Numerical Computing

Lecture 1: Introduction & Foundations

Francisco Richter Mendoza

Università della Svizzera Italiana (USI)
Faculty of Informatics
Lugano, Switzerland

Today's Topics

- **▶** Well-posed problems
- ► Sources of error
- ► Stability & conditioning
- ► Computational complexity
- ► Educational demonstrations

Well-Posed Problems

Definition (Hadamard)

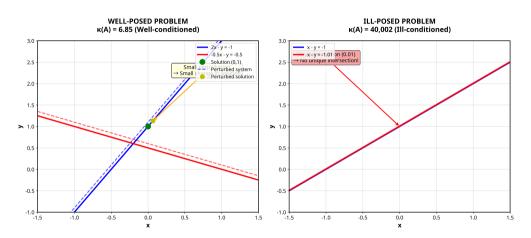
A problem is well-posed if:

- 1. Existence: Solution exists
- 2. Uniqueness: Solution is unique
- 3. Stability: Solution depends continuously on data

$$||S(f_1) - S(f_2)|| \le C||f_1 - f_2|| \tag{1}$$

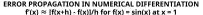
S: solution operator, C: stability constant

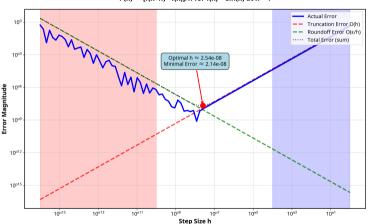
Well-Posed vs III-Posed Problems



Key Insight: Small perturbations in well-posed problems lead to small changes in solutions. Ill-posed problems amplify small errors dramatically.

Error Propagation in Numerical Methods





Lesson: There exists an optimal step size that balances truncation and roundoff errors. Too small $h \to \text{roundoff dominates}$; too large $h \to \text{truncation dominates}$.

Sources of Error

Types of Error:

- ► Modeling error
- **▶** Discretization error
- ► Roundoff error
- ► Iteration error

Error Measures:

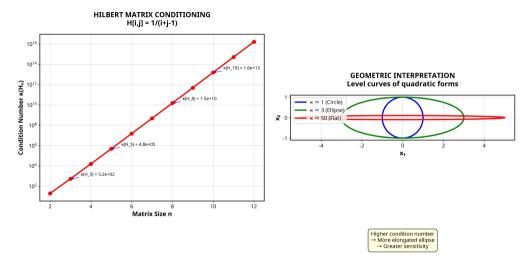
Absolute:
$$|x - \tilde{x}|$$
 (2)

Relative:
$$\frac{|x-\tilde{x}|}{|x|}$$
 (3)

Error Bounds:

Total Error = Truncation + Roundoff
$$(4)$$

Condition Numbers & Geometric Interpretation



Understanding: Hilbert matrices become exponentially ill-conditioned. Geometric shapes reveal sensitivity: circles (well-conditioned) vs flat ellipses (ill-conditioned).

Condition Number Theory

Definition

For problem y = f(x):

$$\kappa = \lim_{\delta \to 0} \sup_{\|\delta x\| \le \delta} \frac{\|f(x + \delta x) - f(x)\|/\|f(x)\|}{\|\delta x\|/\|x\|}$$
(5)

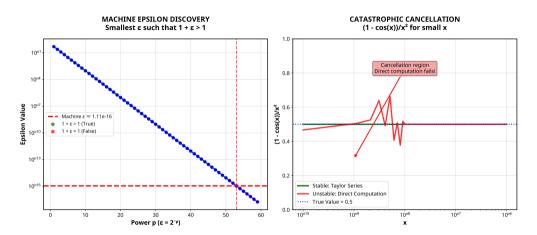
For linear systems Ax = b:

$$\kappa(A) = \|A\| \|A^{-1}\| \text{ and } \frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}$$
 (6)

Interpretation:

- ho $\kappa pprox$ 1: Well-conditioned (stable)
- $ightharpoonup \kappa \gg 1$: III-conditioned (sensitive)

Floating Point Arithmetic & Catastrophic Cancellation



Critical Insight: Machine epsilon $\approx 2.22 \times 10^{-16}$ defines precision limits. Catastrophic cancellation occurs when subtracting nearly equal numbers.

Avoiding Catastrophic Cancellation

Problem: Computing $(1 - \cos(x))/x^2$ for small x BAD - Direct computation:

```
x = 1e-8
result = (1 - np.cos(x)) / x**2
# Result: 0.0 (wrong!)
```

GOOD - Taylor series:

```
x = 1e-8
result = 0.5 - x**2/24 + x**4/720
# Result: 0.5 (correct!)
```

Why it fails:

- $ightharpoonup \cos(10^{-8}) \approx 1 5 \times 10^{-17}$
- ▶ $1 \cos(x) \approx 0$ (cancellation!)
- ▶ Division by $x^2 = 10^{-16}$ amplifies error

Solution: Use mathematically equivalent but numerically stable formulations.

Algorithm Stability

Forward Stability

Algorithm produces nearly correct answer to nearly correct problem:

$$\tilde{y} = f(\tilde{x})$$
 where $\|\tilde{x} - x\|$ is small (7)

Backward Stability

Algorithm produces exact answer to nearby problem:

$$\tilde{y} = f(x + \delta x)$$
 where $\|\delta x\|$ is small (8)

Backward stability is stronger: If an algorithm is backward stable, then it's also forward stable (assuming the problem is well-conditioned).

Computational Complexity

Big-O Notation

$$f(n) = O(g(n))$$
 if $\exists C, n_0$ such that:

$$|f(n)| \le C|g(n)| \quad \forall n \ge n_0 \tag{9}$$

Common complexities in numerical methods:

O(n) : Vector operations, simple iterations	(10)
$O(n^2)$: Matrix-vector products, forward/back substitution	(11)
$O(n^3)$: Matrix factorizations (LU, QR), matrix multiplication	(12)
$O(n \log n)$: Fast Fourier Transform (FFT)	(13)

Algorithm Design Principles

Accuracy Requirements:

- Minimize truncation error
- Control roundoff accumulation
- Provide error bounds
- Verify convergence

Efficiency Considerations:

- Optimize time complexity
- ► Minimize memory usage
- Enable parallelization
- Scale to large problems

The Fundamental Trade-off

Accuracy ↔ Efficiency ↔ Stability

Choose algorithms that balance these competing requirements for your specific application.

Practical Guidelines for Numerical Computing

- 1. Check well-posedness: Ensure your problem has a unique, stable solution
- 2. Monitor condition numbers: $\kappa(A) > 10^{12}$ signals trouble
- 3. **Avoid cancellation**: Reformulate expressions to prevent subtraction of nearly equal quantities
- 4. Use stable algorithms: Prefer backward stable methods when available
- 5. Validate results: Check residuals, perform sensitivity analysis

Golden Rule

"The condition number of a problem determines how accurately it can be solved, regardless of the algorithm used."

Key Takeaways

- ▶ Well-posedness is essential: existence, uniqueness, stability
- ► Condition numbers quantify problem sensitivity to perturbations
- Error sources include modeling, discretization, roundoff, and iteration
- lacktriangle Floating point arithmetic has fundamental limitations $(\epsilon_{\sf mach}pprox 10^{-16})$
- ► Algorithm design must balance accuracy, efficiency, and stability

Next Lecture

Computer Arithmetic & Error Analysis in Detail