
Week 1: Probability Theory Foundations for Data Science

Francisco Richter and Ernst Wit

Introduction to Data Science (MSc)

1 Introduction to Probability Theory in Data Science

Probability theory provides the mathematical foundation upon which all of modern data science
and statistical learning is built. Far from being merely an abstract mathematical discipline, prob-
ability theory offers the rigorous framework necessary for understanding uncertainty, quantifying
risk, making inferences from data, and developing principled machine learning algorithms that can
generalize beyond observed samples.

The importance of probability theory in data science extends across multiple dimensions. At the
theoretical level, it provides the mathematical language for describing randomness and uncertainty
that are inherent in real-world data. At the methodological level, it underlies the development of
statistical models, machine learning algorithms, and inference procedures. At the practical level, it
enables data scientists to quantify uncertainty in predictions, assess model performance, and make
decisions under uncertainty.

Understanding probability theory deeply is essential for several reasons. First, it provides the
conceptual framework for distinguishing between signal and noise in data, enabling the develop-
ment of robust methods that can extract meaningful patterns while avoiding overfitting to random
fluctuations. Second, it establishes the theoretical foundations for statistical inference, allowing
us to draw conclusions about populations based on sample data. Third, it enables the principled
handling of uncertainty in machine learning models, leading to more reliable and interpretable
predictions.

2 Measure-Theoretic Foundations of Probability

2.1 Probability Spaces and Measurability

The modern mathematical treatment of probability theory rests on measure theory, which provides
a rigorous foundation for handling both discrete and continuous probability distributions within
a unified framework. This mathematical rigor is essential for understanding advanced topics in
machine learning and statistical inference.

Definition 2.1 (Probability Space). A probability space is a triple (Ω,F , P ) where:

1. Ω is the sample space, representing all possible outcomes of a random experiment

2. F is a σ-algebra on Ω, representing the collection of measurable events

3. P is a probability measure on (Ω,F), assigning probabilities to events

1



Week 1: Probability Theory Foundations Introduction to Data Science (MSc)

The sample space Ω represents the universe of all possible outcomes that could be observed in a
data science application. For image classification, Ω might represent all possible pixel configurations
of a given size. For natural language processing, Ω could represent all possible sequences of words
up to a certain length. For sensor data analysis, Ω might represent all possible time series of
measurements.

Definition 2.2 (σ-algebra). A collection F of subsets of Ω is a σ-algebra if:

1. Ω ∈ F (the certain event is measurable)

2. If A ∈ F , then Ac ∈ F (closure under complementation)

3. If A1, A2, . . . ∈ F , then
⋃∞

i=1Ai ∈ F (closure under countable unions)

The σ-algebra F determines which subsets of the sample space are considered ”events” to
which we can assign probabilities. This technical requirement ensures that the probability measure
is well-defined and that we can perform the limiting operations necessary for advanced probability
theory.

Definition 2.3 (Probability Measure). A function P : F → [0, 1] is a probability measure if:

1. P (Ω) = 1 (normalization condition)

2. For disjoint events A1, A2, . . . ∈ F :

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)

(countable additivity)

The countable additivity property is crucial for ensuring that probability behaves consistently
under limiting operations, which is essential for the convergence theorems that underlie statistical
inference and machine learning theory.

2.2 Random Variables and Measurable Functions

Random variables provide the bridge between abstract probability spaces and the numerical data
that we analyze in practice. The mathematical definition ensures that random variables are com-
patible with the measure-theoretic framework.

Definition 2.4 (Random Variable). A random variable is a measurable function X : Ω → R such
that for every Borel set B ∈ B(R):

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F

The measurability condition ensures that we can assign probabilities to events of the form {X ∈
B} for any reasonable subset B of the real numbers. This technical requirement is automatically
satisfied in most practical applications but becomes important when dealing with advanced topics
such as stochastic processes and functional data analysis.

