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1 Introduction to Statistical Inference

Statistical inference represents the cornerstone of data science methodology, providing the math-
ematical framework for drawing conclusions about populations based on sample data while quan-
tifying the uncertainty inherent in this process. The two fundamental paradigms of statistical
inference—confidence intervals for estimation and hypothesis testing for decision making—form
the foundation upon which modern data science applications are built.

The theoretical importance of statistical inference extends far beyond its computational ap-
plications. These methods embody fundamental principles of scientific reasoning, including the
quantification of uncertainty, the control of error rates, and the systematic evaluation of evidence.
Understanding these principles deeply provides essential insights into the reliability and limitations
of data-driven conclusions, which is crucial for responsible data science practice.

From a mathematical perspective, statistical inference connects probability theory with practical
decision making, demonstrating how abstract mathematical concepts translate into concrete tools
for analyzing real-world data. The asymptotic theory underlying large-sample inference provides
a bridge between finite-sample exact results and the approximate methods that are essential for
analyzing complex, high-dimensional datasets common in modern applications.

2 Mathematical Foundations of Confidence Intervals

2.1 Theoretical Framework and Interpretation

The concept of confidence intervals requires careful mathematical formulation to avoid common mis-
interpretations while providing a rigorous foundation for uncertainty quantification. The frequentist
interpretation of confidence intervals relies on the long-run behavior of the interval construction
procedure rather than probability statements about fixed but unknown parameters.

Definition 2.1 (Confidence Interval). Let θ be an unknown parameter and let X1, X2, . . . , Xn be
a random sample from a distribution depending on θ. A (1 − α) × 100% confidence interval for θ
is a random interval [L(X1, . . . , Xn), U(X1, . . . , Xn)] such that:

Pθ(L(X1, . . . , Xn) ≤ θ ≤ U(X1, . . . , Xn)) = 1− α

for all values of θ in the parameter space.

The subscript θ in Pθ emphasizes that the probability is computed under the assumption that
θ is the true parameter value. This formulation clarifies that the randomness lies in the interval
endpoints, which are functions of the random sample, rather than in the parameter θ, which is
fixed but unknown.
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The coverage probability property must hold for all possible values of θ, which is a strong
requirement that distinguishes confidence intervals from other types of interval estimates. This
uniform coverage property ensures that the confidence interval procedure is reliable regardless of
the true parameter value, providing a robust foundation for statistical inference.

2.2 Pivotal Quantity Method and Exact Inference

The pivotal quantity method provides the most general approach to constructing confidence in-
tervals with exact coverage probabilities. This method relies on finding functions of the data and
parameter whose distributions are known and do not depend on unknown parameters.

Definition 2.2 (Pivotal Quantity). A pivotal quantity is a function Q(X1, . . . , Xn, θ) of the sample
and the parameter such that the distribution of Q does not depend on θ or any other unknown
parameters.

The power of pivotal quantities lies in their ability to provide exact finite-sample inference
without requiring asymptotic approximations. The distribution of a pivotal quantity is completely
known, enabling precise probability calculations that form the basis for confidence interval con-
struction.

Theorem 2.1 (Confidence Interval Construction via Pivotal Quantities). Let Q(X1, . . . , Xn, θ) be
a pivotal quantity with known distribution. If there exist constants c1 and c2 such that P (c1 ≤ Q ≤
c2) = 1 − α, then the set of values {θ : c1 ≤ Q(X1, . . . , Xn, θ) ≤ c2} forms a (1 − α) confidence
interval for θ.

Figure 1: Power curve for a one-sample z-test (one-sided) as a function of effect size for fixed n.

Example 2.1 (Normal Mean with Known Variance). For X1, . . . , Xn ∼ N(µ, σ2) with known σ2,
the pivotal quantity is:

Z =
X̄ − µ

σ/
√
n

∼ N(0, 1)
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Since P (−zα/2 ≤ Z ≤ zα/2) = 1− α, we have:

P

(
−zα/2 ≤

X̄ − µ

σ/
√
n

≤ zα/2

)
= 1− α

Solving the inequality for µ yields the confidence interval:[
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

]

Figure 2: Width of a 95% confidence interval for µ with known σ versus sample size n.

The algebraic manipulation required to invert the pivotal quantity inequality demonstrates the
mathematical precision underlying confidence interval construction. Each step in the inversion
must preserve the direction of inequalities and maintain the probabilistic interpretation.

