Numerical Computing — Week 1 Francisco Richter Mendoza

Week #1: Introduction to Numerical Computing

Universita della Svizzera Italiana (USI)

Francisco Richter Mendoza
Faculty of Informatics, Lugano, Switzerland

September 8, 2025

Overview

Numerical computing forms the mathematical foundation of scientific computing, providing systematic
approaches to solve problems that cannot be solved analytically. This introductory week establishes the
theoretical framework for understanding how continuous mathematical problems are approximated using
discrete computational methods.

The central challenge in numerical analysis lies in the interplay between mathematical rigor and compu-
tational feasibility. We explore how approximation errors arise, propagate, and can be controlled through
careful algorithm design. The concepts developed here—well-posed problems, stability, convergence, and
computational complexity—form the theoretical backbone for all subsequent numerical methods.

Our approach emphasizes mathematical precision while building intuition for the practical considera-
tions that guide algorithm selection and implementation. We establish the vocabulary and conceptual
framework that will unify the diverse numerical methods studied throughout this course.

1 Mathematical Foundations of Scientific Computing

1.1 Well-Posed Problems

Definition. Well-Posed Problem

A mathematical problem is well-posed in the sense of Hadamard if it satisfies three conditions:
1. Existence: A solution exists
2. Uniqueness: The solution is unique

3. Stability: The solution depends continuously on the input data

The concept of well-posedness provides the foundation for numerical analysis. If a problem is not
well-posed, numerical methods may fail catastrophically or produce meaningless results.

Numerical Computing — Week 1

Francisco Richter Mendoza

WELL-POSED PROBLEM
K(A) = 6.85 (Well-conditioned)

ILL-POSED PROBLEM
K(A) = 40,002 (Ill-conditioned)

3.0 7 3.0
— X -y =-1
m—-0.5x -y =-0.5

— ey =-1
m— %~y =-1.012n(0.01)
— INO unique Intersection!

25 @ solution (0,1) 25
== Perturbed system

Perturbed solution

Smal
— Small ¢

2.0

Figure 1: Comparison of well-posed and ill-posed linear systems. The left panel shows a well-conditioned
system (k(A) = 6.85) where small perturbations lead to small changes in the solution. The right panel
shows an ill-conditioned system (k(A) = 40,002) where tiny perturbations can lead to dramatically
different solutions or no solution at all. The annotations clearly show how conditioning affects solution
stability.

Example 1.1 (Well-Posed vs. Ill-Posed Problems). Well-posed: Solving Az = b where A is well-
conditioned. - Existence: Solution x = A™'b exists - Uniqueness: Matriz invertibility guarantees uniqueness
- Stability: Small changes in b produce small changes in x

Consider the system:
2 1 3

With condition number k(A) = 6.85, a perturbation of 0.01 in b results in a relative error of approximately
0.007 in the solution.
Ill-posed: Nearly singular systems. Consider:

11 2
A= [1 1.0001]’ b= [2.0001]

With condition number k(A) = 40,002, the same perturbation magnitude can lead to solution changes that
are orders of magnitude larger.

Theorem 1.1 (Continuous Dependence on Data). For a well-posed problem with solution operator S,
there exists a constant C' > 0 such that:

1S(f1) = S(f2)ll < Cllfr = f2

for input data f1, fo in some neighborhood.
This ensures that small perturbations in input data lead to small changes in the solution.
1.2 Sources of Error in Numerical Computation

Numerical errors arise from multiple sources, each requiring different mathematical treatment:

Definition. Types of Numerical Error

Numerical Computing — Week 1 Francisco Richter Mendoza

e« Modeling Error: Difference between physical reality and mathematical model

e Discretization Error: Error from replacing continuous problems with discrete approximations

e Roundoff Error: Error from finite precision arithmetic

e Truncation Error: Error from stopping infinite processes after finite steps

Definition. Absolute and Relative Error

For an exact value x and approximation Z:

Absolute Error = |z — Z|

Relative Error = (x #0)

(1)
(2)

Relative error provides scale-independent error measurement, crucial for comparing errors across

different problem sizes.

ERROR PROPAGATION IN NUMERICAL DIFFERENTIATION
f'(x) = [f(x+h) - f(x)]/h for f(x) =sin(x) at x =1

10° ~

1073 4

Optimal h = 2.54e-08
Minimal Error = 2.14e-08

m— Actual Error

= = Truncation Error O(h)
= = Roundoff Error O(e/h)
----- Total Error (sum)

% 1076
]
b~
c
o
]
E 9
f- 'IOH 4
o ,’ \\
= - ~
& - S~
-7 ~
e \\
-7 ~
- \\
10712 4 -7 SO
,/’ S
Pig SN
- So
/” =
-,
10;‘115, ,//
/”
10715 10713 10511 107 10°7 1075 1073
Step Size h

Figure 2: Error propagation in numerical differentiation showing the fundamental trade-off between
truncation and roundoff errors. The optimal step size h* ~ 1.5 x 1078 minimizes the total error by
balancing O(h) truncation error with O(e/h) roundoff error. The plot clearly shows the roundoff-dominated

region (left), optimal region (center), and truncation-dominated region (right).

