
Week 11: Additive Models

Francisco Richter Ernst Wit

Introduction to Data Science (MSc)

1 Generalized Linear Models (GLMs): Foundations

Generalized Linear Models extend linear regression to non-Gaussian responses in the exponential
family via a link function. They unify logistic regression, Poisson regression, Gamma regression,
and others under a single framework with a common fitting algorithm (IRLS).

1.1 Components

• Random component: Y follows an exponential family distribution with E[Y ] = µ and
Var(Y ) = a(ϕ)V (µ).

• Systematic component: linear predictor η = xTβ.

• Link: g(µ) = η (canonical link when g(µ) = θ).

1.2 Variance Functions

Different exponential-family choices imply different variance functions V (µ):
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Figure 1: Variance functions for Normal, Poisson, Binomial, and Gamma families (log–log axes).

1.3 IRLS in a Nutshell

For GLMs, maximum likelihood estimation proceeds by Iteratively Reweighted Least Squares

(IRLS), solving at iteration t a weighted least squares system with weights w
(t)
i and working re-

sponse z
(t)
i until convergence.

1.4 GLMs in Practice
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Figure 2: Poisson GLM fit (log link) on synthetic counts: mean curve captures exponential
mean–variance structure.

Figure 3: Deviance residuals vs fitted values: pattern-free clouds support model adequacy; structure
suggests misspecification.
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Figure 4: AIC comparison across Gaussian, Poisson, and Gamma GLMs on the same data.

Figure 5: Overdispersion check (Poisson): Pearson chi-square divided by df; values > 1 indicate
extra-Poisson variability.
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2 Introduction to Additive Models

Additive models provide a flexible framework for modeling nonlinear relationships while maintaining
interpretability. They extend linear models by allowing smooth functions of predictors rather than
just linear terms, making them particularly valuable in data science for exploratory analysis and
prediction.

The fundamental insight underlying additive models is the recognition that many real-world
relationships are inherently nonlinear, yet we still desire interpretable models that can provide
meaningful insights into how individual predictors affect the response. Instead of assuming that
the effect of each predictor is strictly linear, additive models allow each predictor to have a smooth,
potentially nonlinear effect on the response variable. The ”additive” nature of these models means
that these individual effects simply add together, preserving the interpretability that makes linear
models so appealing while gaining the flexibility needed to capture complex patterns in modern
datasets.

3 Generalized Additive Models (GAMs)

3.1 Model Definition

Definition 3.1 (Generalized Additive Model). A GAM has the form:

g(E[Y ]) = α+

p∑
j=1

fj(Xj)

where g(·) is a link function, α is the intercept, fj(·) are smooth functions of the predictors Xj, and
Y follows an exponential family distribution.

GCV approximates leave-one-out cross-validation without refitting by adjusting the training
residual sum of squares by (1 − tr(Hλ)/n)

−2. It is computationally attractive and often effective
for Gaussian GAMs, though it can sometimes undersmooth in the presence of correlated errors or
outliers. K-fold cross-validation is a robust alternative at higher computational cost.

Workflow. Fix a rich basis for each smooth, select λ by REML or CV, refit, and report edf per
term along with partial dependence plots and uncertainty bands.
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Figure 6: Cross-validation curve versus bandwidth (smoothing parameter proxy); the vertical line
marks the optimal choice minimizing CV error.

Figure 7: Nonlinear relationship captured by a smooth additive term compared to a linear fit. The
smooth (GAM) fit tracks the true function while the linear fit underfits.

The structure of a GAM represents a natural generalization of both linear models and general-
ized linear models. The link function g(·) serves the same role as in GLMs, allowing us to model
different types of response variables while maintaining the linear predictor structure. However,
instead of restricting ourselves to linear combinations of the predictors, we allow each predictor
Xj to enter the model through a smooth function fj(·). This flexibility enables the model to cap-
ture complex nonlinear patterns while maintaining the additive structure that makes interpretation
straightforward.

The smooth functions fj(·) are typically estimated from the data rather than specified a priori,
making GAMs a semi-parametric approach that combines the interpretability of parametric models
with the flexibility of nonparametric methods. Each function fj can be thought of as representing
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the partial effect of predictor Xj on the transformed response g(E[Y ]), holding all other predictors
constant.