Random variables in data science represent various types of uncertain quantities. Feature
variables capture measurable characteristics of observations, such as pixel intensities in images,
word frequencies in documents, or sensor readings in time series. Response variables represent
outcomes we wish to predict, such as class labels in classification or continuous values in regression.
Latent variables represent unobserved factors that influence the data generation process, such as
topics in document analysis or factors in dimensionality reduction.
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3 Probability Distributions and Their Properties

3.1 Distribution Functions and Density Functions

The distribution of a random variable completely characterizes its probabilistic behavior and pro-
vides the foundation for statistical modeling and inference.

Definition 3.1 (Cumulative Distribution Function). The cumulative distribution function (CDF)
of a random variable X is defined as:

FX(x) = P (X ≤ x) for all x ∈ R

Theorem 3.1 (Properties of CDFs). Every CDF F satisfies the following properties:

1. Monotonicity: x1 ≤ x2 ⇒ F (x1) ≤ F (x2)

2. Right-continuity: limh→0+ F (x+ h) = F (x)

3. Boundary conditions: limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

These properties ensure that CDFs provide a complete and consistent description of probability
distributions. The monotonicity property reflects the intuitive notion that larger values should have
larger cumulative probabilities. Right-continuity is a technical condition that ensures compatibility
with measure theory. The boundary conditions ensure that the total probability mass equals one.

Definition 3.2 (Discrete Random Variable). A random variable X is discrete if there exists a
countable set S ⊂ R such that P (X ∈ S) = 1. The probability mass function (PMF) is defined as:

pX(x) = P (X = x)

Definition 3.3 (Continuous Random Variable). A random variable X is continuous if its CDF is
absolutely continuous, meaning there exists a function fX such that:

FX(x) =

∫ x

−∞
fX(t)dt

The function fX is called the probability density function (PDF).

The distinction between discrete and continuous random variables is fundamental in data science
applications. Discrete variables naturally model categorical data, count data, and binary outcomes.
Continuous variables model measurements, scores, and other quantities that can take on any value
within an interval.

3.2 Fundamental Distributions in Data Science

Understanding the properties and applications of key probability distributions is essential for effec-
tive data science practice. Each distribution has specific characteristics that make it suitable for
modeling particular types of data and phenomena.

Example 3.1 (Bernoulli Distribution). The Bernoulli distribution X ∼ Bernoulli(p) models binary
outcomes with:

P (X = 1) = p (1)

P (X = 0) = 1− p (2)

E[X] = p (3)

Var(X) = p(1− p) (4)
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This distribution is fundamental for binary classification problems, A/B testing, and modeling
success/failure scenarios. The variance is maximized when p = 0.5, reflecting maximum uncertainty
in binary outcomes.

Figure 1: Bernoulli probability mass function for several p values.

Example 3.2 (Normal Distribution). The normal distribution X ∼ N(µ, σ2) has PDF:

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
with E[X] = µ and Var(X) = σ2.

The normal distribution is central to data science due to its role in the Central Limit Theorem,
its mathematical tractability, and its frequent appearance in natural phenomena. Many machine
learning algorithms assume normally distributed features or errors.

Example 3.3 (Poisson Distribution). The Poisson distribution X ∼ Poisson(λ) models count data
with:

P (X = k) =
λke−λ

k!
for k = 0, 1, 2, . . .

and E[X] = Var(X) = λ.
This distribution is essential for modeling count data such as website visits, customer arrivals,

defect counts, and other phenomena where events occur randomly over time or space.

4 Expectation, Variance, and Moments

4.1 Mathematical Expectation and Its Properties

The expectation of a random variable provides a measure of its central tendency and forms the
foundation for many statistical concepts and machine learning algorithms.
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Figure 2: Normal densities with varying means and variances.

Definition 4.1 (Mathematical Expectation). For a random variable X, the expectation (or expected
value) is defined as:

• Discrete case: E[X] =
∑

x x · P (X = x)

• Continuous case: E[X] =
∫∞
−∞ xfX(x)dx

provided the sum or integral converges absolutely.

The absolute convergence condition ensures that the expectation is well-defined and finite. Some
distributions, such as the Cauchy distribution, do not have finite expectations, which has important
implications for statistical inference.

Theorem 4.1 (Linearity of Expectation). For random variables X and Y and constants a and b:

E[aX + bY ] = aE[X] + bE[Y ]

This property holds regardless of the dependence structure between X and Y .