2.3 Asymptotic Theory and Large-Sample Methods

When exact pivotal quantities are not available, asymptotic theory provides a powerful framework
for constructing approximate confidence intervals that become increasingly accurate as sample
sizes grow. The foundation of large-sample inference rests on limit theorems that characterize the
asymptotic behavior of estimators.

Theorem 2.2 (Asymptotic Normality of Maximum Likelihood Estimators). Under regularity con-
ditions, the maximum likelihood estimator θ̂n satisfies:

√
n(θ̂n − θ)

D−→ N(0, I−1(θ))

where I(θ) is the Fisher information matrix and
D−→ denotes convergence in distribution.

The Fisher information matrix plays a central role in asymptotic inference, providing both the
asymptotic variance of maximum likelihood estimators and a measure of the information content
of the data about the parameter.

3



Week 5: Confidence Intervals and Hypothesis Testing Introduction to Data Science (MSc)

Definition 2.3 (Fisher Information). For a single parameter θ, the Fisher information is:

I(θ) = E

[(
∂ log f(X; θ)

∂θ

)2
]
= −E

[
∂2 log f(X; θ)

∂θ2

]
where f(x; θ) is the probability density function.

The equivalence of the two expressions for Fisher information follows from regularity conditions
that allow differentiation and integration to be interchanged. The Fisher information quantifies
how much information about θ is contained in a single observation, with larger values indicating
more informative data.

Theorem 2.3 (Asymptotic Confidence Intervals). If θ̂n is asymptotically normal with
√
n(θ̂n −

θ)
D−→ N(0, σ2(θ)), then an approximate (1− α) confidence interval is:[

θ̂n − zα/2
σ̂(θ̂n)√

n
, θ̂n + zα/2

σ̂(θ̂n)√
n

]

where σ̂2(θ̂n) is a consistent estimator of σ2(θ).

The asymptotic approach requires careful attention to the rate of convergence and the quality
of the normal approximation for finite samples. The accuracy of asymptotic confidence intervals
depends on both the sample size and the underlying distribution, with some distributions requiring
larger samples than others to achieve adequate approximation quality.

Figure 3: Asymptotic CI demonstration for small and large n: coverage and mean width.

2.4 Bootstrap Methods and Nonparametric Inference

Bootstrap methods provide a nonparametric approach to confidence interval construction that
does not require distributional assumptions or asymptotic theory. The bootstrap principle uses
resampling to approximate the sampling distribution of estimators, providing a flexible framework
for inference in complex settings.
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Definition 2.4 (Bootstrap Principle). Let θ̂ be an estimator of parameter θ based on sample
X1, . . . , Xn. The bootstrap approximates the distribution of θ̂ − θ by the distribution of θ̂∗ − θ̂,
where θ̂∗ is computed from a bootstrap sample X∗

1 , . . . , X
∗
n drawn with replacement from the original

sample.

The theoretical justification for the bootstrap relies on the consistency of the empirical distri-
bution function as an estimator of the true distribution function. Under mild regularity conditions,
the bootstrap distribution converges to the true sampling distribution, providing asymptotically
valid inference.

Theorem 2.4 (Bootstrap Consistency). Under regularity conditions, if θ̂n is a consistent estimator
of θ, then:

sup
x

|P ∗(
√
n(θ̂∗n − θ̂n) ≤ x)− P (

√
n(θ̂n − θ) ≤ x)| P−→ 0

where P ∗ denotes probability computed with respect to the bootstrap distribution.

Bootstrap confidence intervals can be constructed using several methods, each with different
theoretical properties and practical performance characteristics. The percentile method uses quan-
tiles of the bootstrap distribution directly, while the bias-corrected and accelerated (BCa) method
adjusts for bias and skewness in the bootstrap distribution.

3 Hypothesis Testing: Mathematical Framework and Theory

3.1 Fundamental Concepts and Error Control

Hypothesis testing provides a formal framework for making decisions under uncertainty, with
mathematical foundations rooted in decision theory and the control of error probabilities. The
Neyman-Pearson framework establishes the theoretical foundation for modern hypothesis testing
by formalizing the tradeoff between different types of errors.

