Week 12: Neural Networks

Francisco Richter Ernst Wit

Introduction to Data Science (MSc)

1 Introduction to Neural Networks

Neural networks can be viewed as compositions of simple nonlinear functions. By stacking many
layers of these simple transformations, one can approximate complex relationships between inputs
and outputs. Learning occurs by adjusting parameters to minimize a loss measuring discrepancy
between predictions and observed targets.

2 Foundations and Architecture

The Perceptron.

Definition 2.1 (Perceptron). A perceptron is a linear classifier that computes:

P
7 = sign <Z w;T; + b) = sign(wlx +b)

i=1
where w are weights, b is the bias, and sign(-) is the activation function.

The perceptron learns a separating hyperplane by iteratively updating the weight vector when
a point is misclassified. On linearly separable data, the updates converge to a separating solution.
The following illustration shows a learned boundary on a toy two-dimensional dataset, emphasizing
the geometry of linear separability.

Activation Functions.

Definition 2.2 (Activation Function). An activation function o : R — R introduces nonlinearity
into the network. Common choices include:

e Sigmoid: o(z) = H%

ef—e *

e*+e~*

e Hyperbolic tangent: o(z) = tanh(z) =

e ReLU: o(z) = max(0, 2)
o Leaky ReLU: o(z) = max(«az,z) where a € (0,1)

Universal approximation (informal).

A feedforward neural network with a single hidden layer containing a finite number of neurons
can approximate any continuous function on a compact subset of R to arbitrary accuracy, provided
the activation function is non-constant, bounded, and monotonically increasing.

Architecture (MLP).

Week 12: Neural Networks Introduction to Data Science (MSc)

Perceptron decision boundary

4 N
~
M
. | Y
| e®q »
\\ s ° 'f)
2 \\ ® 't « ®
. ot ¥ 2
. ° [°
N
. °
N
S
0 ~
~ N
N N
N
\\
e o c'.o'ol ® N
* eoTw® S >
-2 S"' ° N
(X ‘ ® S
o @ \\
e Class +1 N
-4 e Class-1 o
= = Perceptron boundary s
4 3 2 -1 0 1 2.3 4
x1

Figure 1: Perceptron decision boundary on a linearly separable dataset.

Week 12: Neural Networks Introduction to Data Science (MSc)

Definition 2.3 (Multilayer Perceptron (MLP)). An MLP with L layers computes:

O =x (input layer)

a(
2z = WDal=Y L b (linear transformation)
al) = o0 (z0) (activation)

forl=1,2,... L, where al) s the output.

Forward Propagation.
The forward pass computes the network output given input x:

f(x;8) =a

where @ = {W® b1 are the network parameters.

3 Learning and Backpropagation

Regression Tasks.

Definition 3.1 (Mean Squared Error).

£0)= 23 llyi — 7 0)?
=1

Classification Tasks.

Definition 3.2 (Cross-Entropy Loss). For binary classification:

n

£00) =~ > luiloa(pi) + (1 — i) log(1 — o)
=1

For multi-class classification:

n K

L£(0) = —% DY vk log(pir)

1=1 k=1

Backpropagation Algorithm.

Chain Rule Application.

Backpropagation uses the chain rule to compute gradients efficiently:
Backpropagation equations. For layer {:

8B =V,)L oo’ D) (D)
5(l) _ [(W(l—l—l))Tts(l-i-l)} o O_/(l)(z(l))

agxfm =60E)
oL,
o0 ="

where ® denotes element-wise multiplication.

Week 12: Neural Networks Introduction to Data Science (MSc)

3.1 Computational Complexity

The computational complexity of backpropagation is O(W) where W is the total number of weights,
making it efficient for training large networks.

4 Optimization and Regularization

Gradient-based learning proceeds by repeated linearization of the objective and movement along the
negative gradient direction. In practice, we compute gradients on mini-batches to reduce variance
and improve hardware utilization. A simple visualization of a two-parameter loss surface and a
gradient descent trajectory clarifies step sizes and curvature effects.

