Computer Arithmetic & Error Analysis

Lecture 2: Floating-Point Systems & Numerical Stability

Francisco Richter Mendoza

Università della Svizzera Italiana Faculty of Informatics Lugano, Switzerland

September 8, 2025

Lecture Overview

- ► Floating-Point Number Systems
 - ► IEEE 754 standard
 - Machine epsilon and precision limits
- ► Roundoff Error Analysis
 - Error accumulation in algorithms
 - Standard model of floating-point arithmetic
- ► Catastrophic Cancellation
 - Sources and examples
 - Avoidance strategies
- ► Numerical Stability
 - Forward vs backward error analysis
 - Algorithm design principles

Floating-Point Number System

Definition

A floating-point system $F(\beta, p, L, U)$ represents numbers as:

$$\pm d_0.d_1d_2...d_{p-1} \times \beta^e$$

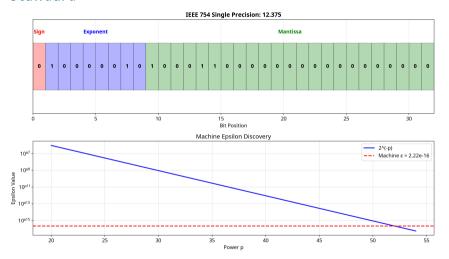
where:

- $\triangleright \beta$: base (typically 2)
- p: precision (significant digits)
- \triangleright [L, U]: exponent range
- $ightharpoonup d_0 \neq 0$ (normalized form)

Key Properties:

- ► Finite representation of real numbers
- Non-uniform spacing: spacing $pprox eta^{1-p}|x|$
- ► Relative precision is approximately constant

IEEE 754 Standard



- ▶ Single precision: 1 sign + 8 exponent + 23 mantissa bits
- ▶ Double precision: 1 sign + 11 exponent + 52 mantissa bits
- ▶ Machine epsilon: $\varepsilon_{mach} = 2^{-23} \approx 1.19 \times 10^{-7}$ (single)

Machine Epsilon

Definition (Machine Epsilon)

The machine epsilon ε_{mach} is the smallest positive number such that:

 $1 + \varepsilon_{mach} > 1$ in floating-point arithmetic

IEEE 754 Values:

Single precision:
$$\varepsilon_{mach} = 2^{-23} \approx 1.19 \times 10^{-7}$$
 (1)

Double precision:
$$\varepsilon_{mach} = 2^{-52} \approx 2.22 \times 10^{-16}$$
 (2)

Fundamental Guarantee:

$$fl(x) = x(1+\delta), \quad |\delta| \le \varepsilon_{mach}$$

Standard Model of Floating-Point Arithmetic

Theorem (IEEE 754 Arithmetic Model)

For floating-point numbers x, y and operation $o \in \{+, -, \times, \div\}$:

$$f(x \circ y) = (x \circ y)(1 + \delta), \quad |\delta| \le \varepsilon_{mach}$$

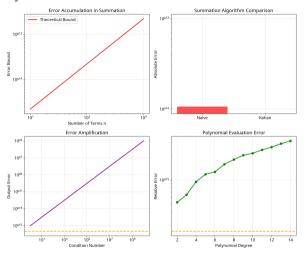
Implications:

- **Each** operation introduces relative error $\leq \varepsilon_{mach}$
- ► Errors accumulate through algorithm execution
- Need to analyze error propagation

Error Accumulation Example:

$$f(((x_1+x_2)+x_3)+\cdots+x_n) \text{ vs } \sum_{i=1}^n x_i$$

Roundoff Error Analysis



- ► Error accumulation grows with problem size
- ► Kahan summation reduces accumulated error
- ► Condition number amplifies input errors

Error Accumulation in Summation

Theorem (Summation Error Bound)

For floating-point summation $s_n = \sum_{i=1}^n x_i$:

$$|fl(s_n)-s_n|\leq \gamma_n\sum_{i=1}^n|x_i|$$

where
$$\gamma_n = \frac{n\varepsilon_{mach}}{1 - n\varepsilon_{mach}}$$
 for $n\varepsilon_{mach} < 1$.