3.2 Special Cases and Extensions

Several important models emerge as special cases of the GAM framework. When all smooth func-
tions fj(Xj) = βjXj are linear, we recover the standard generalized linear model. Polynomial

models arise when fj(Xj) =
∑d

k=1 βjkX
k
j , allowing for polynomial relationships of specified degree.

The Gaussian GAM uses the identity link function with normal errors, making it particularly
suitable for continuous response variables where we expect smooth, nonlinear relationships. The
logistic GAM employs the logit link for binary outcomes, extending logistic regression to allow for
nonlinear effects of continuous predictors while maintaining the probabilistic interpretation of the
model.

Figure 8: Logistic GAM: a smoothed probability curve (blue) recovers nonlinear log-odds patterns
that a linear logit cannot capture, closely matching the true probability.

4 Smooth Functions and Basis Expansions

4.1 Theoretical Foundation of Basis Functions

The representation of smooth functions through basis expansions forms the mathematical founda-
tion of additive models. Rather than attempting to estimate arbitrary smooth functions directly,
we express each smooth function fj as a linear combination of known basis functions:

fj(x) =

Kj∑
k=1

βjkbjk(x)

where bjk(x) are basis functions and βjk are coefficients to be estimated.
This approach transforms the problem of nonparametric function estimation into a parametric

problem of estimating the coefficients βjk. The choice of basis functions determines the types
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of smooth functions that can be represented, while the number of basis functions Kj controls
the flexibility of the approximation. The art of additive modeling lies in selecting appropriate
basis functions and determining the optimal number of basis functions to balance flexibility with
overfitting.

Figure 9: Basis Functions and Smoothing Concepts: (Top left) Polynomial basis functions showing
increasing powers of x. (Top right) B-spline basis functions with local support properties. (Bottom
left) Radial basis functions centered at different locations. (Bottom right) Effect of smoothing
parameter λ on function estimation, demonstrating the bias-variance tradeoff in nonparametric
estimation.
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Figure 10: Effect of smoothing/bandwidth on the fitted function: small bandwidth overfits noise;
large bandwidth oversmooths; a balanced choice captures the signal.

4.2 Polynomial Basis Functions

The polynomial basis represents the simplest approach to basis expansion, where bk(x) = xk−1

for k = 1, 2, . . . ,K. While conceptually straightforward, polynomial bases suffer from several
limitations that make them less suitable for practical additive modeling. The global nature of
polynomial functions means that changes in one region of the input space affect the entire function,
leading to poor local adaptability. Additionally, polynomial bases can exhibit severe oscillatory
behavior, particularly near the boundaries of the data range, a phenomenon known as Runge’s
phenomenon.

Despite these limitations, polynomial bases provide important theoretical insights into the ap-
proximation properties of basis expansions. The Weierstrass approximation theorem guarantees
that any continuous function on a compact interval can be uniformly approximated by polynomi-
als, establishing the theoretical foundation for basis function approaches.

4.3 B-spline Basis Functions

B-splines (basis splines) represent a significant advancement over polynomial bases, offering local
support and numerical stability. A B-spline of degree d is defined recursively:

Bi,d(x) =
x− ti

ti+d − ti
Bi,d−1(x) +

ti+d+1 − x

ti+d+1 − ti+1
Bi+1,d−1(x)

where {ti} represents the knot sequence that determines the locations where the spline pieces
connect.

The local support property of B-splines means that each basis function is non-zero only over
a limited interval, typically spanning d + 1 knot intervals. This locality ensures that changes in
the function in one region have minimal impact on other regions, providing much better numerical
stability and interpretability compared to polynomial bases. The smoothness of the resulting spline
function is determined by the degree d, with higher degrees producing smoother functions.
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4.4 Radial Basis Functions

Radial basis functions (RBFs) offer an alternative approach where basis functions depend only
on the distance from fixed center points: bk(x) = ϕ(∥x − ck∥). The most common choice is the
Gaussian RBF, ϕ(r) = exp(−r2/σ2), which provides smooth, bell-shaped basis functions centered
at the points ck.

RBFs are particularly effective for scattered data interpolation and can adapt well to irregular
data distributions. The choice of centers ck and the shape parameter σ significantly influences the
approximation quality. Centers are often chosen to coincide with data points or placed on a regular
grid, while the shape parameter controls the width of the basis functions and thus the smoothness
of the resulting approximation.