Theorem 1.2 (Error Propagation in Arithmetic Operations). For operations on approximate values

a=a+ e, andl;:b—t—eb:
Addition/Subtraction: R
atb=(a£tb)+ (e tep)

Numerical Computing — Week 1 Francisco Richter Mendoza

Absolute errors add directly.
Multiplication:

>
S

-b=ab+ aep + beg + €46

Relative errors approzimately add: <% = & 4-
Division:

Intuition: Understanding error propagation

Error propagation reveals why certain computations are more sensitive to input errors than others:

o Addition/subtraction: Absolute errors matter most

Multiplication/division: Relative errors matter most

Subtraction of nearly equal numbers: Can cause catastrophic cancellation

Functions with large derivatives: Amplify input errors significantly

This understanding guides the design of numerically stable algorithms.

2 Stability and Conditioning

2.1 Forward and Backward Error Analysis

Definition. Forward and Backward Error

Consider a problem f: X — Y with exact solution y = f(x) and computed solution g.
Forward Error: ||y — g|| (error in the output)

Backward Error: min{||Az| : § = f(z + Az)} (perturbation in input that would produce the
computed output exactly)

Theorem 2.1 (Relationship Between Forward and Backward Error). If the backward error is |Az|| and
the problem has condition number k, then:

Forward Error < k - Backward Error

This fundamental relationship separates algorithm stability (backward error) from problem conditioning
(amplification factor).

2.2 Condition Numbers

Definition. Condition Number
The condition number of a problem measures the sensitivity of the solution to perturbations in the input

data: | @+ Ax) — F@)I/1f@)]
= i e -

For differentiable functions: xk = W

Numerical Computing — Week 1

Francisco Richter Mendoza

HILBERT MATRIX CONDITIONING

HIi.j1 = 1/(i+j-1)

1016

1014

10"

1010

Condition Number k(H,)
=

K(H_S) = 4.8e+05

o
>

o
3

K(H_3) = 5.2e+02

B

K(H_10) = 1.6e+13
GEOMETRIC INTERPRETATION
Level curves of quadratic forms

= 1
K(H_8) = 1.5e+10 K ~ 1 (Circle)
m— K 22 3 (Ellipse)

X 01 === k = 50 (Flat) X X

2 4 6 8
Matrix Size n

Higher condition number
— More elongated ellipse
— Greater sensitivity

Figure 3: Left: Condition numbers of Hilbert matrices grow exponentially with size, demonstrating
how these matrices become increasingly ill-conditioned. The annotations show specific values: k(Hs) =
5.24 x 102, k(Hs) = 4.77 x 10%, etc. Right: Geometric interpretation of conditioning through level curves of
quadratic forms. Well-conditioned problems correspond to circles (k ~ 1), while ill-conditioned problems
correspond to elongated ellipses (k > 1).

Example 2.1 (Condition Numbers in Practice). Linear Systems: For Ax = b, the condition number is:

K(A) = Al A7Y|

This provides the error amplification bound:

Hilbert Matrices: Then xn
tially:

|Az]] |AD]
< r(4)
] 2]
Hilbert matriz H;; = Zﬂ%l has condition numbers that grow exponen-

r(H3) = 5.24 x 10?
rk(Hs) = 4.77 x 10°
r(Hg) = 1.53 x 10%°
r(Hyp) = 1.60 x 103

These matrices are notoriously ill-conditioned and serve as standard test cases for numerical algorithms.

3 Floating Point Arithmetic

3.1 IEEE 754 Standard

Modern computers represent real numbers using the IEEE 754 floating point standard:

z=(—1)° x Lf x 271

Numerical Computing — Week 1 Francisco Richter Mendoza

where s is the sign bit, f is the 23-bit fractional part, and e is the 8-bit exponent.
Definition. Machine Epsilon

Machine epsilon €yacn is the smallest positive number such that 1+ epaqn > 1 in floating point arithmetic.
For IEEE 754 double precision: €mach ~ 2.22 x 10716,

MACHINE EPSILON DISCOVERY CATASTROPHIC CANCELLATION
Smallest € such that 1 +&£>1 (1 - cos(x))/x? for small x

Cancellation region
0.8 Direct computation fails!

~

DT o2 A R R SR I NS T (S —— = Stable: Taylor Series
== Unstable: Direct Computation
----- True Value = 0.5

10

107

<4
o

== = Machine e = 1.11e-16
® 1+&>1(True)
10810 ® 1+g=1(False)

Epsilon Value
(1 - cos(x))/x*

o
IS

10713

0.2

0.0
0 10 20 30 40 50 60 10710 107 107 107 107

Power p (e=27) X

Figure 4: Left: Machine epsilon discovery showing the transition point where 1 + € = 1 in floating point
arithmetic. Green points show where the test 1 + € > 1 is true, while red points show where it becomes
false due to finite precision. Right: Catastrophic cancellation demonstration for computing (1 — cos(z)) /.
The stable Taylor series approach maintains accuracy while direct computation fails completely for small
arguments due to loss of significant digits.

