
Numerical Computing – Week 2 1

Week #2: Computer Arithmetic and Error Analysis
Università della Svizzera Italiana

Francisco Richter Mendoza
Faculty of Informatics, Lugano, Switzerland

September 10, 2025

Overview
Computer arithmetic forms the foundation of all numerical computations, yet its finite precision
introduces subtle complexities that can dramatically affect algorithm behavior. This week we explore
the mathematical principles of floating-point representation and analyze how roundoff errors arise,
propagate, and can be mitigated through careful algorithm design.

The gap between continuous mathematics and discrete computation creates fundamental challenges
that cannot be eliminated, only managed. We develop rigorous error bounds that quantify the
limitations of finite-precision arithmetic and provide theoretical guarantees for numerical algorithms.
These insights guide the development of numerically stable methods that maintain accuracy despite
the inherent limitations of computer arithmetic.

Our approach emphasizes both theoretical understanding and practical implications, connecting
abstract mathematical concepts to concrete computational considerations that affect all numerical
methods.

1 Floating-Point Number Systems

1.1 Mathematical Representation

Definition. Floating-Point Number System
A floating-point number system F (β, p, L, U) is characterized by:

• Base β (typically 2)

• Precision p (number of significant digits)

• Exponent range [L, U]

Numbers in this system have the form:

±d0.d1d2 . . . dp−1 × βe

where d0 ̸= 0 (normalized form), 0 ≤ di < β, and L ≤ e ≤ U .

Numerical Computing – Week 2 2

Figure 1: IEEE 754 floating-point representation and machine epsilon discovery. The top panel shows
the bit layout for single precision (32-bit) format with sign, exponent, and mantissa fields clearly
annotated. The bottom panel demonstrates machine epsilon as the transition point where 1 + ε > 1 in
floating-point arithmetic, showing the fundamental precision limit of computer arithmetic.

Theorem 1.1 (Properties of Floating-Point Systems). For a floating-point system F (β, p, L, U):

1. The smallest positive normalized number is βL

2. The largest finite number is (β − β−p+1) × βU

3. The spacing between consecutive numbers near x is approximately β1−p|x|

4. The total number of representable finite numbers is 2(β − 1)βp−1(βU−L+1 − 1) + 1

1.2 IEEE 754 Standard

Definition. IEEE 754 Standard
The IEEE 754 standard defines:

• Single precision (32-bit): 1 sign bit, 8 exponent bits, 23 mantissa bits

• Double precision (64-bit): 1 sign bit, 11 exponent bits, 52 mantissa bits

• Special values: ±0, ±∞, NaN (Not a Number)

• Rounding modes: Round to nearest (default), round toward 0, round toward +∞, round
toward −∞

Example 1.1 (IEEE 754 Representation). For single precision (32-bit):

• Exponent bias: 127

• Exponent range: [−126, 127]

• Machine epsilon: εmach = 2−23 ≈ 1.19 × 10−7

• Smallest positive normalized number: 2−126 ≈ 1.18 × 10−38

Numerical Computing – Week 2 3

• Largest finite number: (2 − 2−23) × 2127 ≈ 3.40 × 1038

Theorem 1.2 (IEEE 754 Guarantees). The IEEE 754 standard guarantees:

1. If x is a real number in the representable range, and fl(x) is its floating-point representation,
then:

fl(x) = x(1 + δ), |δ| ≤ εmach

2. For basic arithmetic operations ◦ ∈ {+, −, ×, ÷}:

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ εmach

3. Gradual underflow through denormalized numbers

4. Consistent handling of special cases

Intuition: Understanding floating-point precision

Floating-point numbers have non-uniform spacing throughout the real line:

• Near zero, numbers are closely spaced (spacing ≈ 2−149 for single precision)

• As magnitude increases, spacing increases proportionally (spacing near x is ≈ εmach · |x|)

• This relative precision is what makes floating-point arithmetic useful for scientific compu-
tation

• The "machine epsilon" represents the fundamental limit of relative precision

Think of floating-point numbers as having a fixed number of significant digits, regardless of
magnitude.

2 Roundoff Error Analysis

2.1 Basic Error Bounds

Definition. Machine Epsilon
The machine epsilon εmach is the smallest positive number such that 1 + εmach > 1 in floating-point
arithmetic.

For IEEE 754:

• Single precision: εmach = 2−23 ≈ 1.19 × 10−7

• Double precision: εmach = 2−52 ≈ 2.22 × 10−16

Theorem 2.1 (Standard Model of Floating-Point Arithmetic). For floating-point numbers x and y
and operation ◦ ∈ {+, −, ×, ÷}:

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ εmach

This model assumes that the exact result of the operation is within the representable range.

Theorem 2.2 (Error Accumulation in Summation). For the floating-point summation of n numbers
sn = ∑n

i=1 xi:

|fl(sn) − sn| ≤ γn

n∑
i=1

|xi|

where γn = nεmach
1−nεmach

for nεmach < 1.