Loss surface slice and GD path

1
oy
\
Y 0 [—=— Gradient descent path "
-1 .
2 Q
T\ B\ =2 2
@ b g
2\ 2\ o\ 2\ \ 3\ & .
S \\i\"\ AN R 7
-3 -2 -1 0 1 2 3

w1

Figure 2: A loss surface slice with a gradient descent trajectory. Step sizes and curvature jointly
determine progress.

Adaptive methods such as AdaGrad and Adam rescale or accumulate gradients to accommodate
heterogeneity across parameters. This can accelerate early learning and stabilize training in the
presence of ill-conditioned curvature, though careful tuning and validation remain essential.

Controlling generalization error requires explicit complexity control. Weight decay augments

Week 12: Neural Networks Introduction to Data Science (MSc)

the loss with an L2 penalty,

L
Lreg(0) = L(0) +)‘Z HWU)H%,
=1

shrinking parameter norms toward zero. Dropout introduces multiplicative Bernoulli noise during
training, implicitly averaging an ensemble of subnetworks. Batch normalization reduces internal
covariate shift by standardizing layer inputs and learning affine corrections.

The effect of these techniques is readily seen on validation curves. As capacity grows or training
continues, validation loss initially decreases and then increases. Early stopping selects the epoch
that minimizes validation loss.

Overfitting and early stopping

10 — Train loss i
Validation loss :
08 -—=- Early stopping epoch :
:
@ 0.6 :
Q 1
— I
04 :
|
1
0.2 :
|
0.0
0 20 40 60 80 100
Epoch

Figure 3: Training versus validation loss with early stopping at the optimal epoch.

Network Schematic.

To anchor notation, the following schematic depicts a minimal multilayer perceptron and its
information flow from inputs, through a hidden layer with ReLLU activation, to a sigmoid or softmax
output. This diagram will be used to reference weight matrices and activations in the subsequent
derivations.

5 Representation and Applications
The High-Dimensional Input Problem.

Definition 5.1 (High-Dimensional Classification Problem). Consider input data x € R% where d
is very large (e.g., image pizels d = 28 x 28 = 784 for MNIST, or d = 32 x 32 x 3 = 3072 for
CIFAR-10). The goal is to learn a mapping f : R* — {0,1,..., K — 1} for classification.

Example 5.1 (Image Recognition Challenge). For a 4 X 4 grayscale image (16 pizels), we have
x = (z1,%9,...,%16) where each x; represents pizel intensity. The challenge: ”Can we identify the
letter w in a 4 x 4 grid?”

This represents a typical machine learning question:

Week 12: Neural Networks Introduction to Data Science (MSc)

e Classification task: Binary classification (m vs not)
o High-dimensional input: 16-dimensional input space
e Minimal semantic meaning: Individual pizel values have little interpretable meaning

Limitations of Linear Models.
Linear model limitations in high dimensions. Setup. Consider logistic regression for the

image recognition problem:

1 if image ¢ contains 7
P = _
0 otherwise

X'i = (Xﬂ, XZQ, ey X’il6) (pixel Values)

The logistic regression model:

1
Py, =1|X;) =
Y= 1) = o xTp)

This approach has fundamental limitations:

1. Linear decision boundaries: Cannot capture complex spatial patterns

2. No spatial structure: Treats pixels as independent features

3. No translation invariance: 7 in different positions treated as different patterns
Automatic Feature Learning.

Definition 5.2 (Representation Learning). Neural networks automatically learn hierarchical fea-
ture representations:

h) = o(WWx + bW (low-level features) (8)
h® = o(WAnW + @) (mid-level features) 9)

: (10)
hE=Y = g(WUEDhE=2) L b)) (high-level features) (11)
y = softmag(WEnE=Y 4 b)) (classification) (12)

In high-dimensional spaces, several phenomena occur that make traditional methods ineffective.
In high-dimensional spaces, several phenomena occur that make traditional methods ineffective:

1. Volume concentration: In R% as d — oo, the volume of a hypersphere concentrates near
its surface.

2. Distance concentration: For random points x1,x9 in high dimensions:

X] — X
lim =Xl
d—o0 E[Hxl — XQHQ]
3. Empty space phenomenon: The ratio of the volume of a hypersphere to its enclosing
hypercube approaches 0 as dimension increases.