5 Smoothing and Penalization

5.1 Penalized Likelihood

To control smoothness, we add penalty terms:

ℓp(β) = ℓ(β)− 1

2

p∑
j=1

λjβ
T
j Sjβj

where:

• ℓ(β) is the log-likelihood

• λj are smoothing parameters

• Sj are penalty matrices

For Gaussian responses with identity link, maximizing ℓp is equivalent to solving a penalized
least squares problem. Writing the overall design matrix for all basis coefficients as Xβ and the
block-diagonal penalty as Sλ = diag(λ1S1, . . . , λpSp), the normal equations become

(XT
βXβ + Sλ) β̂ = XT

βy.

The associated smoothing (or hat) matrix is

Hλ = Xβ(X
T
βXβ + Sλ)

−1XT
β ,

which maps observed responses to fitted values ŷ = Hλy. The effective degrees of freedom (edf) of
the fit is

edf(λ) = tr(Hλ),

quantifying model complexity in the presence of smoothing. Larger penalties shrink coefficients
and reduce edf, controlling variance at the cost of bias. From a Bayesian perspective, the penalty
corresponds to a Gaussian prior βj ∼ N(0, (λjSj)

−1).
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5.2 Smoothing Splines

Definition 5.1 (Smoothing Spline). A smoothing spline minimizes:

n∑
i=1

(yi − f(xi))
2 + λ

∫
[f ′′(x)]2dx

The solution is a natural cubic spline with knots at the data points.

This is a special case of the representer theorem: among all twice-differentiable functions, the
minimizer of the penalized criterion lies in a finite-dimensional space spanned by spline basis func-
tions determined by the inputs. The penalty

∫
[f ′′(x)]2 dx enforces global smoothness by controlling

curvature. As λ → 0 the fit interpolates the data; as λ → ∞ it approaches the least squares line.

5.3 P-splines

P-splines combine B-spline basis functions with difference penalties:

Penalty = λ

K∑
k=d+1

(∆dβk)
2

where ∆d is the d-th order difference operator.
P-splines decouple flexibility (many, evenly spaced knots) from smoothness (controlled by the

difference penalty). Using a rich B-spline basis (e.g., 20–40 knots) with a second- or third-order
difference penalty yields estimates that are relatively insensitive to the precise knot placement while
remaining computationally efficient due to the banded structure of B-spline design and penalty
matrices.

6 Estimation Methods

6.1 Backfitting Algorithm

For Gaussian GAMs, the backfitting algorithm iteratively estimates each smooth function:

1. Initialize: α̂ = ȳ, f̂j = 0 for all j

2. For j = 1, 2, . . . , p:

partial residuals: ej = y − α̂−
∑
k ̸=j

f̂k(xk)

update: f̂j = Sj(ej)

where Sj is a smoother

3. Repeat until convergence

Backfitting can be seen as Gauss–Seidel iteration on the normal equations obtained by treating
each fj as the image of a linear smoothing operator applied to its partial residuals. When each Sj is
a linear smoother and the spectral radius of the combined operator is less than one, the algorithm
converges to the unique solution that minimizes the penalized least squares criterion (see, e.g.,
Buja, Hastie and Tibshirani, 1989). Centering each f̂j to have zero mean (or to be orthogonal to
the intercept) ensures identifiability.
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6.2 Penalized Iteratively Reweighted Least Squares (P-IRLS)

For non-Gaussian GAMs, extend IRLS with penalties:

1. Compute working response: z = η + (y − µ)/µ′

2. Compute weights: w = (µ′)2/V (µ)

3. Solve penalized weighted least squares:

β̂ = argmin
β

∥W1/2(z−Xβ)∥2 +
∑
j

λjβ
T
j Sjβj

4. Update η, µ, and repeat

Collecting all coefficients in β, the penalized normal equations at each iteration are

(XTWX+ Sλ) β̂ = XTWz.

This yields the same algebraic form as in the Gaussian case, with W and z updated from the
current mean µ and linear predictor η. The fitted values are η̂ = Xβ̂ and the IRLS loop proceeds
until changes in β (or deviance) are below tolerance.

Practical tips. Standardize continuous covariates before fitting; start with moderate smoothing
(e.g., REML default) and inspect residual diagnostics; increase basis dimension (K) only if edf
approaches the basis limit.

7 Smoothing Parameter Selection

7.1 Cross-Validation

Definition 7.1 (Generalized Cross-Validation (GCV)).

GCV(λ) =
n∥y − ŷ∥2

(n− tr(H))2

where H is the hat matrix and tr(H) is the effective degrees of freedom.

