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Lecture Overview

▶ Floating-Point Number Systems
▶ IEEE 754 standard
▶ Machine epsilon and precision limits

▶ Roundo� Error Analysis
▶ Error accumulation in algorithms
▶ Standard model of �oating-point arithmetic

▶ Catastrophic Cancellation
▶ Sources and examples
▶ Avoidance strategies

▶ Numerical Stability
▶ Forward vs backward error analysis
▶ Algorithm design principles
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Floating-Point Number System

De�nition
A �oating-point system F (β, p, L,U) represents numbers as:

±d0.d1d2 . . . dp−1 × βe

where:

▶ β: base (typically 2)

▶ p: precision (signi�cant digits)

▶ [L,U]: exponent range

▶ d0 ̸= 0 (normalized form)

Key Properties:
▶ Finite representation of real numbers
▶ Non-uniform spacing: spacing ≈ β1−p|x |
▶ Relative precision is approximately constant
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IEEE 754 Standard

▶ Single precision: 1 sign + 8 exponent + 23 mantissa bits
▶ Double precision: 1 sign + 11 exponent + 52 mantissa bits
▶ Machine epsilon: εmach = 2−23 ≈ 1.19× 10−7 (single) 4 / 1



Machine Epsilon

De�nition (Machine Epsilon)

The machine epsilon εmach is the smallest positive number such that:

1+ εmach > 1 in �oating-point arithmetic

IEEE 754 Values:

Single precision: εmach = 2−23 ≈ 1.19× 10−7 (1)

Double precision: εmach = 2−52 ≈ 2.22× 10−16 (2)

Fundamental Guarantee:

�(x) = x(1+ δ), |δ| ≤ εmach
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Standard Model of Floating-Point Arithmetic

Theorem (IEEE 754 Arithmetic Model)

For �oating-point numbers x , y and operation ◦ ∈ {+,−,×,÷}:

�(x ◦ y) = (x ◦ y)(1+ δ), |δ| ≤ εmach

Implications:

▶ Each operation introduces relative error ≤ εmach

▶ Errors accumulate through algorithm execution

▶ Need to analyze error propagation

Error Accumulation Example:

�(((x1 + x2) + x3) + · · ·+ xn) vs
n∑

i=1

xi
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Roundo� Error Analysis

▶ Error accumulation grows with problem size
▶ Kahan summation reduces accumulated error
▶ Condition number ampli�es input errors 7 / 1



Error Accumulation in Summation

Theorem (Summation Error Bound)

For �oating-point summation sn =
∑n

i=1 xi :

|�(sn)− sn| ≤ γn

n∑
i=1

|xi |

where γn = nεmach
1−nεmach

for nεmach < 1.

Key Insights:

▶ Error bound grows linearly with n

▶ Relative error depends on data magnitude

▶ Algorithm order matters for accuracy
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Catastrophic Cancellation

De�nition (Catastrophic Cancellation)

Loss of precision when subtracting nearly equal �oating-point numbers.

If x ≈ y with p signi�cant digits, then x − y may have ≪ p signi�cant digits.

Classic Example:

Unstable: (1+ x)− 1 for small x (3)

Stable: x (4)

Error Ampli�cation:

relative error in (x − y)

relative error in x , y
≈ |x |

|x − y |
≫ 1
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Catastrophic Cancellation Examples

▶ Function evaluation:
√
1+ x − 1 vs x√

1+x+1
▶ Quadratic formula: Standard vs numerically stable forms
▶ Precision loss: Dramatic error growth for small di�erences 10 / 1



Quadratic Formula: Stable Implementation

Problem: Solve ax2 + bx + c = 0 when b2 ≫ 4ac

Standard Formula (Unstable):

x1,2 =
−b ±

√
b2 − 4ac

2a

Stable Alternative:

x1 =
−2c

b + sign(b)
√
b2 − 4ac

(5)

x2 =
c

ax1
(6)

Key Principle: Avoid subtracting nearly equal quantities
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Forward vs Backward Error Analysis

De�nition (Error Types)

For algorithm f computing ỹ = f̃ (x):

▶ Forward Error: ∥f (x)− f̃ (x)∥
▶ Backward Error: min{∥∆x∥ : f (x +∆x) = f̃ (x)}

Relationship:
Forward Error ≤ κ(f )× Backward Error

where κ(f ) is the condition number.

Numerical Stability: Algorithm is stable if backward error is small.
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Numerical Stability Analysis

▶ Error ampli�cation depends on condition number
▶ Algorithm choice a�ects stability signi�cantly
▶ Iterative re�nement can improve accuracy 13 / 1



Algorithm Stability Comparison

Algorithm Stability Error Growth

Gaussian Elimination (no pivoting) Unstable O(2n)
Gaussian Elimination (partial pivoting) Stable O(n3)
QR Factorization Stable O(n)
SVD Very Stable O(1)

Design Principles:

▶ Minimize operations on ill-conditioned quantities

▶ Use orthogonal transformations when possible

▶ Implement pivoting strategies

▶ Consider iterative re�nement
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Practical Guidelines for Numerical Stability

Algorithm Design:

▶ Avoid subtracting nearly equal numbers

▶ Use mathematically equivalent but numerically stable formulations

▶ Implement appropriate scaling and pivoting

▶ Consider higher precision for critical computations

Error Control Strategies:

▶ Monitor condition numbers

▶ Use iterative re�nement

▶ Implement compensated summation (Kahan algorithm)

▶ Validate results with backward error analysis

Remember: Numerical stability is as important as mathematical correctness!
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Key Takeaways

1. Floating-point arithmetic has fundamental limitations
▶ Machine epsilon bounds relative precision
▶ IEEE 754 provides standardized behavior

2. Error analysis is essential for reliable computation
▶ Roundo� errors accumulate through algorithms
▶ Condition numbers amplify input errors

3. Catastrophic cancellation must be avoided
▶ Reformulate mathematically equivalent expressions
▶ Use stable algorithms and implementations

4. Numerical stability guides algorithm design
▶ Backward error analysis provides stability measures
▶ Choose algorithms based on stability properties

Next Lecture: Nonlinear Equations and Root-Finding Methods
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