The linearity of expectation is one of the most useful properties in probability theory and has
numerous applications in data science. It enables the analysis of linear combinations of features,
the computation of expected values for linear models, and the analysis of ensemble methods that
average multiple predictions.

Theorem 4.2 (Law of Total Expectation). For random variables X and Y :

E[X] = E[E[X|Y ]]

The law of total expectation provides a powerful tool for computing expectations in complex
scenarios by conditioning on auxiliary variables. This principle underlies many machine learning
algorithms, including mixture models and hierarchical models.
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Figure 3: Poisson probability mass functions for several rates λ.

4.2 Variance and Higher-Order Moments

Variance quantifies the spread of a distribution around its mean and is fundamental for under-
standing the uncertainty associated with random variables.

Definition 4.2 (Variance). The variance of a random variable X is defined as:

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2

The standard deviation is σX =
√

Var(X).

Theorem 4.3 (Properties of Variance). For random variables X and Y and constants a and b:

1. Var(aX + b) = a2Var(X)

2. If X and Y are independent: Var(X + Y ) = Var(X) +Var(Y )

3. Var(X) ≥ 0 with equality if and only if X is constant

These properties are essential for understanding how variance behaves under transformations
and combinations of random variables. The additivity property for independent variables is par-
ticularly important for analyzing the variance of sums and averages.

Definition 4.3 (Higher-Order Moments). The k-th moment of a random variable X about the
origin is:

µ′
k = E[Xk]

The k-th central moment is:
µk = E[(X − E[X])k]

Higher-order moments provide information about the shape of distributions. The third central
moment relates to skewness (asymmetry), while the fourth central moment relates to kurtosis
(tail heaviness). These characteristics are important for understanding the behavior of statistical
procedures and machine learning algorithms.
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5 Joint Distributions and Dependence

5.1 Multivariate Distributions

Real-world data science problems typically involve multiple variables, making the study of joint
distributions essential for understanding relationships and dependencies in data.

Definition 5.1 (Joint Distribution). For random variables X and Y , the joint cumulative distri-
bution function is:

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

For continuous random variables, the joint probability density function fX,Y (x, y) satisfies:

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dsdt

Joint distributions capture the complete probabilistic relationship between multiple variables,
enabling the analysis of correlations, dependencies, and conditional relationships that are central
to machine learning and statistical modeling.

Definition 5.2 (Marginal Distributions). The marginal distributions are obtained by integrating
over the other variables:

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy (5)

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx (6)

Marginal distributions represent the individual behavior of each variable, ignoring the others.
Understanding the relationship between joint and marginal distributions is crucial for feature se-
lection and dimensionality reduction techniques.

5.2 Independence and Conditional Distributions

The concept of independence is fundamental for understanding when variables provide redundant
versus complementary information.

Definition 5.3 (Statistical Independence). Random variables X and Y are independent if:

FX,Y (x, y) = FX(x)FY (y) for all x, y

Equivalently, for continuous variables:

fX,Y (x, y) = fX(x)fY (y) for all x, y

Independence implies that knowledge of one variable provides no information about the other.
This concept is central to many machine learning algorithms, including naive Bayes classifiers and
independent component analysis.

Theorem 5.1 (Properties of Independent Random Variables). If X and Y are independent:

1. E[XY ] = E[X]E[Y ]

2. Var(X + Y ) = Var(X) +Var(Y )
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3. E[g(X)h(Y )] = E[g(X)]E[h(Y )] for any functions g and h

These properties enable the analysis of complex systems by decomposing them into independent
components, which is the foundation for many dimensionality reduction and feature extraction
techniques.

Definition 5.4 (Conditional Distribution). For continuous random variables X and Y with fY (y) >
0:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

Conditional distributions capture how the distribution of one variable changes when we have
information about another variable. This concept is fundamental for regression analysis, classifica-
tion, and causal inference.

6 Conditional Probability and Bayes’ Theorem

6.1 Conditional Probability Framework

Conditional probability provides the mathematical framework for updating beliefs based on evi-
dence, which is central to machine learning and statistical inference.