7.2 Restricted Maximum Likelihood (REML)

REML treats smoothing parameters as variance components:

REML(λ) = −1

2

[
log |V|+ log |XTV−1X|+ yTPy

]
In mixed model form, each smooth can be represented as a random effect with precision propor-

tional to its smoothing parameter. Maximizing REML over variance components (and hence over λ)
yields smoothing parameter estimates with good small-sample properties and natural uncertainty
quantification.
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7.3 Akaike Information Criterion

AIC = −2ℓ(β̂) + 2 · edf

where edf is the effective degrees of freedom.
Using edf in place of the raw parameter count accounts for the fact that smoothing penalizes

flexibility. AIC targets out-of-sample predictive accuracy and is especially useful when comparing
non-nested GAMs fit with different smooth structures.

7.4 Partial Effects and Interpretation

Figure 11: Partial dependence functions in a simple additive model: estimated smooths closely
track the true underlying functions, enabling interpretation of each predictor’s nonlinear effect.

8 Inference and Uncertainty

8.1 Confidence Intervals

For Gaussian GAMs, pointwise confidence intervals are:

f̂(x)± zα/2

√
Var[f̂(x)]

The variance can be computed from the covariance matrix of the coefficients.
Under the penalized Gaussian framework, β̂ is approximately normal with covariance

Cov(β̂) ≈ σ2 (XT
βXβ + Sλ)

−1XT
βXβ (X

T
βXβ + Sλ)

−1,

yielding pointwise standard errors for smooths via the delta method. For joint inference on an
entire smooth, simultaneous confidence bands can be constructed using Scheffé-type adjustments
or posterior simulation under the Bayesian interpretation of penalties.
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Reporting. For each smooth, report edf, approximate F- or chi-square statistics, and 95% point-
wise or simultaneous bands. Interpret effects on the scale of the linear predictor and, for GLMs,
transform for presentation (e.g., odds scale).

8.2 Hypothesis Testing

8.2.1 Testing for Nonlinearity

Test H0 : f(x) = βx vs H1 : f(x) is nonlinear using:

F =
(RSS0 − RSS1)/(df0 − df1)

RSS1/df1

8.2.2 Testing for Zero Effect

Test H0 : f(x) = 0 using the effective degrees of freedom and residual variance.
More generally, approximate Wald or likelihood ratio tests can be formed for linear functionals

of smooths, using edf to calibrate null distributions. In the mixed model formulation, standard
inference for variance components (e.g., restricted likelihood ratio tests) can be used to assess
whether a smooth term contributes beyond noise.

9 Model Selection and Diagnostics

9.1 Variable Selection

• Stepwise selection: Add/remove terms based on significance

• Penalized selection: Use penalties that can shrink functions to zero

• Information criteria: Compare models using AIC/BIC

9.2 Diagnostics

1. Residual plots: Inspect residuals vs fitted and vs each covariate for patterns indicating
misspecification or under/oversmoothing.

2. Q-Q plots: Assess normality (for Gaussian GAMs) or use deviance/working residuals for
non-Gaussian families.

3. Influence and leverage: The diagonal of Hλ generalizes leverage; large values flag influen-
tial observations.

4. Partial residual plots: Visualize the contribution of each smooth net of others to detect
remaining structure.

5. Concurvity: Quantify nonlinear collinearity among smooths (e.g., via regressing one set
of basis functions on another and reporting R2); severe concurvity inflates uncertainty and
destabilizes estimates.

14



Week 11: Additive Models Introduction to Data Science (MSc)

9.3 Concurvity

Definition 9.1 (Concurvity). Concurvity is the nonlinear analog of collinearity - when one smooth
function can be approximated by one or more other smooth functions.

High concurvity can lead to unstable estimates and inflated standard errors.

Figure 12: Concurvity illustration: highly related predictors (left) make it difficult to separate
smooth effects (right), potentially distorting estimates.

10 Extensions and Variations

10.1 Varying Coefficient Models

Definition 10.1 (Varying Coefficient Model).

Y =

p∑
j=1

fj(Z)Xj + ϵ

where the coefficients fj(Z) vary smoothly with a modifier variable Z. This extends linear interac-
tion terms by allowing the effect of Xj to vary smoothly over Z, estimated via tensor product bases
in (Z) and (optionally) Xj.