Definition 3.1 (Statistical Hypothesis Testing Framework). A hypothesis test consists of:

1. A null hypothesis H0 and alternative hypothesis H1 that partition the parameter space

2. A test statistic T (X1, . . . , Xn) that summarizes the evidence against H0

3. A rejection region R such that H0 is rejected if T ∈ R

4. A significance level α that controls the Type I error probability

The mathematical formulation of hypothesis testing requires precise specification of the hy-
potheses in terms of parameter values or distributional properties. Simple hypotheses specify the
parameter completely, while composite hypotheses specify only that the parameter lies in some
subset of the parameter space.

Definition 3.2 (Type I and Type II Errors). For a hypothesis test with rejection region R:

Type I Error: α(θ) = Pθ(T ∈ R) when θ ∈ Θ0 (1)

Type II Error: β(θ) = Pθ(T /∈ R) when θ ∈ Θ1 (2)

Power: π(θ) = Pθ(T ∈ R) when θ ∈ Θ1 = 1− β(θ) (3)

The power function π(θ) characterizes the performance of a test across all possible parameter
values, providing a complete description of the test’s ability to detect departures from the null
hypothesis. An ideal test would have π(θ) = α for θ ∈ Θ0 and π(θ) = 1 for θ ∈ Θ1, though such
tests rarely exist in practice.
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3.2 Neyman-Pearson Lemma and Optimal Tests

The Neyman-Pearson lemma provides the theoretical foundation for constructing optimal tests
by characterizing the most powerful test for testing a simple null hypothesis against a simple
alternative.

Theorem 3.1 (Neyman-Pearson Lemma). Consider testing H0 : θ = θ0 versus H1 : θ = θ1. The
most powerful test of size α has rejection region:

R =

{
x :

f(x|θ1)
f(x|θ0)

> k

}
where k is chosen so that Pθ0(X ∈ R) = α.

The likelihood ratio f(x|θ1)
f(x|θ0) provides a natural measure of the evidence in favor of H1 relative to

H0. Large values of this ratio indicate that the observed data are more likely under H1 than under
H0, providing strong evidence against the null hypothesis.

The Neyman-Pearson lemma establishes that likelihood ratio tests are optimal in the sense of
maximizing power for any given significance level. This optimality property provides theoretical
justification for the widespread use of likelihood-based methods in statistical inference.

3.3 Likelihood Ratio Tests and Asymptotic Theory

For composite hypotheses, the generalized likelihood ratio test extends the Neyman-Pearson frame-
work by comparing the maximum likelihood under the null and alternative hypotheses.

Definition 3.3 (Generalized Likelihood Ratio Test). For testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,
the likelihood ratio test statistic is:

Λ =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)

where Θ = Θ0 ∪Θ1 is the entire parameter space.

The likelihood ratio Λ takes values between 0 and 1, with values close to 0 providing strong
evidence against H0 and values close to 1 providing little evidence against H0. The test rejects H0

when Λ is sufficiently small, or equivalently, when −2 log Λ is sufficiently large.

Theorem 3.2 (Wilks’ Theorem). Under regularity conditions, if H0 specifies r constraints on a
p-dimensional parameter, then under H0:

−2 log Λ
D−→ χ2

r

as n → ∞.

Wilks’ theorem provides the asymptotic distribution of the likelihood ratio test statistic, en-
abling the construction of approximate tests for complex hypotheses. The degrees of freedom
equal the difference in the number of free parameters between the null and alternative hypotheses,
reflecting the dimensionality of the constraint imposed by H0.

The regularity conditions required for Wilks’ theorem include smoothness of the likelihood
function, identifiability of parameters, and the assumption that the true parameter lies in the
interior of the parameter space. Violations of these conditions can lead to non-standard asymptotic
distributions that require specialized analysis.
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4 Advanced Testing Procedures and Multiple Comparisons

4.1 Sequential Testing and Optional Stopping

Traditional hypothesis testing assumes a fixed sample size determined before data collection begins.
Sequential testing procedures allow for data-dependent stopping rules that can improve efficiency
and reduce expected sample sizes while maintaining error rate control.

Definition 4.1 (Sequential Probability Ratio Test). For testing H0 : θ = θ0 versus H1 : θ = θ1,
the sequential probability ratio test continues sampling until:

L(θ1)

L(θ0)
≤ A (accept H0) or

L(θ1)

L(θ0)
≥ B (reject H0)

where A and B are chosen to achieve desired error probabilities.

