Numerical Computing

Lecture 3: Root-Finding Methods

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics Lugano, Switzerland

Today's Topics

- ► Root-finding problem
- **▶** Bracketing methods
- ► Fixed-point iteration
- Newton's method
- ► Secant method
- ► Convergence analysis

Root-Finding Problem

Definition

Given continuous function $f:[a,b]\to\mathbb{R}$, find x^* such that:

$$f(x^*)=0$$

Intermediate Value Theorem

If f continuous on [a, b] and $f(a) \cdot f(b) < 0$, then $\exists c \in (a, b)$ such that f(c) = 0.

Types of roots:

- ▶ Simple root: $f'(x^*) \neq 0$
- ▶ Multiple root: $f'(x^*) = 0$

Convergence Analysis

Order of Convergence

Sequence $\{x_k\}$ converges to x^* with order $p \ge 1$ if:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = C, \quad 0 < C < \infty$$

- ightharpoonup p = 1: Linear convergence
- ▶ 1 : Superlinear convergence
- ightharpoonup p = 2: Quadratic convergence

Practical implications:

- ightharpoonup Linear: $O(\log(1/\epsilon))$ iterations
- ▶ Quadratic: $O(\log \log(1/\epsilon))$ iterations

Root-Finding Methods Comparison

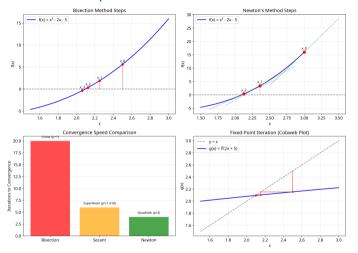


Figure: Comprehensive comparison of root-finding approaches: bisection's systematic interval reduction, Newton's tangent-line strategy, convergence rate analysis, and fixed-point iteration visualization.

Bisection Method

Algorithm

Given f continuous on [a, b] with $f(a) \cdot f(b) < 0$:

- 1. Set c = (a + b)/2
- 2. If $f(a) \cdot f(c) < 0$, set b = c; otherwise a = c
- 3. Repeat until |b-a| < tolerance

Convergence

$$|x_n-x^*|\leq \frac{b_0-a_0}{2^n}$$

Iterations needed: $n = \lceil \log_2((b_0 - a_0)/\epsilon) \rceil$

Properties: Guaranteed convergence, linear rate, robust but slow

Fixed-Point Iteration

Fixed-Point Problem

Find x^* such that $g(x^*) = x^*$

Root-finding reformulation: $g(x) = x - \alpha f(x)$

Fixed-Point Theorem

If g continuously differentiable on [a, b] with:

- $ightharpoonup g([a,b]) \subseteq [a,b]$
- $|g'(x)| \le L < 1$ for all $x \in [a, b]$

Then $x_{k+1} = g(x_k)$ converges linearly to unique fixed point.

Convergence order:

- ▶ If $g'(x^*) \neq 0$: Linear
- ▶ If $g'(x^*) = 0$: Quadratic

Newton's Method

Algorithm

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Equivalent to fixed-point with g(x) = x - f(x)/f'(x)

Convergence Theorem

For simple root x^* and x_0 sufficiently close:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{|f''(x^*)|}{2|f'(x^*)|}$$

Quadratic convergence when $f'(x^*) \neq 0$

Multiple roots: Linear convergence with rate (m-1)/m

Modified Newton: $x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$ restores quadratic convergence

Convergence Analysis

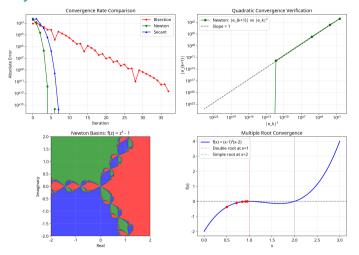


Figure: Detailed convergence behavior: error reduction rates, quadratic convergence verification, complex basin analysis, and multiple root challenges.

Secant Method

Motivation

Approximate derivative using finite differences:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Algorithm

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

Requires two initial guesses x_0 and x_1

Convergence

Superlinear convergence with order $p=rac{1+\sqrt{5}}{2}pprox 1.618$

Advantages: No derivative needed, superlinear convergence

Practical Implementation Issues

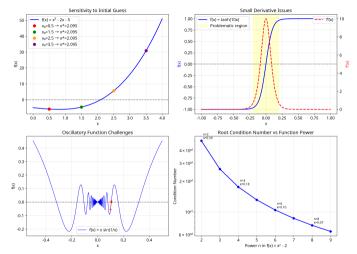


Figure: Real-world challenges: sensitivity to initial conditions, small derivative problems, oscillatory function difficulties, and condition number effects.

Method Selection Guidelines

Bisection Method

Use when: Robustness critical, derivative unavailable

Pros: Always converges, simple Cons: Slow, requires bracketing

Newton's Method

Use when: Fast convergence needed, derivative available

Pros: Quadratic convergence Cons: Requires good initial guess, may diverge

Secant Method

Use when: Derivative expensive, speed important

Pros: No derivative, superlinear convergence Cons: Two initial guesses, may fail near

extrema

Advanced Techniques

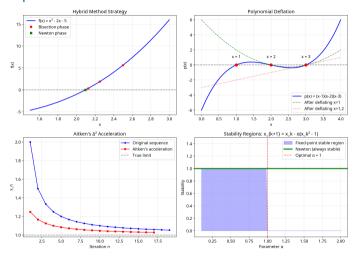


Figure: Sophisticated approaches: hybrid methods, polynomial deflation, Aitken acceleration, and stability analysis.

Error Analysis & Stopping Criteria

Multiple Stopping Conditions

- ▶ Absolute: $|x_{k+1} x_k| < \epsilon_{\mathsf{abs}}$
- **Proof** Relative: $\frac{|x_{k+1}-x_k|}{|x_k|} < \epsilon_{\mathsf{rel}}$
- ▶ Function: $|f(x_k)| < \epsilon_f$

Combined Criterion

$$|x_{k+1} - x_k| < \epsilon_{\mathsf{abs}} + \epsilon_{\mathsf{rel}} |x_k| \quad \mathsf{AND} \quad |f(x_k)| < \epsilon_f$$

Condition Number

$$\kappa = \frac{|x^*|}{|f'(x^*)|}$$

Large κ indicates sensitivity to perturbations

Computational Complexity

Cost per Iteration

- ▶ Bisection: 1 function evaluation
- ▶ **Newton**: 1 function + 1 derivative evaluation
- Secant: 1 function evaluation (after initialization)

Total Cost for Tolerance ϵ

- **Bisection**: $O(\log(1/\epsilon))$ function evaluations
- **Newton:** $O(\log \log(1/\epsilon))$ function + derivative evaluations
- ▶ **Secant**: $O(\log(1/\epsilon)^{0.618})$ function evaluations

Trade-off: Newton fastest when derivatives cheap, secant when derivatives expensive

Key Takeaways

- ► Method selection: Balance robustness vs speed
- **Convergence theory**: Higher order ⇒ faster convergence
- ► Initial conditions: Critical for open methods
- ► Hybrid approaches: Combine methods for optimal performance
- Error control: Multiple stopping criteria ensure reliability
- Condition numbers: Measure problem sensitivity

Next Lecture: Linear Algebra Foundations