Week 10: Logistic Regression

Francisco Richter Ernst Wit

Introduction to Data Science (MSc)

1 Binary Response Theory and Exponential Family Foundations

1.1 Binary Response Variables

Definition 1.1 (Binary Response Variable). A binary response variable Y takes values in {0,1}
with:
PY=1)=p, PY=0)=1-p

where p € (0,1) is the success probability.

Theorem 1.1 (Bernoulli Distribution as Exponential Family). The Bernoulli distribution belongs
to the exponential family:

fly;p) =p’(1—p)' ¥ =exp {ylog (1pp> + log(1 — p)}
This gives us:

6 = log <1fp> (canonical parameter) (1)

b(0) = log(1 + €%)
a(¢p) =1 (dispersion parameter)
(y,¢) =0
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1.2 Link Function Theory for Binary Data

Definition 1.2 (Link Functions for Binary Data). A link function g maps probabilities to the real
line: g :(0,1) — R, enabling the use of linear modeling techniques for binary responses.

The choice of link function fundamentally determines how we model the relationship between
predictors and response probabilities. The most commonly used link function is the logit link,
defined as g(p) = log(p/(1 — p)), which transforms the probability p into the log-odds. This
transformation has profound theoretical and practical advantages that make it the canonical choice
for binary regression.

Alternative link functions include the probit link g(p) = ®~!(p), where ® represents the
standard normal cumulative distribution function. The probit link arises naturally when we assume
that there exists an underlying continuous latent variable following a normal distribution, and
we observe a binary outcome based on whether this latent variable exceeds a threshold. The
complementary log-log link g(p) = log(—log(1 — p)) is particularly useful when dealing with
extreme probabilities or when the underlying process follows a Gumbel distribution.
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Comparison of Link Functions for Binary Data
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Figure 1: Comparison of Link Functions: The logit, probit, and complementary log-log functions
map probabilities from (0,1) to (—oo,00) with different shapes. The logit function (solid line)
provides symmetric transformation around p = 0.5, while the probit function (dashed line) has
slightly heavier tails. The complementary log-log function (dotted line) is asymmetric, making it
suitable for modeling rare events where probabilities are typically small.

Logistic (sigmoid) function

-8 -6 -4 -2 0 2 4 6 8
X (linear predictor)

Figure 2: Logistic (sigmoid) function p(z) = 1/(1+4e~") mapping linear predictors to probabilities;
most sensitive near p = 0.5.
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Theorem 1.2 (Properties of the Logit Link). The logit link g(p) = log(p/(1 —p)) possesses several
mathematically elegant and practically important properties that establish it as the canonical choice
for binary regression.

The logit link’s canonical property stems from its direct correspondence to the natural parameter
0 of the Bernoulli distribution in exponential family form. When we write the Bernoulli distribution
as f(y;p) = exp{ylog(p/(1 — p)) + log(1l — p)}, we immediately see that the canonical parameter
is precisely 6 = log(p/(1 — p)), which is the logit transformation. This canonical property ensures
that the log-likelihood function is concave in the regression parameters, guaranteeing the existence
and uniqueness of the maximum likelihood estimator.

The symmetry property g(p) = —g(1 — p) reflects the balanced treatment of success and failure
outcomes. This symmetry means that the logit of the probability of success is the negative of the
logit of the probability of failure, providing an intuitive interpretation where positive coefficients
increase the log-odds of success while negative coefficients decrease them.

The interpretability of logistic regression coefficients as log-odds ratios provides direct practical
meaning. When we increase a predictor z; by one unit, the log-odds change by ;, which corre-
sponds to multiplying the odds by exp(/3;). This multiplicative interpretation on the odds scale is
both mathematically tractable and practically meaningful for decision-making.

1.3 0Odds and Odds Ratios
Definition 1.3 (Odds and Odds Ratio). For probability p:

D
Odds = 12 » (5)
Odd51 _ p1/<1 _pl)
Oddsy  p2/(1 — p2)

Theorem 1.3 (Odds Ratio in Logistic Regression). For logistic regression logit(p) = x' 3:
Oij = exp(ﬁj)

represents the multiplicative change in odds for a one-unit increase in x;.