Sequential tests can achieve the same error probabilities as fixed-sample tests with substan-
tially smaller expected sample sizes, particularly when the true parameter is far from the boundary
between H0 and H1. This efficiency gain makes sequential methods particularly valuable in appli-
cations where data collection is expensive or time-consuming.

4.2 Multiple Testing and Error Rate Control

Modern data science applications often involve testing thousands or millions of hypotheses si-
multaneously, creating a multiple testing problem where traditional error rate control becomes
inadequate. The family-wise error rate and false discovery rate provide different frameworks for
controlling errors in multiple testing scenarios.

Definition 4.2 (Family-Wise Error Rate). The family-wise error rate (FWER) is the probability
of making at least one Type I error among all tests:

FWER = P (at least one Type I error)

Theorem 4.1 (Bonferroni Correction). If each of m tests is conducted at level α/m, then FWER ≤
α.

The Bonferroni correction provides a simple and widely applicable method for FWER control,
but it can be overly conservative when the number of tests is large or when the tests are posi-
tively correlated. More sophisticated methods such as the Holm procedure provide uniformly more
powerful alternatives while maintaining FWER control.

Definition 4.3 (False Discovery Rate). The false discovery rate (FDR) is the expected proportion
of false discoveries among rejected hypotheses:

FDR = E

[
V

R ∨ 1

]
where V is the number of false rejections and R is the total number of rejections.

Theorem 4.2 (Benjamini-Hochberg Procedure). Order the p-values as p(1) ≤ p(2) ≤ · · · ≤ p(m)

and let k = max{i : p(i) ≤ i
mα}. Reject hypotheses H(1), . . . ,H(k). This procedure controls FDR at

level α when the test statistics are independent.

The FDR framework is often more appropriate than FWER control in exploratory data analysis,
where some false discoveries may be acceptable in exchange for increased power to detect true effects.
The choice between FWER and FDR control depends on the relative costs of false discoveries and
missed discoveries in the specific application context.
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5 Bayesian Hypothesis Testing and Model Comparison

5.1 Bayes Factors and Evidence

Bayesian hypothesis testing provides an alternative framework that treats hypotheses as random
quantities and uses probability to quantify evidence. Bayes factors provide a natural measure of
the evidence in favor of one hypothesis relative to another.

Definition 5.1 (Bayes Factor). For hypotheses H0 and H1 with prior probabilities π0 and π1, the
Bayes factor is:

BF10 =
P (Data|H1)

P (Data|H0)
=

m1(x)

m0(x)

where mi(x) =
∫
f(x|θi)πi(θi)dθi is the marginal likelihood under Hi.

The Bayes factor quantifies how much more likely the observed data are under H1 compared to
H0, providing a direct measure of evidence that does not depend on arbitrary significance levels.
Values of BF10 > 1 favor H1, while values < 1 favor H0.

Theorem 5.1 (Posterior Odds). The posterior odds in favor of H1 are:

P (H1|Data)

P (H0|Data)
= BF10 ×

π1
π0

This relationship shows how the Bayes factor updates prior odds to posterior odds, providing a
coherent framework for incorporating both prior beliefs and data evidence in hypothesis evaluation.

5.2 Model Selection and Information Criteria

Bayesian model comparison extends hypothesis testing to the selection among multiple competing
models, with information criteria providing approximate Bayesian solutions that are computation-
ally tractable.

Definition 5.2 (Deviance Information Criterion). The DIC for model comparison is:

DIC = −2 log f(y|θ̂) + 2pD

where θ̂ is the posterior mean and pD is the effective number of parameters.

Information criteria balance goodness of fit with model complexity, providing automatic penal-
ties for overfitting that emerge naturally from Bayesian principles. The effective number of param-
eters pD accounts for the reduction in effective dimensionality that occurs when informative priors
constrain parameter estimates.

6 Applications in Modern Data Science

6.1 A/B Testing and Online Experimentation

A/B testing represents one of the most important applications of hypothesis testing in modern data
science, enabling companies to make data-driven decisions about product changes and marketing
strategies. The statistical framework must account for the unique challenges of online experimen-
tation, including multiple testing, sequential monitoring, and heterogeneous treatment effects.
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The traditional approach to A/B testing uses a two-sample test to compare conversion rates
or other metrics between treatment and control groups. However, the online environment creates
additional complications that require sophisticated statistical methods to address properly.

Sequential monitoring of A/B tests creates a multiple testing problem, as analysts may examine
results multiple times during the experiment. Proper error rate control requires adjustment for this
sequential monitoring, either through formal sequential testing procedures or through conservative
significance level adjustments.