Numerical Computing – Week 2 4

Proof sketch. By induction on n. For n = 2:

fl(x1 + x2) = (x1 + x2)(1 + δ1), |δ1| ≤ εmach

For n > 2, assuming the result holds for n − 1:

fl(sn) = fl(fl(sn−1) + xn) = (fl(sn−1) + xn)(1 + δn)

Substituting the induction hypothesis and simplifying gives the result.

Figure 2: Roundoff error accumulation analysis. Top left: theoretical error bounds for summation
grow linearly with the number of terms. Top right: Kahan summation algorithm significantly reduces
accumulated error compared to naive summation. Bottom left: condition number amplifies input
errors, with well-conditioned problems (
kappa < 106) maintaining accuracy while ill-conditioned problems (
kappa > 1010) suffer severe error amplification. Bottom right: polynomial evaluation using Horner’s
method shows linear error growth with degree, demonstrating the importance of stable algorithms.

2.2 Catastrophic Cancellation

Definition. Catastrophic Cancellation
Catastrophic cancellation occurs when subtracting nearly equal floating-point numbers, resulting in a
significant loss of precision.

If x and y have p significant digits and |x−y| ≪ |x|, then x−y may have far fewer than p significant
digits.

Numerical Computing – Week 2 5

Example 2.1 (Catastrophic Cancellation). Consider computing
√

x + 1 − 1 for small x:
Direct computation: For x = 10−16 in double precision:√

1 + 10−16 ≈ 1.0000000000000000 (1)√
1 + 10−16 − 1 ≈ 0.0000000000000000 (2)

All significant digits are lost.
Algebraic reformulation:

√
x + 1 − 1 = (

√
x + 1 − 1)(

√
x + 1 + 1)√

x + 1 + 1
(3)

= x√
x + 1 + 1

(4)

For x = 10−16:

10−16

1 + 1 = 5 × 10−17 (5)

This preserves accuracy.

Figure 3: Catastrophic cancellation demonstrations. Top left: computing (1 + x) − 1 for small x shows
dramatic precision loss as x decreases. Top right: quadratic formula comparison shows the standard
formula becomes unstable for large b coefficients, while the numerically stable alternative maintains
accuracy. Bottom left: function evaluation of

√
1 + x − 1 demonstrates how algebraic reformulation

can eliminate cancellation errors. Bottom right: precision loss visualization shows how intermediate
computations can destroy significant digits.

Numerical Computing – Week 2 6

Theorem 2.3 (Cancellation Error Bound). When computing x − y where x and y are approximate
values with relative errors ϵx and ϵy:

|(x − y) − (xexact − yexact)|
|xexact − yexact|

≈ |xϵx − yϵy|
|x − y|

If x ≈ y and ϵx ≈ ϵy ≈ ϵ, this becomes:

|x − y|error

|x − y|
≈ |x|ϵ

|x − y|
≫ ϵ

Intuition: Why cancellation is catastrophic

Floating-point numbers store a fixed number of significant digits, with the decimal point "floating"
to represent a wide range of magnitudes.
When subtracting nearly equal numbers:

• The leading digits cancel out

• The result depends on the least significant digits

• These least significant digits contain the most roundoff error

• The relative error in the result can be magnified dramatically

This is why algorithms should be designed to avoid subtracting nearly equal quantities whenever
possible.

3 Numerical Stability Analysis

3.1 Forward and Backward Error

Definition. Forward and Backward Error in Floating-Point
For a mathematical operation f and its floating-point implementation fl(f):

Forward Error: |f(x) − fl(f)(x)|
Backward Error: min{|∆x| : f(x + ∆x) = fl(f)(x)}

Theorem 3.1 (Backward Error Analysis). For basic floating-point operations:

• Addition/subtraction: fl(x ± y) = (x ± y)(1 + δ) for some |δ| ≤ εmach

• Multiplication: fl(x × y) = (x × y)(1 + δ) for some |δ| ≤ εmach

• Division: fl(x ÷ y) = (x ÷ y)(1 + δ) for some |δ| ≤ εmach

These operations produce the exact result for slightly perturbed inputs.

Example 3.1 (Forward vs. Backward Error). Consider computing y = x2 where x = 3.14159 is
rounded to x̂ = 3.14.

Forward error: |x2 − x̂2| = |9.86959 − 9.8596| ≈ 0.01
Backward error: Find ∆x such that (x + ∆x)2 = x̂2 ∆x = x̂ − x = 3.14 − 3.14159 ≈ −0.00159
The backward error is much smaller than the forward error.

Numerical Computing – Week 2 7

Figure 4: Numerical stability analysis. Top left: forward error amplification shows how condition
numbers multiply backward errors to produce forward errors. Top right: algorithm stability comparison
demonstrates that SVD and QR factorization are more stable than Gaussian elimination without
pivoting. Bottom left: iterative refinement can improve accuracy for well-conditioned problems but
fails for severely ill-conditioned systems. Bottom right: polynomial evaluation stability comparison
shows Horner’s method provides better numerical stability than naive evaluation.

3.2 Stability of Numerical Algorithms

Definition. Numerical Stability
An algorithm is numerically stable if the computed solution is the exact solution to a nearby
problem.

