
Numerical Computing

Lecture 1: Introduction & Foundations

Francisco Richter Mendoza

Università della Svizzera Italiana (USI)
Faculty of Informatics

Lugano, Switzerland

1 / 16

Today's Topics

▶ Well-posed problems

▶ Sources of error

▶ Stability & conditioning

▶ Computational complexity

▶ Educational demonstrations

2 / 16

Well-Posed Problems

De�nition (Hadamard)

A problem is well-posed if:

1. Existence: Solution exists

2. Uniqueness: Solution is unique

3. Stability: Solution depends continuously on data

∥S(f1)− S(f2)∥ ≤ C∥f1 − f2∥ (1)

S : solution operator, C : stability constant

3 / 16

Well-Posed vs Ill-Posed Problems

Key Insight: Small perturbations in well-posed problems lead to small changes in solutions.
Ill-posed problems amplify small errors dramatically.

4 / 16

Error Propagation in Numerical Methods

Lesson: There exists an optimal step size that balances truncation and roundo� errors. Too
small h � roundo� dominates; too large h � truncation dominates.

5 / 16

Sources of Error

Types of Error:

▶ Modeling error

▶ Discretization error

▶ Roundo� error

▶ Iteration error

Error Measures:

Absolute: |x − x̃ | (2)

Relative:
|x − x̃ |
|x |

(3)

Error Bounds:

Total Error = Truncation+ Roundo� (4)

6 / 16

Condition Numbers & Geometric Interpretation

Understanding: Hilbert matrices become exponentially ill-conditioned. Geometric shapes
reveal sensitivity: circles (well-conditioned) vs �at ellipses (ill-conditioned).

7 / 16

Condition Number Theory

De�nition
For problem y = f (x):

κ = lim
δ→0

sup
∥δx∥≤δ

∥f (x + δx)− f (x)∥/∥f (x)∥
∥δx∥/∥x∥

(5)

For linear systems Ax = b:

κ(A) = ∥A∥∥A−1∥ and
∥δx∥
∥x∥

≤ κ(A)
∥δb∥
∥b∥

(6)

Interpretation:

▶ κ ≈ 1: Well-conditioned (stable)

▶ κ ≫ 1: Ill-conditioned (sensitive)

8 / 16

Floating Point Arithmetic & Catastrophic Cancellation

Critical Insight: Machine epsilon ≈ 2.22× 10−16 de�nes precision limits. Catastrophic
cancellation occurs when subtracting nearly equal numbers.

9 / 16

Avoiding Catastrophic Cancellation

Problem: Computing (1− cos(x))/x2 for small x
BAD - Direct computation:

1 x = 1e-8

2 result = (1 - np.cos(x)) / x**2

3 # Result: 0.0 (wrong!)

GOOD - Taylor series:

1 x = 1e-8

2 result = 0.5 - x**2/24 + x**4/720

3 # Result: 0.5 (correct !)

Why it fails:

▶ cos(10−8) ≈ 1− 5× 10−17

▶ 1− cos(x) ≈ 0 (cancellation!)

▶ Division by x2 = 10−16 ampli�es error

Solution: Use mathematically equivalent
but numerically stable formulations.

10 / 16

Algorithm Stability

Forward Stability

Algorithm produces nearly correct answer to nearly correct problem:

ỹ = f (x̃) where ∥x̃ − x∥ is small (7)

Backward Stability

Algorithm produces exact answer to nearby problem:

ỹ = f (x + δx) where ∥δx∥ is small (8)

Backward stability is stronger: If an algorithm is backward stable, then it's also
forward stable (assuming the problem is well-conditioned).

11 / 16

Computational Complexity

Big-O Notation

f (n) = O(g(n)) if ∃C , n0 such that:

|f (n)| ≤ C |g(n)| ∀n ≥ n0 (9)

Common complexities in numerical methods:

O(n) : Vector operations, simple iterations (10)

O(n2) : Matrix-vector products, forward/back substitution (11)

O(n3) : Matrix factorizations (LU, QR), matrix multiplication (12)

O(n log n) : Fast Fourier Transform (FFT) (13)

12 / 16

Algorithm Design Principles

Accuracy Requirements:

▶ Minimize truncation error

▶ Control roundo� accumulation

▶ Provide error bounds

▶ Verify convergence

E�ciency Considerations:

▶ Optimize time complexity

▶ Minimize memory usage

▶ Enable parallelization

▶ Scale to large problems

The Fundamental Trade-o�

Accuracy ↔ E�ciency ↔ Stability

Choose algorithms that balance these competing requirements for your speci�c application.

13 / 16

Practical Guidelines for Numerical Computing

1. Check well-posedness: Ensure your problem has a unique, stable solution

2. Monitor condition numbers: κ(A) > 1012 signals trouble

3. Avoid cancellation: Reformulate expressions to prevent subtraction of nearly
equal quantities

4. Use stable algorithms: Prefer backward stable methods when available

5. Validate results: Check residuals, perform sensitivity analysis

Golden Rule
�The condition number of a problem determines how accurately it can be solved,

regardless of the algorithm used.�

14 / 16

Key Takeaways

▶ Well-posedness is essential: existence, uniqueness, stability

▶ Condition numbers quantify problem sensitivity to perturbations

▶ Error sources include modeling, discretization, roundo�, and iteration

▶ Floating point arithmetic has fundamental limitations (ϵmach ≈ 10−16)

▶ Algorithm design must balance accuracy, e�ciency, and stability

Next Lecture
Computer Arithmetic & Error Analysis in Detail

15 / 16

