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Today's Topics

▶ Vector and matrix norms

▶ Condition numbers

▶ Sensitivity analysis

▶ Special matrix classes

▶ Singular Value Decomposition

▶ Applications and examples
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Vector Norms

De�nition
Function ∥ · ∥ : Rn → R is a vector norm if:

1. Positivity: ∥x∥ ≥ 0, with ∥x∥ = 0 ⇐⇒ x = 0

2. Homogeneity: ∥αx∥ = |α|∥x∥
3. Triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥

Common p-norms

∥x∥p =

(
n∑

i=1

|xi |p
)1/p

▶ ∥x∥1 =
∑n

i=1 |xi | (Manhattan)

▶ ∥x∥2 =
√∑n

i=1 x
2
i (Euclidean)

▶ ∥x∥∞ = max1≤i≤n |xi | (Maximum)
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Matrix Norms

Induced Matrix Norm

∥A∥ = max
x ̸=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥

Common Matrix Norms

▶ ∥A∥1 = maxj
∑m

i=1 |aij | (max column sum)

▶ ∥A∥∞ = maxi
∑n

j=1 |aij | (max row sum)

▶ ∥A∥2 = σmax(A) (largest singular value)

▶ ∥A∥F =
√∑

i ,j |aij |2 (Frobenius)

Key property: ∥Ax∥ ≤ ∥A∥∥x∥ for induced norms
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Linear Algebra Foundations

Figure: Vector norms unit balls, SVD geometric interpretation, condition number e�ects, and

orthogonal matrix properties demonstrating fundamental linear algebra concepts.
5 / 1



Condition Numbers

De�nition
For invertible matrix A:

κ(A) = ∥A∥∥A−1∥

For 2-norm: κ2(A) =
σmax(A)
σmin(A)

Properties

▶ κ(A) ≥ 1 always

▶ κ(I ) = 1 (identity perfectly conditioned)

▶ κ(αA) = κ(A) for α ̸= 0

▶ κ2(Q) = 1 for orthogonal Q

Interpretation: Measures how "close" matrix is to being singular
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Sensitivity Analysis

Linear System Perturbation

For Ax = b with perturbed RHS b +∆b:

∥∆x∥
∥x∥

≤ κ(A)
∥∆b∥
∥b∥

Matrix Perturbation
For (A+∆A)(x +∆x) = b:

∥∆x∥
∥x∥

≈ κ(A)
∥∆A∥
∥A∥

Key insight: Condition number bounds relative error ampli�cation

Example: κ = 1012 means 10−16 perturbation ⇒ 10−4 error
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Matrix Conditioning Analysis

Figure: Hilbert matrix conditioning growth, random matrix statistics, perturbation analysis

visualization, and SVD rank detection in noisy data.
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Orthogonal Matrices

De�nition
Matrix Q is orthogonal if QTQ = I , i.e., QT = Q−1

Properties

▶ ∥Qx∥2 = ∥x∥2 (preserves Euclidean norm)

▶ det(Q) = ±1

▶ κ2(Q) = 1 (perfectly conditioned)

▶ (Qx) · (Qy) = x · y (preserves inner products)

Geometric interpretation: Orthogonal transformations are rotations and re�ections

Applications: QR decomposition, least squares, eigenvalue algorithms
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Symmetric Matrices

De�nition
Matrix A is symmetric if A = AT

Spectral Theorem

Every symmetric matrix A has:

▶ Real eigenvalues: λ1 ≥ λ2 ≥ · · · ≥ λn

▶ Orthogonal eigenvectors: A = QΛQT

▶ κ2(A) =
|λmax|
|λmin|

Positive De�nite
A is positive de�nite if xTAx > 0 for all x ̸= 0

▶ Equivalent: all eigenvalues > 0

▶ Cholesky decomposition: A = LLT
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Special Matrix Classes

Figure: Symmetric matrix eigenvalue distributions, positive de�nite properties, orthogonal

matrix generation methods, and structured matrix sparsity patterns.
11 / 1



Singular Value Decomposition (SVD)

Theorem
Every matrix A ∈ Rm×n has SVD:

A = UΣV T

where:

▶ U ∈ Rm×m orthogonal (left singular vectors)

▶ V ∈ Rn×n orthogonal (right singular vectors)

▶ Σ ∈ Rm×n diagonal with σ1 ≥ σ2 ≥ · · · ≥ 0

Key Properties

▶ ∥A∥2 = σ1, ∥A∥F =
√∑

i σ
2
i

▶ rank(A) = number of nonzero singular values

▶ κ2(A) = σ1/σr where r = rank(A)
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SVD Applications

Low-Rank Approximation

Best rank-k approximation: Ak =
∑k

i=1 σiuiv
T
i

Error: ∥A− Ak∥2 = σk+1

Principal Component Analysis

Data matrix X : SVD reveals principal directions of variation

Pseudoinverse
For A = UΣV T : A+ = VΣ+UT

where Σ+ inverts nonzero singular values

Applications: Image compression, data analysis, least squares
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SVD Applications

Figure: SVD image compression demonstration showing original vs compressed images, singular

value decay, and storage-quality trade-o�s for di�erent compression ranks.
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Computational Considerations

Matrix-Vector Operations

▶ Matrix-vector product: O(mn) operations

▶ Matrix-matrix product: O(mnp) operations

▶ Matrix inversion: O(n3) operations

Conditioning and Accuracy

▶ Well-conditioned: κ ≈ 1 to 103

▶ Moderately conditioned: κ ≈ 103 to 1012

▶ Ill-conditioned: κ > 1012 (problematic in double precision)

Rule of thumb: Lose log10(κ) digits of accuracy
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Practical Examples

Hilbert Matrix
Hij =

1
i+j−1 : κ2(H10) ≈ 1.6× 1013

Lesson: Some problems are inherently ill-conditioned

Vandermonde Matrix
Vij = x

j−1
i : Condition number grows exponentially with n

Application: Polynomial interpolation

Random Matrices
Typical condition number: κ ≈ 101 to 103

Insight: Most matrices are reasonably well-conditioned
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Key Takeaways

▶ Norms: Measure size of vectors and matrices

▶ Condition numbers: Quantify sensitivity to perturbations

▶ Orthogonal matrices: Preserve geometry, perfectly conditioned

▶ Symmetric matrices: Real eigenvalues, orthogonal eigenvectors

▶ SVD: Universal tool for matrix analysis and approximation

▶ Computational cost: O(n3) for most dense linear algebra

Next Lecture: Direct Methods for Linear Systems
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