More precisely, an algorithm for solving f(x) = y is stable if for computed solution ỹ, there exists
x̃ with ∥x̃ − x∥ = O(εmach) such that f(x̃) = ỹ.

Theorem 3.2 (Stability and Condition Numbers). For a stable algorithm solving f(x) = y:

∥ỹ − y∥
∥y∥

≤ κ(f) · O(εmach)

where κ(f) is the condition number of the problem.

Example 3.2 (Algorithm Stability Comparison). For solving linear systems Ax = b:

• Gaussian elimination (no pivoting): Can be unstable, error growth O(2n)

• Gaussian elimination (partial pivoting): Stable in practice, error growth O(n3)

Numerical Computing – Week 2 8

• QR factorization: Stable, error growth O(n)

• SVD: Very stable, error growth O(1)

4 Practical Implementation Considerations

4.1 Kahan Summation Algorithm

The Kahan summation algorithm provides a method to reduce error accumulation in floating-point
summation:

Listing 1: Kahan Summation Algorithm
1 def kahan_sum (numbers):
2 """Kahan summation for improved accuracy """
3 sum_val = 0.0
4 c = 0.0 # Compensation for lost low -order bits
5

6 for num in numbers :
7 y = num - c # Subtract previous compensation
8 t = sum_val + y # Add to running sum
9 c = (t - sum_val) - y # Compute new compensation

10 sum_val = t # Update sum
11

12 return sum_val

Theorem 4.1 (Kahan Summation Error Bound). For Kahan summation of n numbers, the error
bound is:

|fl(sn) − sn| ≤ 2εmach

n∑
i=1

|xi| + O(nε2
mach)

This is significantly better than the O(nεmach) bound for naive summation.

4.2 Stable Quadratic Formula

For solving ax2 + bx + c = 0 when b2 ≫ 4ac:

Listing 2: Stable Quadratic Formula Implementation
1 import math
2

3 def stable_quadratic (a, b, c):
4 """ Numerically stable quadratic formula """
5 discriminant = b*b - 4*a*c
6

7 if discriminant < 0:
8 return None # No real roots
9

10 sqrt_disc = math.sqrt(discriminant)
11

12 # Choose formula to avoid cancellation
13 if b >= 0:
14 root1 = (-b - sqrt_disc) / (2*a)
15 root2 = (2*c) / (-b - sqrt_disc)
16 else:
17 root1 = (-b + sqrt_disc) / (2*a)
18 root2 = (2*c) / (-b + sqrt_disc)
19

20 return root1 , root2

Numerical Computing – Week 2 9

5 Educational Demonstrations

5.1 Machine Epsilon Discovery

Listing 3: Machine Epsilon Discovery
1 def discover_machine_epsilon ():
2 """ Discover machine epsilon experimentally """
3 eps = 1.0
4 while 1.0 + eps /2 > 1.0:
5 eps = eps / 2
6

7 print(f" Discovered machine epsilon : {eps}")
8 print(f"NumPy machine epsilon : {np.finfo(float).eps}")
9 print(f"1 + eps /2 == 1: {1.0 + eps /2 == 1.0}")

10 print(f"1 + eps == 1: {1.0 + eps == 1.0}")
11

12 return eps

5.2 Catastrophic Cancellation Example

Listing 4: Catastrophic Cancellation Demonstration
1 def cancellation_example ():
2 """ Demonstrate catastrophic cancellation """
3 x = 1e -15
4

5 # Unstable computation
6 unstable = (1 + x) - 1
7

8 # Stable computation
9 stable = x

10

11 print(f"x = {x}")
12 print(f" Unstable (1+x) -1 = { unstable }")
13 print(f" Stable x = { stable }")
14 print(f" Relative error: {abs(unstable - stable) / stable :.2e}")

6 Practice Problems
Practice Problems

1. IEEE 754 Analysis: Convert the decimal number 12.375 to IEEE 754 single precision
format. Show the binary representation and verify the conversion.

2. Error Accumulation: Analyze the error accumulation when computing ∑1000
i=1

1
i using

floating-point arithmetic. Compare forward and backward summation.

3. Catastrophic Cancellation: For the function f(x) = sin(x)−x
x3 near x = 0, derive a

numerically stable implementation using Taylor series.

4. Condition Number Analysis: For the matrix A =
(

1 1
1 1 + ε

)
where ε is small, compute

the condition number and analyze how errors in b affect the solution of Ax = b.

5. Algorithm Stability: Compare the numerical stability of computing ex − 1 for small x
using direct evaluation versus the mathematically equivalent form ex−1

1 · ex+1
ex+1 = e2x−1

ex+1 .

	Floating-Point Number Systems
	Mathematical Representation
	IEEE 754 Standard

	Roundoff Error Analysis
	Basic Error Bounds
	Catastrophic Cancellation

	Numerical Stability Analysis
	Forward and Backward Error
	Stability of Numerical Algorithms

	Practical Implementation Considerations
	Kahan Summation Algorithm
	Stable Quadratic Formula

	Educational Demonstrations
	Machine Epsilon Discovery
	Catastrophic Cancellation Example

	Practice Problems