10.2 Functional Data Analysis

When predictors are functions:

Y = α+

∫
f(t)X(t)dt+ ϵ

10.3 Spatial Smoothing

For spatial data, use tensor products or thin plate splines:

f(x, y) =
∑
i,j

βijbi(x)bj(y)
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Tensor product smooths combine marginal bases and penalties to adapt to different scales and
smoothness along each dimension, while thin plate splines provide rotation-invariant smoothing
with automatically placed basis functions.

Figure 13: Tensor-product smooth surface: contours illustrate a smooth bivariate function con-
structed from marginal bases.

11 Computational Considerations

11.1 Efficient Algorithms

• Wood’s algorithm: Efficient computation using QR decomposition

• Sparse matrix methods: Exploit sparsity in penalty matrices

• Parallel computation: Distribute smoothing across processors

11.2 Large Data Challenges

For big data:

• Use reduced rank smoothers

• Implement online/streaming algorithms

• Apply random sampling strategies

12 Applications in Data Science

12.1 Exploratory Data Analysis

GAMs excel at revealing nonlinear patterns:
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• Identify threshold effects

• Discover seasonal patterns

• Uncover complex relationships

12.2 Predictive Modeling

• Time series forecasting: Capture nonlinear trends

• Risk modeling: Model nonlinear risk factors

• Recommendation systems: Capture user preference curves

12.3 Causal Inference

• Control for confounders nonlinearly

• Model dose-response relationships

• Estimate treatment effects across subgroups

13 Software and Implementation

Popular implementations include:

• R: mgcv, gam, VGAM packages

• Python: scikit-learn, statsmodels, pyGAM

• Specialized: GAMLSS, brms (Bayesian)

To illustrate the practical application of these concepts, consider a data scientist modeling
website conversion rates as a function of user age and time spent on site using a logistic GAM.
This application demonstrates how additive models can capture complex nonlinear relationships in
business contexts, where the relationship between user characteristics and conversion probability
may not follow simple linear patterns. The effective degrees of freedom for each smooth function
provide insight into the complexity of the relationships discovered by the model, while the deviance
explained measures the overall model performance compared to simpler alternatives.

14 Summary

This lecture provided a comprehensive introduction to Generalized Additive Models (GAMs), which
extend linear models by allowing nonlinear relationships through smooth functions. We covered
the mathematical foundations, estimation methods using penalized likelihood, and practical appli-
cations in data science contexts.

Key concepts include understanding how smooth functions capture nonlinear patterns, the role
of smoothing parameters in controlling model complexity, and the interpretation of effective degrees
of freedom. The connection between GAMs and other statistical methods provides important
theoretical insights for understanding flexible modeling approaches.

Practical considerations such as model selection, diagnostics, and computational aspects are
essential for proper application in data science projects. GAMs serve as a bridge between parametric
and nonparametric methods, offering interpretable nonlinear modeling capabilities.
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15 Exercises

1. GAM Fundamentals: Explain the difference between parametric and nonparametric com-
ponents in GAMs. How do smoothing splines balance fit and smoothness? Describe the role
of the smoothing parameter λ.

2. Website Conversion Analysis: A logistic GAM for conversion rates shows: age smooth
(edf = 3.2), time smooth (edf = 5.8), deviance explained = 34%, AIC = 1247.3. Interpret
each component and suggest model improvements.

3. Effective Degrees of Freedom: Calculate the effective degrees of freedom for a cubic
smoothing spline with smoothing parameter λ = 0.1 applied to 100 data points. What does
this value tell us about model complexity?

4. Model Selection: Compare three models for predicting house prices: (1) linear regression,
(2) GAM with smooth terms for area and age, (3) GAM with interaction surface. Design a
model selection strategy using AIC, cross-validation, and residual analysis.

5. Smoothing Parameter Selection: Implement generalized cross-validation (GCV) for se-
lecting the smoothing parameter in a univariate smoothing spline. Compare results with
REML estimation and discuss the trade-offs.

6. GAM Diagnostics: Develop a comprehensive diagnostic framework for GAMs including
residual analysis, concurvity detection, and smooth function assessment. What specific issues
should you check for in GAM residuals?

7. Tensor Product Smooths: Extend the basic GAM framework to include interaction effects
using tensor products. Model sales data as a function of price and advertising with a smooth
interaction surface.

8. Computational Aspects: Compare the computational complexity of fitting GAMs using
backfitting versus penalized iteratively reweighted least squares. Discuss scalability consider-
ations for large datasets.
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