strategy comparison, Cholesky efficiency analysis, and condition number effects on stability.

Computational Complexity

Theorem (Operation Count)

LU decomposition of an $n \times n$ matrix requires:

$$\frac{2n^3}{3} + O(n^2)$$
 operations

Proof sketch.

Column k elimination requires $\approx 2(n-k)^2$ operations:

$$\sum_{k=1}^{n-1} 2(n-k)^2 = 2\sum_{j=1}^{n-1} j^2 = \frac{2n^3}{3} + O(n^2)$$

Practical implication: Doubling matrix size increases computation by factor of 8.

Pivoting for Numerical Stability

Definition (Partial Pivoting)

At step k, choose pivot row p such that:

$$|a_{p,k}^{(k)}| = \max_{k \le i \le n} |a_{i,k}^{(k)}|$$

Definition (Growth Factor)

$$\rho = \frac{\max_{i,j,k} |a_{i,j}^{(k)}|}{\max_{i,j} |a_{i,j}|}$$

measures element growth during elimination.

Without pivoting: ρ can be 2^{n-1} (exponential growth) With partial pivoting: ρ typically O(n) in practice

Cholesky Decomposition

Definition

For symmetric positive definite *A*:

$$A = LL^T$$

where L is lower triangular with positive diagonal.

Theorem (Computational Advantage)

Cholesky decomposition requires:

$$\frac{n^3}{3} + O(n^2)$$
 operations

Exactly half the cost of LU decomposition!

Algorithm:
$$L_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i-1} L_{ik}^2}, \ L_{ji} = \frac{1}{L_{ii}} \left(A_{ji} - \sum_{k=1}^{i-1} L_{jk} L_{ik} \right)$$

Special Matrix Structures

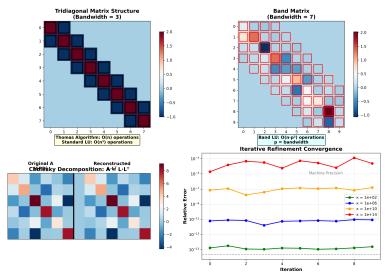


Figure: Special matrix structures: tridiagonal systems with Thomas algorithm O(n) complexity, band matrices, Cholesky decomposition visualization, and iterative refinement convergence analysis.

Thomas Algorithm for Tridiagonal Systems

For tridiagonal matrix:

$$\begin{pmatrix} b_1 & c_1 & & \\ a_2 & b_2 & c_2 & \\ & \ddots & \ddots & \ddots \\ & & a_n & b_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$

Forward elimination:

for
$$i = 2$$
 to n do
 $c'_i = c_i/(b_i - a_i c'_{i-1})$
 $d'_i = (d_i - a_i d'_{i-1})/(b_i - a_i c'_{i-1})$
end for

Back substitution:

$$x_n = d'_n$$

for $i = n - 1$ down to 1 do
 $x_i = d'_i - c'_i x_{i+1}$
end for

Backward Stability Analysis

Theorem (Backward Stability)

Gaussian elimination with partial pivoting is backward stable:

$$(A + \Delta A)\tilde{x} = b$$

where $\|\Delta A\|_{\infty} \leq \gamma_n \rho \|A\|_{\infty}$ with $\gamma_n = O(n\epsilon_{mach})$.

Theorem (Forward Error Bound)

$$\frac{\|\tilde{x} - x\|}{\|x\|} \le \gamma_n \rho \kappa(A) + O(\epsilon_{mach}^2)$$

Key insight: Error depends on both algorithm stability (ρ) and problem conditioning $(\kappa(A))$.

Stability Analysis

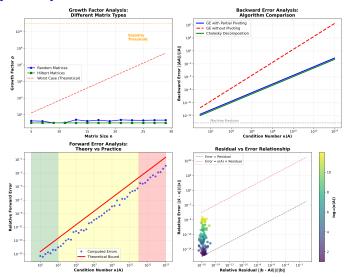


Figure: Comprehensive stability analysis: growth factor comparison across matrix types, backward error analysis for different algorithms, forward error vs condition number relationship, and residual-error correlation.

Iterative Refinement

Algorithm 1 Iterative Refinement

```
Given: A, b, initial solution x^{(0)}
```

for k = 0, 1, 2, ... do

Compute residual: $r^{(k)} = b - Ax^{(k)}$

Solve correction: $A\delta^{(k)} = r^{(k)}$

Update solution: $x^{(k+1)} = x^{(k)} + \delta^{(k)}$

end for

Theorem (Convergence)

If $\epsilon \kappa(A) < 1$ where ϵ is the backward error of LU, then iterative refinement converges and can recover full machine precision.

Practical benefit: Can improve accuracy from $O(\kappa(A)\epsilon_{\rm mach})$ to $O(\epsilon_{\rm mach})$.

Computational Complexity Comparison

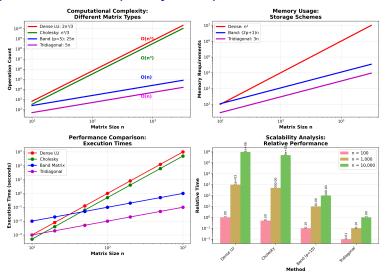


Figure: Computational complexity analysis: operation count comparison for different matrix types, memory requirements for various storage schemes, execution time comparisons, and scalability analysis showing

Practical Implementation

```
# LU decomposition with partial pivoting
from scipy.linalg import lu_factor, lu_solve
import numpy as np
# Create system
A = np.random.randn(100, 100)
b = np.random.randn(100)
# Factor once, solve many times
lu, piv = lu_factor(A)
x = lu_solve((lu, piv), b)
# For SPD matrices, use Cholesky
from scipy.linalg import cholesky, solve_triangular
A\_spd = A.T @ A + np.eye(100) # Make SPD
L = cholesky(A_spd, lower=True)
y = solve_triangular(L, b, lower=True)
x = solve_triangular(L.T, y, lower=False)
```

Key principle: Factor once, solve many times for multiple right-hand sides.

Rule of Thumb: Conditioning and Accuracy

- ▶ Well-conditioned: $\kappa(A) \le 10^3$ (lose ≤ 3 digits)
- ▶ Moderately conditioned: $10^3 < \kappa(A) \le 10^{12}$ (lose 3-12 digits)
- ▶ Ill-conditioned: $\kappa(A) > 10^{12}$ (lose > 12 digits)

Theorem (Accuracy Estimate)

For condition number $\kappa(A)$, expect to lose approximately $\log_{10}(\kappa(A))$ decimal digits of accuracy.

Example: If $\kappa(A) = 10^6$ and you start with 16 digits precision, solution has ≈ 10 accurate digits.

When to Use Direct Methods

Advantages:

- Exact solution (in exact arithmetic)
- Predictable computational cost: $O(n^3)$
- Robust for well-conditioned systems
- Factor once, solve for multiple RHS

▶ Disadvantages:

- ▶ High memory requirements: $O(n^2)$
- Expensive for large sparse systems
- Sensitive to ill-conditioning
- Fill-in destroys sparsity structure

Best for: Dense systems, multiple RHS, well-conditioned problems, $n \lesssim 10^4$

Key Takeaways

- 1. LU decomposition is the foundation of direct methods
- 2. Pivoting is essential for numerical stability
- 3. Cholesky is $2 \times$ faster for symmetric positive definite matrices
- 4. **Special structures** (tridiagonal, band) enable O(n) or $O(np^2)$ algorithms
- 5. Stability depends on growth factor and condition number
- 6. Iterative refinement can recover lost accuracy

Next lecture: Least Squares Problems and QR Decomposition