Numerical Computing — Week 2 1

Week #2: Computer Arithmetic and Error Analysis

Universita della Svizzera Italiana

Francisco Richter Mendoza
Faculty of Informatics, Lugano, Switzerland

September 10, 2025

Overview

Computer arithmetic forms the foundation of all numerical computations, yet its finite precision
introduces subtle complexities that can dramatically affect algorithm behavior. This week we explore
the mathematical principles of floating-point representation and analyze how roundoff errors arise,
propagate, and can be mitigated through careful algorithm design.

The gap between continuous mathematics and discrete computation creates fundamental challenges
that cannot be eliminated, only managed. We develop rigorous error bounds that quantify the
limitations of finite-precision arithmetic and provide theoretical guarantees for numerical algorithms.
These insights guide the development of numerically stable methods that maintain accuracy despite
the inherent limitations of computer arithmetic.

Our approach emphasizes both theoretical understanding and practical implications, connecting
abstract mathematical concepts to concrete computational considerations that affect all numerical
methods.

1 Floating-Point Number Systems
1.1 Mathematical Representation

Definition. Floating-Point Number System
A floating-point number system F'(f3,p, L,U) is characterized by:

o Base (3 (typically 2)
o Precision p (number of significant digits)
« Exponent range [L, U]
Numbers in this system have the form:
+dy.didy ... dp—1 x B°

where dy # 0 (normalized form), 0 < d; < 8, and L <e <U.

Numerical Computing — Week 2 2

IEEE 754 Single Precision: 12.375

Sign Exponent Mantissa

0 5 10 15 20 25 30
Bit Position

Machine Epsilon Discovery

) — 2°(-p)
10 4 ==+ Machine € = 2.22e-16

10 {

107114

Epsilon Value

1073 |

10915 4

20 25 30 35 40 45 50 55
Power p

Figure 1: IEEE 754 floating-point representation and machine epsilon discovery. The top panel shows
the bit layout for single precision (32-bit) format with sign, exponent, and mantissa fields clearly
annotated. The bottom panel demonstrates machine epsilon as the transition point where 14+ ¢ > 1 in
floating-point arithmetic, showing the fundamental precision limit of computer arithmetic.

Theorem 1.1 (Properties of Floating-Point Systems). For a floating-point system F(5,p, L,U):
1. The smallest positive normalized number is B~
2. The largest finite number is (8 — B~P+1) x gV
3. The spacing between consecutive numbers near x is approzimately 3P |z|

4. The total number of representable finite numbers is 2(8 — 1)pP~ (Y=L — 1) + 1

1.2 IEEE 754 Standard

Definition. IEEE 754 Standard

The IEEE 754 standard defines:
o Single precision (32-bit): 1 sign bit, 8 exponent bits, 23 mantissa bits
o Double precision (64-bit): 1 sign bit, 11 exponent bits, 52 mantissa bits
» Special values: £0, £oo, NaN (Not a Number)

e Rounding modes: Round to nearest (default), round toward 0, round toward +oo, round
toward —oo

Example 1.1 (IEEE 754 Representation). For single precision (32-bit):
e Fxponent bias: 127
o Exponent range: [—126,127]
o Machine epsilon: emgen = 2723 ~ 1.19 x 1077

e Smallest positive normalized number: 27126 =~ 1.18 x 10738

Numerical Computing — Week 2 3

o Largest finite number: (2 —2723) x 2127 x 3.40 x 1038
Theorem 1.2 (IEEE 754 Guarantees). The IEEE 754 standard guarantees:

1. If x is a real number in the representable range, and fl(x) is its floating-point representation,
then:
fl(.CC) =QL‘(1—|—5), ’6‘ < €mach

2. For basic arithmetic operations o € {4, —, x,=+}:
fl(l‘oy):(l'Oy)(l—i-CS), ‘5| < €mach
3. Gradual underflow through denormalized numbers

4. Consistent handling of special cases

Intuition: Understanding floating-point precision

Floating-point numbers have non-uniform spacing throughout the real line:

 Near zero, numbers are closely spaced (spacing =~ 2749 for single precision)

As magnitude increases, spacing increases proportionally (spacing near z is & €,,4ch - |7])

o This relative precision is what makes floating-point arithmetic useful for scientific compu-
tation

The "machine epsilon" represents the fundamental limit of relative precision

Think of floating-point numbers as having a fixed number of significant digits, regardless of
magnitude.

