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1 Introduction to Mixed Models

Mixed models, also known as mixed-effects models or hierarchical models, represent a fundamental
advancement in statistical modeling that addresses the limitations of classical linear regression when
dealing with complex data structures. These models explicitly account for correlation patterns
that arise naturally in many data science applications, such as repeated measurements on the same
subjects, observations clustered within groups, or hierarchical data structures where lower-level
units are nested within higher-level units.

The theoretical foundation of mixed models rests on the recognition that many datasets violate
the independence assumption of classical regression. When observations are correlated, standard
regression methods produce inefficient estimates and incorrect standard errors, leading to invalid
statistical inference. Mixed models provide a principled framework for modeling these correlation
structures while maintaining computational tractability and interpretability.

The distinction between fixed and random effects forms the conceptual core of mixed modeling.
Fixed effects represent population-level parameters that are constant across all subjects or clusters
in the population. These are the primary parameters of scientific interest and represent system-
atic relationships that we wish to estimate and interpret. Random effects, in contrast, represent
subject-specific or cluster-specific deviations from the population average, capturing unobserved
heterogeneity that creates correlation among observations within the same group.

2 Mathematical Framework for Mixed Models

2.1 General Linear Mixed Model Specification

The general linear mixed model provides a unified framework for analyzing correlated data struc-
tures. The model can be expressed in matrix notation as a natural extension of the classical linear
model, incorporating both fixed effects that apply to the entire population and random effects that
vary across subjects or clusters.

Definition 2.1 (Linear Mixed Model). The general linear mized model is specified as:
y=XB+Zu+e

where y is the n X 1 response vector containing all observations, X is the n X p design matrix for
fized effects, B is the p x 1 vector of fized effects parameters, Z is the n X q design matriz for
random effects, u is the g x 1 vector of random effects with u ~ N(0,G), and € is the n X 1 vector
of residual errors with € ~ N(0,R).
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The covariance matrices G and R encode the correlation structure of the data. The matrix
G captures the variability and correlation among random effects, while R represents the resid-
ual covariance structure. In many applications, R = ¢?I, assuming independent and identically
distributed residual errors, though more complex structures can be accommodated.

2.2 Marginal and Conditional Distributions

The mixed model specification leads to a natural decomposition of the response variable into
marginal and conditional distributions. The marginal distribution of y integrates over the ran-
dom effects, while the conditional distribution conditions on specific values of the random effects.

Theorem 2.1 (Marginal Distribution). Under the linear mized model, the marginal distribution

of y 1is:
y ~ N(XB,V)

where the marginal covariance matriz is:

V=7ZGZ' + R
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Figure 1: BLUP shrinkage: naive group intercept estimates versus shrunk BLUPs; color denotes
group sample size.

This marginal covariance structure V captures the complex correlation patterns induced by
the random effects. The term ZGZ” represents the contribution of random effects to the overall
covariance, while R represents the residual covariance. This decomposition allows mixed models to
accommodate a wide variety of correlation structures that would be impossible to specify directly.

The conditional distribution provides insight into the behavior of individual subjects or clusters.
Given specific values of the random effects u, the conditional distribution of y is:

ylu~ N(XB8+ Zu,R)

This conditional perspective reveals how individual subjects deviate from the population average
through their specific random effects values.
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3 Random Intercept Models

3.1 Theoretical Foundation

The random intercept model represents the simplest and most commonly used mixed model spec-
ification. This model assumes that subjects or clusters differ in their baseline levels but share
common slopes for all covariates. The mathematical elegance of this model lies in its ability to
capture between-subject heterogeneity while maintaining a parsimonious parameter structure.
For longitudinal data with n; observations on subject ¢, the random intercept model is specified
as:
Yij = Bo + f1Xij +u;i + €5

where ¢ = 1,...,m indexes subjects and j = 1,...,n; indexes observations within subjects. The
random intercept u; ~ N(0,02) represents the subject-specific deviation from the population in-
tercept o, while €;; ~ N(0,0?) represents the residual error for observation j on subject i.

The independence assumption requires that u; and ¢;; are mutually independent and indepen-
dent across subjects and observations. This assumption is crucial for the validity of the model and
the correctness of statistical inference.

Random intercepts: group-specific baselines
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Figure 2: Random intercepts: group-specific baselines with a common population trend.