3.2 Catastrophic Cancellation

One of the most dangerous phenomena in floating point arithmetic is catastrophic cancellation, which
occurs when subtracting two nearly equal numbers.

Example 3.1 (Catastrophic Cancellation). Consider computing (1 — cos(x))/x? for small x:
Unstable approach (direct computation):

T = le-8
result = (1 - np.cos(z)) / z**2
Result: 0.0 (completely wrong!)

Stable approach (Taylor series):

z = l1e-8
result = 0.5 - z**%2/24 + x**4/720
Result: 0.5 (correct!)

The direct computation fails because cos(1078) ~ 1 —5 x 10717, and the subtraction 1 — cos(x) loses all
significant digits. The Taylor series expansion avoids this cancellation by using mathematically equivalent
but numerically stable formulation.

Theorem 3.1 (Avoiding Catastrophic Cancellation). When computing f(z) — g(x) where f(z) ~ g(z),
use alternative formulations:

o Algebraic manipulation: a® — b* = (a — b)(a + b)

Numerical Computing — Week 1 Francisco Richter Mendoza

o Taylor series expansion for small arguments
e Rational approzimations

e Higher precision intermediate calculations

4 Algorithm Stability
Definition. Forward Stability
An algorithm is forward stable if it produces a nearly correct answer to the given problem:

computed solution ~ exact solution

Definition. Backward Stability

An algorithm is backward stable if it produces the exact answer to a nearby problem:
computed solution = exact solution to (z + Ax)

where ||Az|| is small.

Theorem 4.1 (Backward Stability Implies Forward Stability). If an algorithm is backward stable and the
problem is well-conditioned, then the algorithm is forward stable with error bound:

Forward Error < k - Backward Error

Intuition: Why backward stability matters

Backward stability is often easier to analyze than forward stability because:
o It separates algorithm properties from problem properties
e It provides problem-independent error bounds
e It gives insight into the fundamental limitations of finite precision arithmetic

e Many important algorithms (Gaussian elimination, QR factorization) are backward stable

5 Computational Complexity

Definition. Big-O Notation
We say f(n) = O(g(n)) if there exist constants C' > 0 and ng such that:

[f(n)] < Clg(n)] Vn = ng

Example 5.1 (Complexity in Numerical Methods). ¢ O(n): Vector operations, simple iterations

Numerical Computing — Week 1 Francisco Richter Mendoza

o O(n?): Matriz-vector products, forward/backward substitution
o O(n3): Matriz factorizations (LU, QR), matriz multiplication
o O(nlogn): Fast Fourier Transform (FFT)

Theorem 5.1 (Trade-offs in Algorithm Design). Numerical algorithms must balance three competing
objectives:

1. Accuracy: Minimize approximation errors
2. Stability: Control error propagation
3. Efficiency: Minimize computational cost

The optimal choice depends on problem requirements, available computational resources, and desired
accuracy.

6 Practical Guidelines

6.1 Algorithm Selection Criteria
When choosing numerical methods, consider:

1. Problem conditioning: Check k before proceeding

2. Algorithm stability: Prefer backward stable methods
Computational cost: Consider complexity for large problems

Implementation complexity: Balance sophistication with maintainability

oro W

Available software: Leverage high-quality libraries when possible

6.2 Best Practices
e Always check condition numbers of matrices before solving linear systems
o Use mathematically equivalent but numerically stable formulations
o Validate results through residual checking and sensitivity analysis
e Be aware of the limitations of floating point arithmetic

o Choose appropriate tolerances based on problem requirements and machine precision

Practice Problems

1. Compute the condition number of the 5 x 5 Hilbert matrix and explain why it’s considered
ill-conditioned.

2. Implement both the unstable and stable versions of computing (1 — cos(z))/x? for x = 10719
and compare the results.

1

3. For the linear system Ax = b with A = 1 and b =
1 1+4¢€

l 2], investigate how the
2+¢

Numerical Computing — Week 1 Francisco Richter Mendoza

condition number and solution sensitivity change as ¢ — 0.

4. Find the optimal step size for numerical differentiation of f(z) = e* at x = 1 using the forward
difference formula.

5. Demonstrate machine epsilon discovery by implementing the algorithm shown in the lecture
and verify it matches the theoretical value.

	Mathematical Foundations of Scientific Computing
	Well-Posed Problems
	Sources of Error in Numerical Computation

	Stability and Conditioning
	Forward and Backward Error Analysis
	Condition Numbers

	Floating Point Arithmetic
	IEEE 754 Standard
	Catastrophic Cancellation

	Algorithm Stability
	Computational Complexity
	Practical Guidelines
	Algorithm Selection Criteria
	Best Practices

