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1 Introduction to Method of Moments

The Method of Moments represents one of the oldest and most intuitive approaches to parameter
estimation in statistical inference, predating maximum likelihood estimation by several decades.
Developed by Karl Pearson in the late 19th century, this method provides a natural bridge be-
tween descriptive statistics and formal parameter estimation, making it particularly valuable for
understanding the foundations of statistical inference and data science methodology.

The theoretical importance of the Method of Moments extends beyond its historical significance.
The approach embodies fundamental principles of statistical reasoning, including the use of sample
statistics to estimate population parameters and the connection between theoretical moments and
empirical observations. Understanding this method provides essential insights into the relationship
between data and parameters, forming a foundation for more advanced estimation techniques.

From a practical perspective, the Method of Moments often provides simple, closed-form esti-
mators that are easy to compute and interpret. While these estimators may not always achieve
the optimal efficiency of maximum likelihood estimators, they frequently serve as excellent starting
values for iterative optimization procedures and provide robust alternatives when likelihood-based
methods encounter computational difficulties.

2 Mathematical Foundations of Moment Theory

2.1 Population Moments and Their Properties

Moments provide a systematic way to characterize probability distributions through their location,
spread, shape, and other distributional properties. The theoretical framework of moments connects
abstract probability distributions to concrete numerical summaries that can be estimated from data.

Definition 2.1 (Population Moments). Let X be a random variable with distribution function F .
The k-th population moment about the origin is:

µ′
k = E[Xk] =

∫ ∞

−∞
xkdF (x)

provided the integral exists and is finite.

The existence of moments requires careful consideration of the tail behavior of probability
distributions. Heavy-tailed distributions may have infinite moments of high order, limiting the
applicability of moment-based methods. The Cauchy distribution, for example, has no finite mo-
ments, while the Student’s t-distribution has finite moments only up to a certain order determined
by its degrees of freedom parameter.
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Definition 2.2 (Central Moments). The k-th central moment is defined as:

µk = E[(X − µ′
1)

k] = E[(X − E[X])k]

where µ′
1 = E[X] is the first moment about the origin (the mean).

Central moments provide information about the shape of the distribution relative to its center.
The second central moment is the variance, measuring the spread of the distribution. The third
central moment relates to skewness, quantifying the asymmetry of the distribution, while the fourth
central moment connects to kurtosis, measuring the heaviness of the distribution’s tails.

Theorem 2.1 (Moment Generating Function and Moments). If the moment generating function
MX(t) = E[etX ] exists in a neighborhood of zero, then:

µ′
k =

dkMX(t)

dtk

∣∣∣∣
t=0

The moment generating function provides a powerful tool for deriving moments analytically
and establishes connections between different probability distributions. The uniqueness theorem
for moment generating functions ensures that distributions are completely characterized by their
moments when the moment generating function exists.

2.2 Sample Moments and Empirical Estimation

Sample moments provide the empirical counterparts to population moments, enabling the esti-
mation of distributional characteristics from observed data. The connection between sample and
population moments forms the foundation of the Method of Moments estimation procedure.

Definition 2.3 (Sample Moments). Given a random sample X1, X2, . . . , Xn, the k-th sample mo-
ment about the origin is:

m′
k =

1

n

n∑
i=1

Xk
i

Sample moments are natural estimators of their population counterparts, inheriting many de-
sirable statistical properties through the law of large numbers and central limit theorem. The
sample mean m′

1 = X̄ is an unbiased estimator of the population mean, while higher-order sample
moments provide consistent estimators of the corresponding population moments.

Definition 2.4 (Sample Central Moments). The k-th sample central moment is:

mk =
1

n

n∑
i=1

(Xi − X̄)k

The relationship between sample central moments and population central moments requires
careful analysis due to the dependence on the sample mean. The sample variance m2 is a biased
estimator of the population variance, leading to the common adjustment factor n

n−1 in the unbiased
sample variance formula.
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Figure 1: Empirical distributions of the first two raw moments across repeated samples (exponential
population). Convergence toward population values increases with n.

3 Method of Moments Estimation Procedure

3.1 Basic Method of Moments

The Method of Moments estimation procedure provides a systematic approach to parameter estima-
tion by equating sample moments to their theoretical counterparts expressed in terms of unknown
parameters.

Definition 3.1 (Method of Moments Estimator). Let X1, . . . , Xn be a random sample from a
distribution with parameter vector θ = (θ1, . . . , θk)

T . The Method of Moments estimators θ̂MM are
obtained by solving the system of equations:

m′
j = µ′

j(θ), j = 1, 2, . . . , k

where m′
j are sample moments and µ′

j(θ) are population moments expressed as functions of the
parameters.

The choice of which moments to use in the estimation procedure affects both the computational
complexity and the statistical properties of the resulting estimators. Typically, the first k moments
are used for a k-parameter distribution, though alternative moment combinations may be preferred
in specific situations.

Theorem 3.1 (Existence and Uniqueness of Method of Moments Estimators). If the system of
moment equations has a unique solution in the parameter space for all possible values of the sample
moments, then the Method of Moments estimator exists and is unique.

The existence and uniqueness of Method of Moments estimators depend on the invertibility of
the mapping from parameters to moments. Some distributions may have multiple parameter values
that produce the same moments, leading to identification problems that require careful analysis.

3.2 Classical Examples and Applications

Example 3.1 (Normal Distribution). For X1, . . . , Xn ∼ N(µ, σ2), the population moments are:

µ′
1 = µ (1)

µ′
2 = σ2 + µ2 (2)
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Setting sample moments equal to population moments:

X̄ = µ (3)

1

n

n∑
i=1

X2
i = σ2 + µ2 (4)

Solving yields the Method of Moments estimators:

µ̂MM = X̄ (5)

σ̂2
MM =

1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2 (6)

Figure 2: Normal sample with overlaid PDF and comparison of empirical raw moments to their
theoretical values.