3.2 Covariance Structure and Intraclass Correlation

The random intercept model induces a specific covariance structure that reflects the clustering of
observations within subjects. For any two observations Y;; and Y, on the same subject ¢, the
covariance is:

Cov(Yij, Yir) = 02

while observations on different subjects are uncorrelated:

Cov(Yij, Yy) =0 fori#4
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This covariance structure leads to the concept of intraclass correlation, which quantifies the
proportion of total variance attributable to between-subject differences.

Definition 3.1 (Intraclass Correlation Coefficient). The intraclass correlation coefficient (ICC) is

defined as:
p= %

- 2 2
oy +0
where o2 is the between-subject variance and o? is the within-subject variance.

The ICC has a natural interpretation as the correlation between any two observations from the
same subject. Values of p close to 1 indicate strong clustering, where observations within subjects
are highly similar, while values close to 0 suggest weak clustering, where within-subject correlation
is minimal. The ICC also represents the proportion of total variance explained by subject-level
differences, making it a key measure for understanding the importance of the clustering structure.

Y%rci}ance components and ICC = 0.61
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Figure 3: Variance components (between vs within) with the corresponding ICC value.

4 Random Slope Models

4.1 Extending to Random Slopes

While random intercept models capture between-subject differences in baseline levels, they assume
that all subjects respond identically to covariates. Random slope models relax this assumption,
allowing the effects of covariates to vary across subjects. This extension is particularly important
in longitudinal studies where subjects may have different rates of change over time.

The random intercept and slope model for a single covariate is specified as:

Yij = Bo + f1Xij + uoi + wiiXij + €5

where ug; is the random intercept and wuy; is the random slope for subject . The random effects
follow a bivariate normal distribution:

()~ ((0)- (e %))
U4 0 Ou0l  Oy1

4



Week 9: Mixed Models Introduction to Data Science (MSc)

The covariance parameter 0,01 captures the correlation between random intercepts and slopes,
providing insight into whether subjects with higher baseline values tend to have steeper or flatter
slopes.

Random slopes: subject-specific trajectories
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Figure 4: Random slopes: subject-specific trajectories around a population average line.

4.2 Covariance Structure for Random Slopes

The random slope model induces a more complex covariance structure that depends on the values
of the covariate. For observations Y;; and Yj; on the same subject with covariate values X;; and
X1, the covariance is:

Cov(Yij, Yi) = o2y + ouo1 (Xij + Xir) + O’ZlXinik

This structure allows for heteroscedasticity and non-constant correlation, reflecting the reality
that observations may be more or less correlated depending on their covariate values. When X
represents time, this structure captures the intuitive notion that observations closer in time are
more highly correlated than observations farther apart.

5 Maximum Likelihood and REML Estimation

5.1 Maximum Likelihood Estimation

Maximum likelihood estimation for mixed models requires maximizing the marginal likelihood
obtained by integrating over the random effects. The marginal likelihood for the linear mixed
model is:

L(B,8) = (2m)~"2[V|™ 2 exp (—;(y —XB)'V iy - Xﬂ))

where 0 represents the variance components that determine V.
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The computational challenge lies in the evaluation of the determinant and inverse of the po-
tentially large covariance matrix V. Modern algorithms exploit the structure of mixed models to
make these computations tractable through techniques such as the sweep operator and Cholesky
decomposition.

5.2 Restricted Maximum Likelihood

Restricted Maximum Likelihood (REML) addresses the bias in ML estimation of variance com-
ponents that arises from not accounting for the loss of degrees of freedom due to fixed effects
estimation. REML estimates variance components by maximizing the likelihood of error contrasts
that are orthogonal to the fixed effects.

Definition 5.1 (REML Criterion). The REML log-likelihood is:
__1 Ty7—1 xAaVIv-1l(v _ X/
trEML(0) = —35 |log [V] +10g [XTVTX| + (y = XB)" V™ (y — XB)

where ,3 = (XTV-IX)"I1XTV~ly is the generalized least squares estimator.

The additional term log | X7V ~!X] in the REML criterion accounts for the uncertainty in fixed
effects estimation, leading to less biased estimates of variance components, particularly in small
samples.

5.3 Best Linear Unbiased Predictors

The prediction of random effects requires balancing the information from individual subjects
against the population average. This balance is achieved through Best Linear Unbiased Predictors
(BLUPs), which provide optimal predictions under the mixed model framework.

Theorem 5.1 (BLUPs for Random Effects). The best linear unbiased predictors of the random
effects are:

a=Gz'v-ly - Xp)
where ,B is the BLUE of 3.