Week 12: Neural Networks Introduction to Data Science (MSc)

Neural networks mitigate the curse of dimensionality through: Neural networks mitigate the
curse of dimensionality through:

1. Dimensionality reduction: Each layer can reduce effective dimensionality by learning
relevant features.

2. Manifold learning: Networks can learn that high-dimensional data lies on lower-dimensional
manifolds.

3. Hierarchical feature extraction: Progressive abstraction reduces dependence on raw input
dimensionality.

Universal Approximation and Representation Power.

Theorem 5.1 (Enhanced Universal Approximation). Let o be a non-polynomial activation func-
tion. Then:

1. Width sufficiency: For any continuous function f on a compact set K C R? and € > 0,
there exists a meural network with one hidden layer of finite width that approximates f within
€.

2. Depth efficiency: For functions with compositional structure, deep networks require expo-
nentially fewer parameters than shallow networks to achieve the same approrimation accuracy.

Proof. We prove the width sufficiency claim (density in C'(K)) following Cybenko (1989) and Hornik
(1991). Let K C R? be compact and let H be the set of finite linear combinations of ridge functions
o(wlx +b) with w € R? b € R. Denote by H the closure of # in the uniform norm on C(K).

Assume, for contradiction, that there exists f € C(K) that is not in . By the Hahn-Banach
separation (or, equivalently, the Riesz representation theorem for duals of C(K)), there exists a
nonzero finite signed Borel measure p on K such that

/ g(x)du(x) =0 forall g€ H, but / f(x)du(x) # 0.
K K
The first condition implies, in particular, that for all w € R? and b € R,
/ o(whx +b)du(x) = 0.
K

Define the pushforward measure vy on R by 14 (B) = u{x € K : wI'x € B} for Borel sets B. Then
the above condition becomes

/ o(t+b)dry(t) =0 forallbeR, we R
R

Since o is non-polynomial, its translates span a set that separates finite signed measures (Cybenko,
1989). Hence the only finite signed measure on R that annihilates all translates {o(- +b) : b € R}
is the zero measure. Therefore vy, = 0 for every w, which implies 4 = 0 on K (because linear
functionals w’x separate points on K). This contradicts the choice of nonzero y. Thus H = C(K),
proving density and the width sufficiency claim.

For the depth efficiency claim, one constructs classes of compositional functions (e.g., parity-like
or hierarchical multiplications) for which approximation by shallow networks requires exponentially
many units, whereas a deep architecture reusing intermediate features attains polynomial size;
see, for instance, Telgarsky (2016) and Eldan-Shamir (2016). This establishes the stated depth
advantage. O

Week 12: Neural Networks Introduction to Data Science (MSc)

Theorem 5.2 (Depth vs Width Trade-off). There exist functions that can be represented by a deep
network with polynomial width but require exponential width when represented by a shallow network.

For sufficiently wide neural networks: For sufficiently wide neural networks:
e All local minima are global minima

e The number of saddle points grows exponentially with network size

e Gradient descent can escape saddle points efficiently

With probability at least 1 — §, With probability at least 1 — 9,

K L(pl|m) + log(2y/n/)

E[£(0)] < L(0 o

where p is the posterior and 7 is the prior over parameters.
CNNs use:

Definition 5.3 (Convolution Operation).

