Numerical Computing

Lecture 4: Linear Algebra Foundations

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics Lugano, Switzerland

Today's Topics

- Vector and matrix norms
- **▶** Condition numbers
- ► Sensitivity analysis
- ► Special matrix classes
- ► Singular Value Decomposition
- ► Applications and examples

Vector Norms

Definition

Function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is a vector norm if:

- 1. Positivity: $||x|| \ge 0$, with $||x|| = 0 \iff x = 0$
- 2. Homogeneity: $\|\alpha x\| = |\alpha| \|x\|$
- 3. Triangle inequality: $||x + y|| \le ||x|| + ||y||$

Common p-norms

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- $\|x\|_1 = \sum_{i=1}^n |x_i|$ (Manhattan)
- $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$ (Euclidean)
- $\|x\|_{\infty} = \max_{1 < i < n} |x_i|$ (Maximum)

Matrix Norms

Induced Matrix Norm

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||$$

Common Matrix Norms

- $\|A\|_1 = \max_j \sum_{i=1}^m |a_{ij}|$ (max column sum)
- $\|A\|_{\infty} = \max_i \sum_{i=1}^n |a_{ij}|$ (max row sum)
- ▶ $||A||_2 = \sigma_{\max}(A)$ (largest singular value)
- $ightharpoonup \|A\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$ (Frobenius)

Key property: $||Ax|| \le ||A|| ||x||$ for induced norms

Linear Algebra Foundations

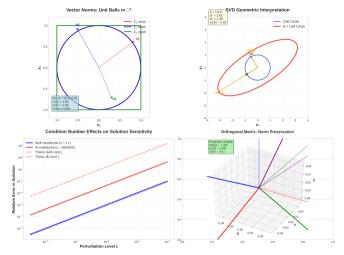


Figure: Vector norms unit balls, SVD geometric interpretation, condition number effects, and orthogonal matrix properties demonstrating fundamental linear algebra concepts.

Condition Numbers

Definition

For invertible matrix A:

$$\kappa(A) = ||A|| ||A^{-1}||$$

For 2-norm: $\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$

Properties

- $ightharpoonup \kappa(A) \geq 1$ always
- $ightharpoonup \kappa(I) = 1$ (identity perfectly conditioned)
- $ightharpoonup \kappa(\alpha A) = \kappa(A) \text{ for } \alpha \neq 0$
- ightharpoonup $\kappa_2(Q)=1$ for orthogonal Q

Interpretation: Measures how "close" matrix is to being singular

Sensitivity Analysis

Linear System Perturbation

For Ax = b with perturbed RHS $b + \Delta b$:

$$\frac{\|\Delta x\|}{\|x\|} \le \kappa(A) \frac{\|\Delta b\|}{\|b\|}$$

Matrix Perturbation

For $(A + \Delta A)(x + \Delta x) = b$:

$$\frac{\|\Delta x\|}{\|x\|} \approx \kappa(A) \frac{\|\Delta A\|}{\|A\|}$$

Key insight: Condition number bounds relative error amplification Example: $\kappa=10^{12}$ means 10^{-16} perturbation $\Rightarrow 10^{-4}$ error

Matrix Conditioning Analysis

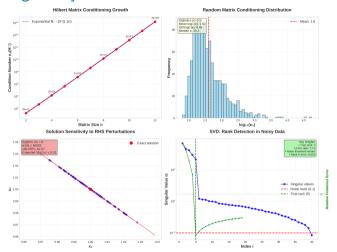


Figure: Hilbert matrix conditioning growth, random matrix statistics, perturbation analysis visualization, and SVD rank detection in noisy data.

Orthogonal Matrices

Definition

Matrix Q is orthogonal if $Q^TQ = I$, i.e., $Q^T = Q^{-1}$

Properties

- $||Qx||_2 = ||x||_2$ (preserves Euclidean norm)
- $ightharpoonup \det(Q) = \pm 1$
- $ightharpoonup \kappa_2(Q) = 1$ (perfectly conditioned)
- ▶ $(Qx) \cdot (Qy) = x \cdot y$ (preserves inner products)

Geometric interpretation: Orthogonal transformations are rotations and reflections **Applications:** QR decomposition, least squares, eigenvalue algorithms

Symmetric Matrices

Definition

Matrix A is symmetric if $A = A^T$

Spectral Theorem

Every symmetric matrix A has:

- ightharpoonup Real eigenvalues: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$
- ▶ Orthogonal eigenvectors: $A = Q\Lambda Q^T$
- $\kappa_2(A) = \frac{|\lambda_{\text{max}}|}{|\lambda_{\text{min}}|}$

Positive Definite

A is positive definite if $x^T A x > 0$ for all $x \neq 0$

- ► Equivalent: all eigenvalues > 0
- ightharpoonup Cholesky decomposition: $A = LL^T$

Special Matrix Classes

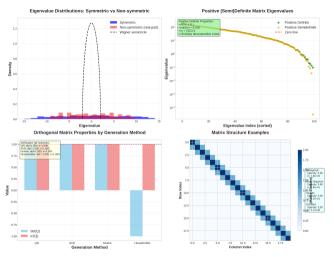


Figure: Symmetric matrix eigenvalue distributions, positive definite properties, orthogonal matrix generation methods, and structured matrix sparsity patterns.

Singular Value Decomposition (SVD)

Theorem

Every matrix $A \in \mathbb{R}^{m \times n}$ has SVD:

$$A = U\Sigma V^T$$

where:

- $V \in \mathbb{R}^{m \times m}$ orthogonal (left singular vectors)
- $V \in \mathbb{R}^{n \times n}$ orthogonal (right singular vectors)
- $ightharpoonup \Sigma \in \mathbb{R}^{m imes n}$ diagonal with $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$

Key Properties

- $\|A\|_2 = \sigma_1, \|A\|_F = \sqrt{\sum_i \sigma_i^2}$
- ightharpoonup rank(A) = number of nonzero singular values
- $ightharpoonup \kappa_2(A) = \sigma_1/\sigma_r$ where $r = \operatorname{rank}(A)$

SVD Applications

Low-Rank Approximation

Best rank-k approximation: $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$

Error: $||A - A_k||_2 = \sigma_{k+1}$

Principal Component Analysis

Data matrix X: SVD reveals principal directions of variation

Pseudoinverse

For $A = U\Sigma V^T$: $A^+ = V\Sigma^+ U^T$

where Σ^+ inverts nonzero singular values

Applications: Image compression, data analysis, least squares

SVD Applications

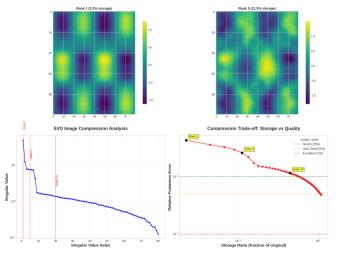


Figure: SVD image compression demonstration showing original vs compressed images, singular value decay, and storage-quality trade-offs for different compression ranks.

Computational Considerations

Matrix-Vector Operations

- ightharpoonup Matrix-vector product: O(mn) operations
- ► Matrix-matrix product: O(mnp) operations
- ▶ Matrix inversion: $O(n^3)$ operations

Conditioning and Accuracy

- Well-conditioned: $\kappa \approx 1$ to 10^3
- ▶ Moderately conditioned: $\kappa \approx 10^3$ to 10^{12}
- ▶ Ill-conditioned: $\kappa > 10^{12}$ (problematic in double precision)

Rule of thumb: Lose $\log_{10}(\kappa)$ digits of accuracy

Practical Examples

Hilbert Matrix

 $H_{ij} = \frac{1}{i+i-1}$: $\kappa_2(H_{10}) \approx 1.6 \times 10^{13}$

Lesson: Some problems are inherently ill-conditioned

Vandermonde Matrix

 $V_{ij} = x_i^{j-1}$: Condition number grows exponentially with n

Application: Polynomial interpolation

Random Matrices

Typical condition number: $\kappa \approx 10^1$ to 10^3

Insight: Most matrices are reasonably well-conditioned

Key Takeaways

- Norms: Measure size of vectors and matrices
- ► Condition numbers: Quantify sensitivity to perturbations
- Orthogonal matrices: Preserve geometry, perfectly conditioned
- ► Symmetric matrices: Real eigenvalues, orthogonal eigenvectors
- ► SVD: Universal tool for matrix analysis and approximation
- **Computational cost**: $O(n^3)$ for most dense linear algebra

Next Lecture: Direct Methods for Linear Systems