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Today's Topics

Vector and matrix norms
Condition numbers

Special matrix classes

>

>

» Sensitivity analysis

>

» Singular Value Decomposition
>

Applications and examples
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Vector Norms
Definition
Function || - || : R" — R is a vector norm if:
1. Positivity: ||x|| >0, with |[|x]] =0 <= x =0
2. Homogeneity: |ax| = |af||x||
3. Triangle inequality: ||x + y| < ||x]| + [yl

Common p-norms

n 1/p
Ixle = (2 |x,-|p>
i=1

> |Ix]ls = 7, x| (Manhattan)

> [[x]]2 = \/fle (Euclidean)

> |Ix]|oc = Mmaxi<i<p |xi| (Maximum)
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Matrix Norms

Induced Matrix Norm

A
1Al = max 2o
A0 x| lixl=1

Common Matrix Norms
> ||All = max; Y., |aj| (max column sum)
> [[Alloo = max; 327 [a;| (max row sum)
» ||All2 = omax(A) (largest singular value)
> ||Allr = />, |aj|* (Frobenius)

Key property: ||Ax|| < ||All||x|| for induced norms
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Linear Algebra Foundations

Vector Norms: Unit Balls in [

VD Geometric Interpretation

— unitCirde
— AxUnicCircie

Condition Number Effects on Solution Sensitivity

— el condtoned (k= 11)

10— condtoned (x- 392006) =
—~ Theory (welhcond) -
100 == Theary (lkcond) e

Relative Error in Solution

© 0%
Perturbation Level ¢

Figure: Vector norms unit balls, SVD geometric interpretation, condition number effects, and
orthogonal matrix properties demonstrating fundamental linear algebra concepts.
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Condition Numbers

Definition
For invertible matrix A:

K(A) = |A[A7H]
For 2-norm: ka(A) = Z:T:((ﬁ))

Properties
> x(A) > 1 always
» k(1) =1 (identity perfectly conditioned)
> r(aA) = k(A) for a # 0
> r2(Q) =1 for orthogonal Q

Interpretation: Measures how "close" matrix is to being singular
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Sensitivity Analysis

Linear System Perturbation
For Ax = b with perturbed RHS b + Ab:

|ax _ 126
< k(A
PIEASATE
Matrix Perturbation
For (A+ AA)(x + Ax) = b:
™ ™
~ K —_—
W A

Key insight: Condition number bounds relative error amplification
Example: x = 10'? means 107! perturbation = 10~* error
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Matrix Conditioning Analysis

Hilbert Matrix Conditioning Growth Random Matrix Conditioning Distribution
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Figure: Hilbert matrix conditioning growth, random matrix statistics, perturbation analysis
visualization, and SVD rank detection in noisy data.
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Orthogonal Matrices

Definition
Matrix @ is orthogonal if Q" Q@ =1/, ie, QT = Q7!
Properties

» |Qx|l2 = ||x||2 (preserves Euclidean norm)

> det(Q) = £1

» x2(Q) =1 (perfectly conditioned)

» (Qx)-(Qy) = x-y (preserves inner products)

Geometric interpretation: Orthogonal transformations are rotations and reflections
Applications: QR decomposition, least squares, eigenvalue algorithms
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Symmetric Matrices

Definition

Matrix A is symmetric if A= AT

Spectral Theorem

Every symmetric matrix A has:
> Real eigenvalues: \y > Xy > -+ > A\,
» Orthogonal eigenvectors: A = QAQT
> ma(A) = G

Positive Definite
A is positive definite if xT Ax > 0 for all x # 0

» Equivalent: all eigenvalues > 0
» Cholesky decomposition: A= LLT
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Special Matrix Classes

Figure: Symmetric matrix eigenvalue distributions, positive definite properties, orthogonal

Eigenvalue Distributions: Symmetric vs Non-symmetric
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matrix generation methods, and structured matrix sparsity patterns.
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Singular Value Decomposition (SVD)

Theorem
Every matrix A € R™*" has SVD:

A=UxzVvT

where:
» U € R™*™ orthogonal (left singular vectors)
» V € R"*" orthogonal (right singular vectors)
> > € R™" diagonal with 0y >0, >--- >0

Key Properties

> [|Al2 = o1, |AllF = /3 07

» rank(A) = number of nonzero singular values
» r2(A) = 01/, where r = rank(A)
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SVD Applications

Low-Rank Approximation
Best rank-k approximation: Ay = Zf-‘zl oiuivih
Error: ||A — Agll2 = ok11

Principal Component Analysis
Data matrix X: SVD reveals principal directions of variation

Pseudoinverse
For A= UZVT: At = vEty’
where £ inverts nonzero singular values

Applications: Image compression, data analysis, least squares
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SVD Applications

Rank 1 (2% storage)

Ranks (11.2% storage)
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SVD Image Compression Analysis Compression Trade-off: Storage vs Quality
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Figure: SVD image compression demonstration showing original vs compressed images, singular

value decay, and storage-quality trade-offs for different compression ranks.
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Computational Considerations

Matrix-Vector Operations

» Matrix-vector product: O(mn) operations
» Matrix-matrix product: O(mnp) operations

> Matrix inversion: O(n®) operations

Conditioning and Accuracy

» Well-conditioned: k=~ 1 to 103
» Moderately conditioned: x =~ 103 to 10'?

» lll-conditioned: x > 102 (problematic in double precision)

Rule of thumb: Lose log; (k) digits of accuracy
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Practical Examples

Hilbert Matrix
Hij = =1 ka(Hio) ~ 1.6 x 1013
Lesson: Some problems are inherently ill-conditioned

Vandermonde Matrix
Vij = xJ : Condition number grows exponentially with n
Appllcatlon. Polynomial interpolation

Random Matrices
Typical condition number: x =~ 10! to 103
Insight: Most matrices are reasonably well-conditioned
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Key Takeaways

Norms: Measure size of vectors and matrices
Condition numbers: Quantify sensitivity to perturbations

Symmetric matrices: Real eigenvalues, orthogonal eigenvectors

>
>
» Orthogonal matrices: Preserve geometry, perfectly conditioned
>
» SVD: Universal tool for matrix analysis and approximation

>

Computational cost: O(n3) for most dense linear algebra

Next Lecture: Direct Methods for Linear Systems
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