2 Roundoff Error Analysis

2.1 Basic Error Bounds

Definition. Machine Epsilon

The machine epsilon &,,4c, 18 the smallest positive number such that 1 + €,,4., > 1 in floating-point

arithmetic.
For IEEE 754:

« Single precision: €pacn = 2723 ~ 1.19 x 1077

 Double precision: eqen = 27°% & 2.22 x 10716

Theorem 2.1 (Standard Model of Floating-Point Arithmetic). For floating-point numbers x and y
and operation o € {+,—, X, +}:

fllzoy)=(woy)(1+6), [0]<emach
This model assumes that the exact result of the operation is within the representable range.

Theorem 2.2 (Error Accumulation in Summation). For the floating-point summation of n numbers

n .
S?’l - i=1 xz
n

|fl(sn) - Snl < Tn Z |xz|

=1

ne.
where v, = m@fﬁ*ﬂ; for nemaen < 1.

Numerical Computing — Week 2 4

Proof sketch. By induction on n. For n = 2:
fl(z1 +22) = (21 +22)(1 +01), |01] < €mach
For n > 2, assuming the result holds for n — 1:

fl(sn) = fU(fl(sn—-1) + 2n) = (fl(sn—1) + zn)(1 +)

Substituting the induction hypothesis and simplifying gives the result. O
Error Accumulation in Summation Summation Algorithm Comparison
—— Theoretical Bound 10713+

10!:(13 4
o 5
= =
g w
@ s
u 3
8 [<]
frr 3

10!114 4 <<

]
101 102 10° Naive Kahan
Number of Terms n
Error Amplification Polynomial Evaluation Error

1075 4

10n7 4
5 109 g
ut_j usj 101115 4
= 0)
A =
£ 107
3 E

10:(13 4

10)115 4

10' 103 10° 107 10° 2 4 6 8 10 12 14
Condition Number Polynomial Degree

Figure 2: Roundoff error accumulation analysis. Top left: theoretical error bounds for summation
grow linearly with the number of terms. Top right: Kahan summation algorithm significantly reduces
accumulated error compared to naive summation. Bottom left: condition number amplifies input
errors, with well-conditioned problems (

kappa < 10°%) maintaining accuracy while ill-conditioned problems (

kappa > 10'9) suffer severe error amplification. Bottom right: polynomial evaluation using Horner’s
method shows linear error growth with degree, demonstrating the importance of stable algorithms.

2.2 Catastrophic Cancellation

Definition. Catastrophic Cancellation

Catastrophic cancellation occurs when subtracting nearly equal floating-point numbers, resulting in a
significant loss of precision.

If z and y have p significant digits and |z —y| < |z|, then z —y may have far fewer than p significant
digits.

Numerical Computing — Week 2)

Example 2.1 (Catastrophic Cancellation). Consider computing \/x + 1 — 1 for small x:
Direct computation: For x = 10716 in double precision:

V1410716 ~ 1.0000000000000000 (1)
V1410716 — 1 =~ 0.0000000000000000 (2)

All significant digits are lost.
Algebraic reformulation:

WVr+1-1D)(Wr+1+1))
VrF+i+1

IVZES RS

ve+1l—-1=

For x = 10716
10—16
1+1:5><10 17 (5)
This preserves accuracy.
Catastrophic Cancellation: (1+x)-1 100 Quadratic Formula Cancellation
— (1+x)-1 —— Standard Formula
1072 4 Machine € s Stable Formula
107
10:14_
L 1076 .
o o
E E 10116_
2 10 2
© B
& qqu04 g 109
10n12_ 10u10_
10714 4 10712 4
10714 1072 {00 10 106 0% 107 102 102 104 10° 106 107 108
X Coefficient b
Function Evaluation Cancellation Precision Loss: x = 1e-08
10714 — 1)1 10%1
— X/ (1+x) + 1)
1073 4 1072 4
107 4 1074 4
— 10:16,
S 7
2 109 o
i 3 .
v = 1078 4
2 10% 5
< ©
& = qon104
101111,
10:112_
101113.
10514_
10:(15_
101116_
I N o AN o A S —
1014 1012 1010 108 106 107 102 X T+x (1+x)-1 Error

X

Figure 3: Catastrophic cancellation demonstrations. Top left: computing (14 x) — 1 for small = shows
dramatic precision loss as x decreases. Top right: quadratic formula comparison shows the standard
formula becomes unstable for large b coefficients, while the numerically stable alternative maintains
accuracy. Bottom left: function evaluation of /1 + 2 — 1 demonstrates how algebraic reformulation
can eliminate cancellation errors. Bottom right: precision loss visualization shows how intermediate
computations can destroy significant digits.