BLUPs exhibit a shrinkage property, where individual estimates are pulled toward the popula-
tion mean. The amount of shrinkage depends on the reliability of individual estimates, with less
reliable estimates (based on fewer observations or higher variability) being shrunk more heavily
toward the population average. This shrinkage property makes BLUPs particularly valuable for
prediction in situations where individual-level estimates would be unreliable.

6 Model Selection and Diagnostics

6.1 Information Criteria for Mixed Models

Model selection in mixed models requires careful consideration of the estimation method used. The
choice between ML and REML affects the calculation of information criteria and their interpreta-
tion.

For comparing models with different fixed effects structures, ML estimation should be used
because REML estimates are not directly comparable across different fixed effects specifications.
For comparing models with the same fixed effects but different random effects structures, REML
is preferred because it provides less biased estimates of variance components.
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The effective number of parameters in mixed models is not always clear, particularly when ran-
dom effects are involved. The conditional AIC (cAIC) and other modifications have been proposed
to address this issue, though the standard AIC and BIC remain widely used in practice.

6.2 Likelihood Ratio Testing

Likelihood ratio tests provide a formal framework for comparing nested mixed models. However,
testing variance components presents special challenges because the null hypothesis often places
parameters on the boundary of the parameter space.

Theorem 6.1 (LRT for Variance Components). For testing Hy : 02 = 0 versus Hy : 02 > 0, the
likelihood ratio test statistic:
LRT = 2[¢; — £q]

has an asymptotic distribution that is a mizture of x? distributions: %X(Z)‘i‘ %X%; where X3 represents
a point mass at zero.

This non-standard asymptotic distribution arises because the null hypothesis places the variance
parameter on the boundary of the parameter space (at zero), violating the regularity conditions for
standard likelihood ratio theory.

6.3 Residual Analysis

Mixed models generate multiple types of residuals, each providing different insights into model
adequacy. Marginal residuals r,,, =y — XB reflect deviations from the population average, while
conditional residuals r. =y — Xfi — Z1 reflect deviations from subject-specific predictions.

Standardized residuals account for the heteroscedasticity induced by the mixed model structure.
The standardization requires careful attention to the covariance structure, as residuals from the
same subject are correlated even after fitting the model.

7 Generalized Linear Mixed Models

7.1 Extension to Non-Normal Responses

Generalized Linear Mixed Models (GLMMs) extend the mixed model framework to accommodate
non-normal response variables by incorporating a link function and specifying an exponential family
distribution for the response.

Definition 7.1 (GLMM). The generalized linear mized model is specified as:
g(ElY;j|w)) = x};8 + z};u,
where g(-) is the link function, Y;; follows an exponential family distribution, and u; ~ N(0,G).

Common GLMDMs include logistic mixed models for binary responses, Poisson mixed models
for count data, and gamma mixed models for positive continuous responses. Each specification
requires careful consideration of the appropriate link function and distributional assumptions.
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7.2 Estimation Challenges

GLMMs present significant computational challenges because the marginal likelihood involves in-
tractable integrals over the random effects distribution. Various approximation methods have been
developed to address this challenge.

The Laplace approximation provides a second-order Taylor expansion around the mode of the
integrand, yielding a Gaussian approximation to the integral. Adaptive Gaussian quadrature uses
numerical integration with strategically chosen quadrature points. Markov Chain Monte Carlo
methods provide exact sampling-based inference but at greater computational cost.

Each method involves trade-offs between computational efficiency and approximation accuracy.
The choice of method depends on the complexity of the model, the sample size, and the required
precision of the estimates.

8 Advanced Applications in Data Science

8.1 Longitudinal Data Analysis

Mixed models provide the natural framework for analyzing longitudinal data, where repeated mea-
surements are collected on the same subjects over time. The correlation structure induced by
repeated measurements violates the independence assumptions of standard regression methods,
making mixed models essential for valid inference.

In clinical trials, mixed models accommodate missing data under the missing at random as-
sumption, providing more efficient and less biased estimates than complete case analysis. The
ability to include all available data, even from subjects with incomplete follow-up, represents a
major advantage over alternative approaches.

Web analytics applications often involve tracking user behavior over time, with natural cluster-
ing at the user level. Mixed models can accommodate user-specific baseline levels and time trends,
providing insights into both population-level patterns and individual heterogeneity.