Odds Ratio =

1.4 Logistic Function Properties

x

Theorem 1.4 (Logistic Function Derivatives). For p(z) = 155
() = p(z)(1 - p(x)) (7)
p'(x) = p(z)(1 - p(x))(1 — 2p()) (®)
mazjixp'(:c) = % atx =0 9)

Corollary 1.1 (Maximum Slope Property). The logistic function has mazimum slope at p = 0.5,
making it most sensitive to changes in the linear predictor when probabilities are near 0.5.

2 Advanced Maximum Likelihood Theory

2.1 Detailed Likelihood Derivation

Theorem 2.1 (Bernoulli Likelihood for Logistic Regression). For independent observations (y;,X;),
i=1,...,n, where Y; ~ Bernoulli(p;):
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The likelithood function is:

prz 1_ 1 —Yi

xTﬁ
Substituting p; =
14e5i P

() ()
i1 1—|—exz5 1—|—ez5

Theorem 2.2 (Log-Likelihood Simplification). The log-likelihood simplifies to:

n

4B) = [yix! 8~ log(1 + &</ 7)]

i=1
This can be written in exponential family form:

n

0B) = it — b(6:))
i=1
where 0; = xI'B3 and b(0) = log(1 + 7).
2.2 Score Function and Hessian

Theorem 2.3 (Score Function Derivation). The score function (first derivative) is:

Z —pi)x; =X (y_ﬂ')

T
8
where ® = (p1,...,pn)" and p; = 7%
1+e™i
Proof.
ol - i By,
T D A 1
= Zmu — pi) (11)

Theorem 2.4 (Hessian Matrix). The Hessian (second derivative matriz) is:
0%
~ 0p0p"”
where W = diag(wy, . .., wy) with w; = p;(1 — p;).

= XTwx

Corollary 2.1 (Concavity of Log-Likelihood). Since w; = p;(1 — p;) > 0 for all p; € (0,1), the
matriz W is positive definite, making H negative definite. Therefore, the log-likelihood is strictly
concave, ensuring a unique global mazrimum.
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2.3 Fisher Information and Asymptotic Properties

Theorem 2.5 (Fisher Information Matrix). The Fisher information matriz is:
I1(8) = E[-H] = XTWX
where the expectation is taken over the distribution of Y.

Theorem 2.6 (Asymptotic Distribution of MLE). Under regularity conditions, as n — oo:

V(B - 8) % N(0,17(8))

For finite samples, approximately:

B~ N(B.I(B)

3 Introduction to Logistic Regression

Logistic regression is a fundamental statistical method for modeling binary and categorical out-
comes. Unlike linear regression, which models the mean of a continuous response, logistic regression
models the probability of an event occurring, making it essential for classification problems in data
science and machine learning.

The key insight underlying logistic regression is the recognition that while linear regression
predicts values that can range from negative to positive infinity, probabilities must be constrained
between 0 and 1. Logistic regression elegantly solves this constraint problem by using the logistic
function to transform linear combinations of predictors into valid probabilities. This transformation
ensures that no matter what values the predictors take, the predicted probabilities will always fall
within the required range.

4 The Logistic Function

4.1 Mathematical Foundation
Definition 4.1 (Logistic Function). The logistic function is defined as:

_ er _ 1
o 14er l4e®

p(z)

This function maps any real number to the interval (0,1).

4.2 Properties

Key properties of the logistic function:
o lim, , oop(x)=0
o lim, ,oop(x) =1

p(0) =05

The function is monotonically increasing

It has an S-shaped (sigmoid) curve
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4.3 The Logit Transformation

Definition 4.2 (Logit Function). The logit function is the inverse of the logistic function:

logit(p) = log (11)p>

where % is called the odds ratio.

The logit transformation maps probabilities from (0,1) to (—oo, o0), allowing us to use linear
modeling techniques.