(fxg)i, 7] Zmen i—m,j —n]

CNNs use:

e Local connectivity: Neurons connect only to local regions

e Parameter sharing: Same weights used across spatial locations
e Translation invariance: Features detected regardless of position

RNNs process sequences via:
Definition 5.4 (RNN Update Equations).
h; = o(Wyphe 1 + Wapx; + bp)
Yt = Whyht + by
LSTM addresses vanishing gradients through gating mechanisms:
f; =0(Wy-[hy_1,x] +by) (forget gate)
it =0(W; - [hy_1,x] +b;) (input gate)
C; = tanh(W¢ - [hy_1,%;] + beo) (candidate values)
C,=f0C_1+1;® Ct (cell state)

o, = 0(Wy - [hy_1,%x¢] +b,) (output gate)
h; = o, ® tanh(C;) (hidden state)

— =
(=2
S N N N N N

In deep chains of nonlinearities, repeated multiplication by Jacobians may shrink or blow up
gradient norms. A simple bound illustrates this behavior through products of layer operator norms
and activation derivatives. Practice counters these issues by matching initialization to nonlinearity
(e.g., Xavier for tanh, He for ReLU), introducing identity-like skip connections that shorten gradient

Week 12: Neural Networks Introduction to Data Science (MSc)

paths (residual networks), clipping gradients to cap extreme steps, and standardizing pre-activations
within mini-batches using batch normalization. Each intervention targets a different part of the
computation graph, collectively stabilizing learning dynamics.

Neural networks can overfit when model capacity outstrips sample size or when training proceeds
past the point of optimal generalization. Early stopping halts optimization at the epoch that
minimizes validation loss; weight decay biases parameters toward smaller norms; data augmentation
injects invariances directly into the training distribution; cross-validation estimates out-of-sample
error for robust hyperparameter choice.

As a case study, consider handwritten digit classification on grayscale 28 x 28 images. Each
image is treated as a vector x € R™* after flattening, with label y € {0,...,9}. The goal is to learn
a function mapping inputs to class probabilities that generalizes beyond the training set.

As a baseline, multinomial logistic (softmax) regression models class probabilities via linear
scores s(x) = Wx + b and softmax(s). Training minimizes empirical cross-entropy; the gradient
equals predictions minus one-hot labels times inputs. Identifiability is ensured by fixing a reference
class.

Gradient derivation. For a single example (x,y), let s = Wx + b and ## = softmax(s). The
per-example loss is £ = —log 7. Using 0¢/0sj, = 7, — 1{k = y}, the chain rule gives

Vw/l = (7 —e,)x", Vpl =17 —ey,

and averaging over the sample yields the earlier expressions. The key step is the Jacobian of
softmax, 07y /0s; = 7 (1{j = k} — 7).

Numerical stability matters in practice: rather than computing log > j exp(s;) directly, subtract
the maximum logit m = max; s; and use log) | y exp(sj —m)+m. This “log-sum-exp” trick avoids
overflow while leaving softmax probabilities and the loss unchanged because adding a constant to
all logits does not affect the distribution.

To increase expressivity, a one-hidden-layer MLP replaces linear scores with s = Wy o(Wix +
b1) + bg, with ReLU activation o(z) = max(0,z). Gradients follow from backpropagation: the
output error is softmax(s) — e,, the hidden error gates with o’.

Preprocessing rescales pixels to [0,1] (and optionally standardizes) to improve conditioning.
A train/validation/test protocol supports principled model selection (hidden width, learning rate,
weight decay) and final evaluation on held-out data. Early stopping and weight decay provide
effective complexity control in practice.

Both approaches reduce effective capacity but via different mechanisms. Early stopping halts
optimization when validation loss is minimized, implicitly constraining the trajectory length in pa-
rameter space; weight decay explicitly penalizes large weights, biasing the solution toward smaller-
norm parameters and improving Hessian conditioning. Empirically, early stopping often preserves
sharp discriminative features learned early, while Lo shrinkage smooths decision boundaries. The
training—validation curves above illustrate a typical selection of the optimal epoch for early stop-

ping.

	Introduction to Neural Networks
	Foundations and Architecture
	Learning and Backpropagation
	Computational Complexity

	Optimization and Regularization
	Representation and Applications