6.2 High-Dimensional Testing and Genomics

Modern genomics and other high-dimensional applications involve testing thousands or millions
of hypotheses simultaneously, creating unprecedented multiple testing challenges. The statisti-
cal methods must balance the competing goals of discovering true effects while controlling false
discoveries.

The two-groups model provides a framework for understanding the structure of high-dimensional
testing problems. Under this model, a fraction π0 of hypotheses are null (no effect), while the
remaining fraction 1−π0 are non-null (true effects). The goal is to identify the non-null hypotheses
while controlling error rates.

Empirical Bayes methods provide a powerful approach to high-dimensional testing by estimating
the proportion of null hypotheses and the distribution of effect sizes from the data. These methods
can substantially improve power compared to traditional approaches by adapting to the specific
characteristics of each dataset.

6.3 Machine Learning Model Validation

Statistical hypothesis testing plays a crucial role in machine learning model validation, provid-
ing formal frameworks for comparing model performance and assessing statistical significance of
improvements. Cross-validation combined with appropriate statistical tests enables rigorous eval-
uation of model differences.

The McNemar test provides a framework for comparing the performance of two classifiers on the
same dataset, accounting for the dependence between predictions. This test is particularly useful for
comparing machine learning algorithms where traditional two-sample tests would be inappropriate
due to the paired nature of the comparisons.

Permutation tests offer a nonparametric approach to model comparison that does not require
distributional assumptions. By randomly permuting labels and recomputing performance metrics,
these tests provide exact p-values for model comparison that are valid under minimal assumptions.

7 Summary

Confidence intervals and hypothesis testing form the mathematical foundation of statistical in-
ference, providing rigorous frameworks for quantifying uncertainty and making decisions under
uncertainty. The theoretical developments in this area, from the Neyman-Pearson lemma to mod-
ern multiple testing procedures, demonstrate the evolution of statistical thinking in response to
increasingly complex data science applications.

The key insights from this material include the importance of error rate control, the power of
asymptotic theory for large-sample inference, and the flexibility of bootstrap and other resampling
methods for complex problems. These concepts are essential for understanding the reliability and
limitations of statistical conclusions in data science applications.
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The modern extensions to multiple testing, sequential analysis, and Bayesian methods demon-
strate how classical statistical theory continues to evolve to address contemporary challenges. The
ability to control error rates in high-dimensional settings, adapt to sequential data collection, and
incorporate prior information makes these methods essential tools for modern data scientists.

The computational aspects of statistical inference, including bootstrap methods and permu-
tation tests, illustrate how increased computational power has expanded the scope of statistical
methods. Understanding these computational approaches is crucial for implementing robust and
reliable statistical analyses in practice.

8 Exercises

1. Confidence Interval Theory: Derive the confidence interval for the difference of two nor-
mal means with unknown but equal variances. Show that the interval has exact coverage
probability (1− α) and explain the role of the pooled variance estimator.

2. Fisher Information: Calculate the Fisher information for the exponential distribution with
parameter λ. Use this to derive the asymptotic variance of the maximum likelihood estimator
and construct an asymptotic confidence interval.

3. Bootstrap Consistency: Explain why the bootstrap provides consistent estimates of sam-
pling distributions. Discuss the conditions under which bootstrap confidence intervals have
correct coverage probabilities.

4. Neyman-Pearson Lemma: Apply the Neyman-Pearson lemma to derive the most powerful
test for H0 : µ = 0 versus H1 : µ = 1 when sampling from N(µ, 1). Calculate the power
function for this test.

5. Likelihood Ratio Tests: Derive the likelihood ratio test for testing H0 : σ2 = σ2
0 in a

normal distribution with unknown mean. Show that the test statistic follows a chi-square
distribution under H0.

6. Multiple Testing: Compare the Bonferroni and Benjamini-Hochberg procedures for con-
trolling error rates in multiple testing. Explain when each method is preferable and discuss
their relative power properties.

7. Bayes Factors: Calculate the Bayes factor for comparing two normal distributions with
different means but the same variance. Discuss how the choice of prior distributions affects
the Bayes factor.

8. Sequential Testing: Design a sequential test for comparing two proportions in an A/B
testing scenario. Explain how sequential monitoring affects the overall Type I error rate and
discuss methods for controlling this inflation.
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