This example demonstrates that Method of Moments estimators often coincide with intuitive
estimators. The estimator for the mean is simply the sample mean, while the estimator for the
variance is the sample variance (with divisor n rather than n− 1).

Example 3.2 (Gamma Distribution). For the Gamma distribution with shape parameter α and
rate parameter β, the population moments are:

µ′
1 =

α

β
(7)

µ′
2 =

α(α+ 1)

β2
(8)

The Method of Moments estimators are:

α̂MM =
(X̄)2

1
n

∑n
i=1(Xi − X̄)2

(9)

β̂MM =
X̄

1
n

∑n
i=1(Xi − X̄)2

(10)

The Gamma distribution example illustrates how Method of Moments can provide explicit
estimators for distributions where maximum likelihood estimation requires numerical optimization.
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Figure 3: Uniform(0, θ) estimation: Method of Moments (2X̄) versus MLE (maxXi) distributions
across repeated samples (n = 20).

4 Asymptotic Properties of Method of Moments Estimators

4.1 Consistency Theory

The consistency of Method of Moments estimators follows from the consistency of sample moments
and the continuity of the parameter-to-moment mapping. This theoretical foundation ensures that
Method of Moments estimators improve with larger sample sizes.

Theorem 4.1 (Consistency of Method of Moments Estimators). Let θ̂MM be the Method of Mo-
ments estimator obtained by solving m′

j = µ′
j(θ) for j = 1, . . . , k. If:

1. The population moments µ′
j(θ) exist and are finite

2. The mapping θ 7→ (µ′
1(θ), . . . , µ

′
k(θ)) is one-to-one

3. The inverse mapping is continuous at the true parameter value

Then θ̂MM
P−→ θ0 as n → ∞.

Proof. By the strong law of large numbers, m′
j

a.s.−−→ µ′
j(θ0) for each j. The continuous mapping

theorem then implies that θ̂MM
P−→ θ0.

The consistency result provides theoretical justification for the use of Method of Moments
estimators in large-sample applications. The conditions required for consistency are generally mild
and are satisfied by most common parametric families used in practice.

4.2 Asymptotic Normality and Efficiency

The asymptotic distribution of Method of Moments estimators can be derived using the delta
method, providing the foundation for confidence interval construction and hypothesis testing.

Theorem 4.2 (Asymptotic Normality of Method of Moments Estimators). Under regularity con-
ditions, the Method of Moments estimator satisfies:

√
n(θ̂MM − θ0)

D−→ N(0,G−1ΣG−T )
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where G is the Jacobian matrix of the moment functions and Σ is the covariance matrix of the
sample moments.

The asymptotic covariance matrix G−1ΣG−T generally differs from the inverse Fisher infor-
mation matrix, indicating that Method of Moments estimators are typically less efficient than
maximum likelihood estimators. However, the efficiency loss may be small in many practical sit-
uations, and the computational advantages of Method of Moments may outweigh the efficiency
considerations.

Definition 4.1 (Asymptotic Relative Efficiency). The asymptotic relative efficiency of the Method
of Moments estimator relative to the maximum likelihood estimator is:

ARE =
tr(I−1(θ0))

tr(G−1ΣG−T )

where I(θ0) is the Fisher information matrix.

The asymptotic relative efficiency provides a measure of the information loss incurred by using
Method of Moments instead of maximum likelihood estimation. For many common distributions,
this efficiency loss is modest, making Method of Moments an attractive alternative when compu-
tational simplicity is important.

5 Generalized Method of Moments

5.1 Overidentified Systems and Optimal Weighting

When more moment conditions are available than parameters to be estimated, the system be-
comes overidentified, requiring a criterion for choosing among the potentially conflicting moment
conditions. The Generalized Method of Moments (GMM) provides a systematic approach to this
problem.

Definition 5.1 (Generalized Method of Moments). Let g(Xi,θ) be a vector of moment functions
with dim(g) ≥ dim(θ). The GMM estimator minimizes:

Qn(θ) =

(
1

n

n∑
i=1

g(Xi,θ)

)T

Wn

(
1

n

n∑
i=1

g(Xi,θ)

)
where Wn is a positive definite weighting matrix.

The choice of weighting matrix Wn affects the efficiency of the GMM estimator. The optimal
weighting matrix that minimizes the asymptotic variance is the inverse of the covariance matrix of
the moment conditions.

Theorem 5.1 (Optimal GMM Weighting). The asymptotically efficient GMM estimator uses the
weighting matrix:

Wn = Ω−1

where Ω = E[g(Xi,θ0)g(Xi,θ0)
T ] is the covariance matrix of the moment conditions.

In practice, the optimal weighting matrix must be estimated, leading to a two-step or iterative
estimation procedure. The first step uses an arbitrary weighting matrix (often the identity) to
obtain preliminary estimates, which are then used to estimate the optimal weighting matrix for the
second step.
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5.2 Specification Testing and Model Validation

The overidentifying restrictions in GMM provide a natural framework for testing the validity of the
moment conditions and, by extension, the underlying economic or statistical model.

Theorem 5.2 (Hansen’s J-Test). Under the null hypothesis that the moment conditions are cor-
rectly specified, the test statistic:

J = n ·Qn(θ̂GMM )
D−→ χ2

r

where r is the number of overidentifying restrictions.

The J-test provides a formal test of model specification that can detect violations of the moment
conditions. Rejection of the null hypothesis suggests that the model is misspecified, either through
incorrect functional form assumptions or omitted variables.
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