Numerical Computing — Week 2 6

Theorem 2.3 (Cancellation Error Bound). When computing x — y where x and y are approrimate
values with relative errors e, and €y:

’(‘T B y) B (xeacact - yexact)| ~ |:L'€$ B y€y|
|$e:cact - yea:act| |x - y|

If v =y and e; = €, = €, this becomes:

’x_y’error - ’.%"6
~~
|z —y| [z -yl

Intuition: Why cancellation is catastrophic

Floating-point numbers store a fixed number of significant digits, with the decimal point "floating"
to represent a wide range of magnitudes.
When subtracting nearly equal numbers:

e The leading digits cancel out
e The result depends on the least significant digits

These least significant digits contain the most roundoff error

The relative error in the result can be magnified dramatically

This is why algorithms should be designed to avoid subtracting nearly equal quantities whenever
possible.

3 Numerical Stability Analysis

3.1 Forward and Backward Error

Definition. Forward and Backward Error in Floating-Point

For a mathematical operation f and its floating-point implementation fI(f):
Forward Error: |f(x) — fI(f)(x)]
Backward Error: min{|Az|: f(z + Az) = fI(f)(x)}

Theorem 3.1 (Backward Error Analysis). For basic floating-point operations:
o Addition/subtraction: fl(x +y) = (x £ y)(1+48) for some |0 < €mach
o Multiplication: fl(x x y) = (z X y)(1 4 6) for some || < emach
o Division: fl(x +y) = (x +y)(1+0) for some |0] < emach
These operations produce the exact result for slightly perturbed inputs.

Example 3.1 (Forward vs. Backward Error). Consider computing y = 2% where x = 3.14159 is
rounded to & = 3.14.
Forward error: |z — #2| = |9.86959 — 9.8596| ~ 0.01
Backward error: Find Az such that (v + Ar)? = 22 Az = # — z = 3.14 — 3.14159 ~ —0.00159
The backward error is much smaller than the forward error.

Numerical Computing — Week 2 7

Forward vs Backward Error Algorithm Stability Comparison
1073 —— Forward Error 108
===+ Backward Error
108 4 107 4
10%° 4 106 1
% 10 '8 S5
E 10719 4 K 10° 5
c <
8 1041 £ 1044
= °
o G}
ugJ 10712 4 § 103 4
v}
1 01113 4 1 02 4
1 0)114 4 1 01 4
104 10° |
10 10" 102 10® 10* 10° 105 107 108 Gaussian Gaussian QR SVD
Condition Number (no pivot) (pivot)
Iterative Refinement Polynomial Evaluation Stabilit;
y y
1072+ —e— Kk=1e+02 —e— Horner's Method
—0— k=1e+06 —#— Naive Evaluation
9x 104 —o— k=1e+10
10)114 4
8x 105
g s
0 7x10% v
= =
© K
& &
6x 104
10u15 4
5x 104
0 1 2 3 4 5 6 7 2 4 6 8 10
Iteration Polynomial Degree

Figure 4: Numerical stability analysis. Top left: forward error amplification shows how condition
numbers multiply backward errors to produce forward errors. Top right: algorithm stability comparison
demonstrates that SVD and QR factorization are more stable than Gaussian elimination without
pivoting. Bottom left: iterative refinement can improve accuracy for well-conditioned problems but
fails for severely ill-conditioned systems. Bottom right: polynomial evaluation stability comparison
shows Horner’s method provides better numerical stability than naive evaluation.

3.2 Stability of Numerical Algorithms

Definition. Numerical Stability

An algorithm is numerically stable if the computed solution is the exact solution to a nearby
problem.

More precisely, an algorithm for solving f(x) = y is stable if for computed solution ¢, there exists
Z with ||Z — z|| = O(emacn) such that f(z) = g.