5 Binary Logistic Regression

5.1 Model Specification

Definition 5.1 (Binary Logistic Regression Model). For a binary response Y € {0,1} and predic-
tors x = (x1,T2,...,2p) 7 :

logit(P(Y = 1|x)) = Bo + Brz1 + Baza + -+ - + Bpap

Equivalently:
1 Y 6/80+,31$1+'“+/8pxp

1 + 650+61$1+“'+5p33p

P(Y =1|x) =

5.2 Interpretation of Coefficients

Theorem 5.1 (Odds Ratio Interpretation). For a one-unit increase in x; (holding other variables
constant):
Odds Ratio = e

This represents the multiplicative change in odds.

Example 5.1 (Coefficient Interpretation). If 81 = 0.693, then ¢%%93 = 2. This means a one-unit
increase in x1 doubles the odds of the event occurring.

6 Maximum Likelihood Estimation

6.1 Likelihood Function
For independent observations (y;,X;), ¢ = 1,...,n:

Definition 6.1 (Likelihood for Logistic Regression).
n
L(B) = Hpii(l — i)Y
i=1

xT
where p; = P(Y; = 1|x;) = - ’? .
14e%i P
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6.2 Log-Likelihood
Definition 6.2 (Log-Likelihood).

n

UB) = lyilog(pi) + (1 — ;) log(1 — py)]

i=1
Substituting the logistic form:

n

UB) =Y [yl B~ log(1 + %)

i=1

6.3 Score Function and Information Matrix

Theorem 6.1 (Score Function). The score function (gradient of log-likelihood) is:

n

U = Z(yz —pi)xi = X" (y — )

i=1
where ™ = (p1,p2, .., Pn)’
Theorem 6.2 (Fisher Information Matrix).

I(8) = XTWX

where W = diag(p1(1 — p1), p2(1 —p2), ..., pn(1 — pn)).

7 Newton-Raphson Algorithm

Since there’s no closed-form solution, we use iterative methods:

Definition 7.1 (Newton-Raphson for Logistic Regression).
B =M + (g™ ~'u(s™)
This is equivalent to Iteratively Reweighted Least Squares (IRLS):
B — (XTWE X)X TWE) k)

where z*) = X3®) + [W®)]~1(y — (%) is the working response.

8 Statistical Inference

8.1 Asymptotic Properties
Theorem 8.1 (Asymptotic Distribution of MLE). Under regularity conditions:

> D

V(B - B) = N(0,171(B))
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8.2 Hypothesis Testing
8.2.1 Wald Test
For testing Hy : 8 = 0:

Bj .
W = — ~ N(0,1) asymptotically
SE(6;)

8.2.2 Likelihood Ratio Test

For testing Hy : Bgy, = 0: . .
LRT = Q[E(ﬂfun) - E(lgreduced)} ~ thl

where ¢ is the number of parameters being tested.

8.3 Confidence Intervals

Theorem 8.2 (Confidence Intervals for Coefficients). An approzimate (1 — o) confidence interval
for (3; is:
Bj + Raf2 SE(ﬁj)

For odds ratios:

exp <3] + 2q)9 - SE(BJ)>

9 Model Diagnostics and Goodness of Fit

9.1 Deviance

Definition 9.1 (Deviance).
n
D = 2[€satumted - gﬁtted] = -2 Z[yz 10g(ﬁz> + (1 - yz) IOg(l - ﬁz)]
i=1

For large samples with grouped data, D ~ X727,—p—1 approximately.

9.2 Pearson Chi-Square

n

X2=%° (yi — pi)?

— pi(l = pi)
9.3 Pseudo R-squared Measures
9.3.1 McFadden’s R-squared
i
RIQ\/ICF =1- (B)
o

where ¢ is the log-likelihood of the null model.
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9.3.2 Nagelkerke R-squared
1—exp (2@0—”@([3)))

1 —exp (%)

9.4 Logistic Regression for Classification in Practice

2
RNag -

Logistic regression: probability field and decision boundary
~

- 0.90
- 0.75
- 0.60

I
- 0.45

P(Y=1|x)

- 0.30
- 0.15

- 0.00

Figure 3: Probability field and 0.5 decision boundary learned by logistic regression on two infor-
mative features.