8.2 Hierarchical Data Structures

Educational research frequently involves students nested within classrooms within schools, creating
multiple levels of clustering. Mixed models can accommodate this hierarchical structure through
multiple levels of random effects, allowing for variation at each level of the hierarchy.

In business applications, sales data might be clustered within sales representatives within regions
within companies. Mixed models can decompose the total variation into components attributable
to each level of the hierarchy, providing insights into where interventions might be most effective.

8.3 Machine Learning Integration

Modern machine learning applications increasingly recognize the value of mixed models for handling
structured data. Personalized recommendation systems can incorporate user-specific random effects
to capture individual preferences while learning population-level patterns.

Multi-task learning problems, where related tasks are learned simultaneously, can be formulated
as mixed models with task-specific random effects. This approach allows for information sharing
across tasks while accommodating task-specific differences.

Transfer learning applications can use mixed models to adapt population-level models to new
domains through domain-specific random effects, providing a principled approach to domain adap-
tation.
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9 Summary

Mixed models represent a fundamental advancement in statistical methodology that addresses the
limitations of classical regression when dealing with correlated data structures. The mathematical
framework provides a principled approach to modeling complex correlation patterns while main-
taining interpretability and computational tractability.

The distinction between fixed and random effects provides both conceptual clarity and prac-
tical flexibility. Fixed effects capture population-level relationships of primary scientific interest,
while random effects account for unobserved heterogeneity that creates correlation among observa-
tions. This decomposition allows mixed models to accommodate a wide variety of data structures
commonly encountered in modern data science applications.

The estimation theory for mixed models, including maximum likelihood and REML approaches,
provides the foundation for statistical inference. The development of BLUPs offers optimal predic-
tion of random effects through a principled shrinkage approach that balances individual information
against population averages.

Model selection and diagnostic procedures adapted for mixed models ensure that these power-
ful methods can be applied reliably in practice. The extension to generalized linear mixed models
broadens the applicability to non-normal response variables, though at the cost of increased com-
putational complexity.

The applications in longitudinal data analysis, hierarchical data structures, and modern machine
learning demonstrate the continued relevance and importance of mixed models in contemporary
data science. As data structures become increasingly complex and sample sizes continue to grow,
mixed models provide essential tools for extracting meaningful insights while accounting for the
correlation structures inherent in real-world data.

10 Exercises

1. Intraclass Correlation Analysis: A study examines student test scores across different
schools with 02 = 25 (between-school variance) and o2 = 100 (within-school variance). Cal-
culate the intraclass correlation coefficient and provide a detailed interpretation of its meaning
for educational policy. Discuss how this ICC value would influence decisions about school-level
versus student-level interventions.

2. Random Effects Covariance Structure: For a random intercept and slope model with
time as the covariate, derive the covariance between observations at times t; and to for
the same subject. Show how this covariance depends on the time points and explain the
implications for study design in longitudinal research.

3. REML versus ML Estimation: Explain the theoretical basis for why REML provides less
biased estimates of variance components compared to ML. Construct a simple example with
small sample size to demonstrate this bias numerically, and discuss when you might prefer
ML estimation despite this bias.

4. Model Selection Strategy: Design a systematic approach for selecting the random effects
structure in a longitudinal study with multiple covariates. Include considerations of both
statistical criteria (AIC, BIC, likelihood ratio tests) and practical interpretability. Discuss
how the choice between ML and REML affects your selection strategy.
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5. BLUP Properties: Prove that BLUPs exhibit shrinkage toward the population mean and
derive the shrinkage factor for a simple random intercept model. Explain how the amount of
shrinkage depends on the number of observations per subject and the intraclass correlation
coefficient.

6. Boundary Testing Problem: For testing Hy : 02 = 0 in a random intercept model,

explain why the standard chi-square distribution doesn’t apply and derive the correct mixture
distribution. Provide practical guidance for interpreting p-values in this context.

7. GLMM Approximation Methods: Compare the Laplace approximation and adaptive
Gaussian quadrature for a logistic mixed model. Discuss the trade-offs between computational
efficiency and accuracy, and provide guidelines for choosing between these methods in practice.

8. Hierarchical Data Application: Design a mixed model for analyzing customer satisfaction
scores where customers are nested within stores within regions. Specify the complete model
including all random effects, discuss the interpretation of variance components at each level,
and explain how you would test the significance of each level of clustering.

10
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