Theorem 3.2 (Stability and Condition Numbers). For a stable algorithm solving f(z) = y:

I -yl |
||y|| S K(f) O(Smach)

where k(f) is the condition number of the problem.
Example 3.2 (Algorithm Stability Comparison). For solving linear systems Ax = b:
o Gaussian elimination (no pivoting): Can be unstable, error growth O(2")

o Gaussian elimination (partial pivoting): Stable in practice, error growth O(n3)

Numerical Computing — Week 2 8

e QR factorization: Stable, error growth O(n)
o SVD: Very stable, error growth O(1)

4 Practical Implementation Considerations

4.1 Kahan Summation Algorithm

The Kahan summation algorithm provides a method to reduce error accumulation in floating-point
summation:

Listing 1: Kahan Summation Algorithm

def kahan_sum(numbers) :
"""Kahan summation for improved accuracy"""
sum_val = 0.0
c = 0.0 # Compensation for lost low-order bits

LS L N I

6 for num in numbers:

7 y = num - C # Subtract previous compensation
8 t = sum_val + y # Add to running sum

9 c = (t - sum_val) - y # Compute new compensation
10 sum_val = t # Update sum

11

12 return sum_val

Theorem 4.1 (Kahan Summation Error Bound). For Kahan summation of n numbers, the error
bound is:

|fl(3n) - Sn’ S 2Emach Z ’xz‘ + O(ngizach)
i=1

This is significantly better than the O(nepmqcen) bound for naive summation.

4.2 Stable Quadratic Formula
For solving az? + bx 4 ¢ = 0 when b% >> 4ac:

Listing 2: Stable Quadratic Formula Implementation

import math

1

2

3 |def stable_quadratic(a, b, c):

4 """Numerically stable quadratic formula"""
5 discriminant = b*b - 4*ax*c

7 if discriminant < O:
8 return None # No real roots

10 sqrt_disc = math.sqrt(discriminant)
12 # Choose formula to avoid cancellation

13 if b >= 0:
14 rootl = (-b - sqrt_disc) / (2xa)

15 root2 = (2xc) / (-b - sqrt_disc)
16 else:

17 rootl = (-b + sqrt_disc) / (2xa)
18 root2 = (2*c) / (-b + sqrt_disc)

20 return rootl, root2

Numerical Computing — Week 2

5 Educational Demonstrations

5.1 Machine Epsilon Discovery

Listing 3: Machine Epsilon Discovery

def discover_machine_epsilon():
"""Discover machine epsilon experimentally"""
eps = 1.0
while 1.0 + eps/2 > 1.0:

5 eps = eps / 2

BWw N =

7 print (f"Discovered machine epsilon: {eps}")

8 print (£"NumPy machine epsilon: {np.finfo(float).eps}")
9 print (f"1 + eps/2 == 1: {1.0 + eps/2 == 1.0}")
10 print(£f"1 + eps == 1: {1.0 + eps == 1.0}")

11

12 return eps

5.2 Catastrophic Cancellation Example

Listing 4: Catastrophic Cancellation Demonstration

I |def cancellation_example():
2 """Demonstrate catastrophic cancellation"""
x = le-15

5 # Unstable computation
6 unstable = (1 + x) - 1

8 # Stable computation
9 stable = x

11 print (f"x = {x}")

12 print (f"Unstable (1+x)-1 = {unstablel}")

13 print (f"Stable x = {stablel}")

14 print (f"Relative error: {abs(unstable - stable) / stable:.2el}")

6 Practice Problems

Practice Problems

1. IEEE 754 Analysis: Convert the decimal number 12.375 to IEEE 754 single precision
format. Show the binary representation and verify the conversion.

2. Error Accumulation: Analyze the error accumulation when computing 232‘10% using
floating-point arithmetic. Compare forward and backward summation.

sin(z)—xz
=

3. Catastrophic Cancellation: For the function f(z) =
numerically stable implementation using Taylor series.

near x = 0, derive a

1 1
1 1+¢
the condition number and analyze how errors in b affect the solution of Az = b.

4. Condition Number Analysis: For the matrix A = where ¢ is small, compute

5. Algorithm Stability: Compare the numerical stability of computing e* — 1 for small x

Q g a . . a__] Paw__
using direct evaluation versus the mathematically equivalent form “ L. izﬂ =% +11.

	Floating-Point Number Systems
	Mathematical Representation
	IEEE 754 Standard

	Roundoff Error Analysis
	Basic Error Bounds
	Catastrophic Cancellation

	Numerical Stability Analysis
	Forward and Backward Error
	Stability of Numerical Algorithms

	Practical Implementation Considerations
	Kahan Summation Algorithm
	Stable Quadratic Formula

	Educational Demonstrations
	Machine Epsilon Discovery
	Catastrophic Cancellation Example

	Practice Problems