The figure illustrates fundamental concepts in logistic regression for classification tasks. The
decision boundary visualization demonstrates how logistic regression creates smooth, probabilistic
boundaries between classes, with the color gradient representing predicted probabilities. Unlike
linear discriminant analysis, logistic regression can handle nonlinear separations through feature
transformations while maintaining interpretable coefficients.

The sigmoid function plot shows the characteristic S-shaped curve that maps linear combina-
tions of features to probabilities between 0 and 1. This transformation ensures valid probability
estimates while providing smooth gradients for optimization. The ROC curve analysis demon-
strates excellent discriminative ability with an AUC of 0.918, significantly outperforming random
classification.

The confusion matrix provides detailed performance metrics, showing high accuracy with bal-
anced sensitivity and specificity. The L1 regularization analysis reveals how LASSO penalty pro-
motes sparsity by shrinking some coefficients to exactly zero, effectively performing feature selec-
tion. Cross-validation identifies the optimal regularization parameter C=0.281, demonstrating the
bias-variance tradeoff in regularized logistic regression. This framework is essential for modern
classification tasks in data science applications.
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10 Residual Analysis

10.1 Types of Residuals
10.1.1 Pearson Residuals

P Yi—Dbi
pi(1 — pi)

10.1.2 Deviance Residuals

. . . 1 _ .
r = sign(y; —pi)\/2[yz- log <y’> + (1 —y;)log ( ?{Z)]
Di 1—p;

10.2 Influential Observations

10.2.1 Leverage
hi = pi(1 = po)x] (XTWX)™'x

10.2.2 Cook’s Distance
(rF)?h;

— 2

D: = (p+ 1)(1 — h)?

11 Multinomial Logistic Regression
For categorical responses with K > 2 categories:

11.1 Model Specification
Definition 11.1 (Multinomial Logistic Model). For category k =1,2,..., K —1 (with category K

as reference): P = )
= k|x
o (7= 10xg) =

The probabilities are:

(Y = klx) i k
P(Y = klx) = L k=1,...,K-1
L+ 3055 e
1
P(Y =K[x) =

L+ 3K e P

12 Ordinal Logistic Regression

For ordered categorical responses:

10
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12.1 Proportional Odds Model
Definition 12.1 (Proportional Odds Model).

logit( P(Y < k|x)) = a — x' 3
fork=1,2 ..., K —1.

The proportional odds assumption means that 3 is the same for all cutpoints.

13 Regularization in Logistic Regression

13.1 Ridge Logistic Regression

Minimize:
P

—UB)+ A B

j=1
13.2 LASSO Logistic Regression
Minimize:

p
—0(B)+ 2|5l
j=1

13.3 Elastic Net
Minimize:

p p
—B) + MY 1B+ XD B3
j=1 =1

14 Applications in Data Science
14.1 Binary Classification

e Email spam detection

e Medical diagnosis (disease/no disease)

e Customer churn prediction

e Credit default modeling

14.2 Multi-class Classification

e Image classification
e Sentiment analysis (positive/neutral/negative)
e Market segmentation

e Product recommendation categories

11
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14.3 Feature Selection

Logistic regression with regularization provides automatic feature selection, particularly useful in
high-dimensional settings.

A data scientist builds a logistic regression model to predict customer purchase behavior. The
model includes age (in years) and income (in thousands). The fitted model is:

logit(P(Purchase)) = —2.1 4 0.05 x Age + 0.03 x Income

To illustrate the practical application of these concepts, consider a customer churn prediction
model with the followmg estimated parameters: intercept ﬁo = —2.5, age coefficient ﬂ Age = —0.03,
and income coefficient ﬂIncome = 0.00001. For a 40-year-old customer with $60,000 income, we can
calculate the predicted churn probability as follows:

logit(p) = —2.5 — 0.03(40) 4+ 0.00001(60000) = —2.5 — 1.2 4+ 0.6 = —3.1
1+ ,; r = 0.043, indicating a 4.3% churn prob-
ability for this customer profile. The standard errors for these estimates are SE(f Age) = 0.02 and

Converting this log-odds to a probability: p =

SE(BIncome) = 0.01, which can be used to construct confidence intervals and perform hypothesis
tests about the significance of these predictors.