Key Insights:

- Error bound grows linearly with n
- Relative error depends on data magnitude
- Algorithm order matters for accuracy

Catastrophic Cancellation

Definition (Catastrophic Cancellation)

Loss of precision when subtracting nearly equal floating-point numbers. If $x \approx y$ with p significant digits, then x - y may have $\ll p$ significant digits.

Classic Example:

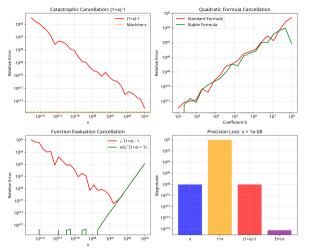
Unstable:
$$(1+x)-1$$
 for small x (3)

Stable:
$$x$$
 (4)

Error Amplification:

relative error in
$$(x - y)$$
 $\approx \frac{|x|}{|x - y|} \gg 1$

Catastrophic Cancellation Examples



- ► Function evaluation: $\sqrt{1+x} 1$ vs $\frac{x}{\sqrt{1+x}+1}$
- ▶ Quadratic formula: Standard vs numerically stable forms
- ▶ **Precision loss**: Dramatic error growth for small differences

Quadratic Formula: Stable Implementation

Problem: Solve $ax^2 + bx + c = 0$ when $b^2 \gg 4ac$

Standard Formula (Unstable):

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Stable Alternative:

$$x_1 = \frac{-2c}{b + \operatorname{sign}(b)\sqrt{b^2 - 4ac}}$$
$$x_2 = \frac{c}{-1}$$

$$x_2 = \frac{c}{ax_1} \tag{6}$$

Key Principle: Avoid subtracting nearly equal quantities

(5)

Forward vs Backward Error Analysis

Definition (Error Types)

For algorithm f computing $\tilde{y} = \tilde{f}(x)$:

- ▶ Forward Error: $||f(x) \tilde{f}(x)||$
- ▶ Backward Error: $\min\{\|\Delta x\| : f(x + \Delta x) = \tilde{f}(x)\}$

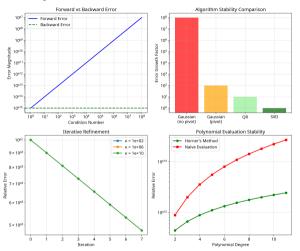
Relationship:

Forward Error $\leq \kappa(f) \times \mathsf{Backward}$ Error

where $\kappa(f)$ is the condition number.

Numerical Stability: Algorithm is stable if backward error is small.

Numerical Stability Analysis



- ► Error amplification depends on condition number
- ► Algorithm choice affects stability significantly
- ► Iterative refinement can improve accuracy

Algorithm Stability Comparison

Algorithm	Stability	Error Growth
Gaussian Elimination (no pivoting)	Unstable	$O(2^{n})$
Gaussian Elimination (partial pivoting)	Stable	$O(n^3)$
QR Factorization	Stable	O(n)
SVD	Very Stable	O(1)

Design Principles:

- Minimize operations on ill-conditioned quantities
- Use orthogonal transformations when possible
- ► Implement pivoting strategies
- ► Consider iterative refinement

Practical Guidelines for Numerical Stability

Algorithm Design:

- Avoid subtracting nearly equal numbers
- Use mathematically equivalent but numerically stable formulations
- Implement appropriate scaling and pivoting
- Consider higher precision for critical computations

Error Control Strategies:

- Monitor condition numbers
- Use iterative refinement
- Implement compensated summation (Kahan algorithm)
- Validate results with backward error analysis

Remember: Numerical stability is as important as mathematical correctness!

Key Takeaways

- 1. Floating-point arithmetic has fundamental limitations
 - Machine epsilon bounds relative precision
 - ► IEEE 754 provides standardized behavior
- 2. Error analysis is essential for reliable computation
 - Roundoff errors accumulate through algorithms
 - Condition numbers amplify input errors
- 3. Catastrophic cancellation must be avoided
 - Reformulate mathematically equivalent expressions
 - Use stable algorithms and implementations
- 4. Numerical stability guides algorithm design
 - Backward error analysis provides stability measures
 - Choose algorithms based on stability properties

Next Lecture: Nonlinear Equations and Root-Finding Methods