15 Summary

This lecture provided a comprehensive introduction to logistic regression, a fundamental method
for binary classification in data science. We covered the mathematical foundations, including the
logistic function, maximum likelihood estimation, and interpretation of coefficients through odds
ratios.

Key concepts include understanding when to use logistic regression, how to interpret coeflicients
and odds ratios, and the importance of model diagnostics and evaluation metrics. The connection
between logistic regression and linear regression through the logit link function provides important
theoretical insights.

Practical considerations such as handling categorical variables, interaction effects, and regular-
ization techniques are essential for successful application in data science projects. Understanding
logistic regression is crucial as it forms the foundation for more advanced classification methods
and generalized linear models.

16 Exercises

ePot+Biz
14ePot+h1z

dp = B1p(z)(1 — p(z)). Interpret this result in terms of the maximum rate of change.

1. Logistic Function Properties: Show that the logistic function p(x) = satisfies

2. Odds Ratio Calculation: In a study of customer churn, the logistic regression coefficient
for monthly charges is 5 = 0.02. Calculate and interpret the odds ratio for a $50 increase in
monthly charges.

3. Maximum Likelihood Estimation: For a simple logistic regression with one predictor,
write out the log-likelihood function and derive the score equations. Explain why these
equations cannot be solved analytically.

4. Model Interpretation: A marketing model predicts email click-through with coefficients:
Intercept = -3.2, Age = -0.01, Income = 0.00002. Calculate the predicted probability for a
35-year-old with $75,000 income. What is the effect of a 10-year age increase?

12
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5. Deviance and Model Fit: Explain the difference between null deviance and residual de-
viance in logistic regression. If a model has null deviance = 1386 and residual deviance =
1156 with 3 parameters, calculate the pseudo-R? and interpret the result.

6. Regularization: Compare Ridge and LASSO regularization for logistic regression. Under
what circumstances would you prefer LASSO? How does regularization affect coefficient in-
terpretation?

7. Multinomial Extension: Extend binary logistic regression to multinomial logistic regres-
sion for 3 categories. Write the probability expressions and explain the identification con-
straint needed.

8. Model Diagnostics: Describe three methods for assessing logistic regression model fit. For
each method, explain what it measures and how you would interpret concerning results.
Include discussion of ROC curves, Hosmer-Lemeshow test, and residual analysis.

13



	Binary Response Theory and Exponential Family Foundations
	Binary Response Variables
	Link Function Theory for Binary Data
	Odds and Odds Ratios
	Logistic Function Properties

	Advanced Maximum Likelihood Theory
	Detailed Likelihood Derivation
	Score Function and Hessian
	Fisher Information and Asymptotic Properties

	Introduction to Logistic Regression
	The Logistic Function
	Mathematical Foundation
	Properties
	The Logit Transformation

	Binary Logistic Regression
	Model Specification
	Interpretation of Coefficients

	Maximum Likelihood Estimation
	Likelihood Function
	Log-Likelihood
	Score Function and Information Matrix

	Newton-Raphson Algorithm
	Statistical Inference
	Asymptotic Properties
	Hypothesis Testing
	Wald Test
	Likelihood Ratio Test

	Confidence Intervals

	Model Diagnostics and Goodness of Fit
	Deviance
	Pearson Chi-Square
	Pseudo R-squared Measures
	McFadden's R-squared
	Nagelkerke R-squared

	Logistic Regression for Classification in Practice

	Residual Analysis
	Types of Residuals
	Pearson Residuals
	Deviance Residuals

	Influential Observations
	Leverage
	Cook's Distance


	Multinomial Logistic Regression
	Model Specification

	Ordinal Logistic Regression
	Proportional Odds Model

	Regularization in Logistic Regression
	Ridge Logistic Regression
	LASSO Logistic Regression
	Elastic Net

	Applications in Data Science
	Binary Classification
	Multi-class Classification
	Feature Selection

	Summary
	Exercises