Definition 6.1 (Conditional Probability). For events A and B with P (B) > 0:

P (A|B) =
P (A ∩B)

P (B)

This definition captures the intuitive notion that the probability of A given B should be the
proportion of times A occurs among those cases where B occurs.

Theorem 6.1 (Law of Total Probability). For a partition {B1, B2, . . . , Bn} of the sample space:

P (A) =

n∑
i=1

P (A|Bi)P (Bi)

The law of total probability enables the computation of unconditional probabilities by con-
ditioning on auxiliary variables. This principle is essential for mixture models and hierarchical
modeling approaches.

6.2 Bayes’ Theorem and Its Applications

Bayes’ theorem provides the mathematical foundation for updating beliefs based on evidence and
is central to Bayesian statistics and machine learning.

Theorem 6.2 (Bayes’ Theorem). For events A and B with P (B) > 0:

P (A|B) =
P (B|A)P (A)

P (B)

In the context of machine learning, Bayes’ theorem can be written as:

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)

P (data)

This formulation shows how prior beliefs about hypotheses are updated based on observed data
to produce posterior beliefs. The components have specific interpretations:
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Figure 4: Update from prior to posterior given evidence using Bayes’ theorem in a spam detection
example.

• P (hypothesis) is the prior probability, representing initial beliefs

• P (data|hypothesis) is the likelihood, measuring how well the hypothesis explains the data

• P (hypothesis|data) is the posterior probability, representing updated beliefs

• P (data) is the marginal likelihood or evidence, serving as a normalization constant

Bayes’ theorem has numerous applications in data science, including spam filtering, medical
diagnosis, recommendation systems, and A/B testing. It provides a principled framework for
incorporating prior knowledge and updating beliefs as new data becomes available.

7 Limit Theorems and Asymptotic Theory

7.1 Law of Large Numbers

The Law of Large Numbers provides the theoretical foundation for the consistency of statistical
estimators and the reliability of empirical averages.

Theorem 7.1 (Weak Law of Large Numbers). Let X1, X2, . . . be independent and identically dis-
tributed random variables with finite mean µ. Then:

X̄n =
1

n

n∑
i=1

Xi
P−→ µ

where
P−→ denotes convergence in probability.
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Theorem 7.2 (Strong Law of Large Numbers). Under the same conditions as the weak law:

X̄n
a.s.−−→ µ

where
a.s.−−→ denotes almost sure convergence.

The Law of Large Numbers justifies the use of sample averages to estimate population means
and provides the theoretical foundation for Monte Carlo methods and empirical risk minimization
in machine learning.

7.2 Central Limit Theorem

The Central Limit Theorem is arguably the most important result in probability theory for data
science applications, providing the foundation for statistical inference and confidence interval con-
struction.

Theorem 7.3 (Central Limit Theorem). Let X1, X2, . . . be independent and identically distributed
random variables with finite mean µ and finite variance σ2. Then:

√
n(X̄n − µ)

σ

D−→ N(0, 1)

where
D−→ denotes convergence in distribution.

Figure 5: Simulation of sample means from non-normal distributions showing convergence toward
normality as n increases.

The Central Limit Theorem has several remarkable features:

1. It applies regardless of the underlying distribution of the Xi

2. It provides the normal distribution as a universal limit

3. It quantifies the rate of convergence as O(1/
√
n)
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This result enables the construction of confidence intervals, hypothesis tests, and prediction
intervals for sample means, even when the underlying distribution is unknown. It also provides
theoretical justification for the widespread use of normal distributions in statistical modeling.

Corollary 7.1 (Asymptotic Normality of Sample Proportions). For a sequence of Bernoulli trials
with success probability p: √

n(p̂n − p)√
p(1− p)

D−→ N(0, 1)

where p̂n is the sample proportion.

This result is fundamental for analyzing classification accuracy, A/B testing, and other scenarios
involving proportions or rates.

8 Applications in Modern Data Science

8.1 Probabilistic Machine Learning

Probability theory provides the foundation for understanding and developing machine learning
algorithms that can quantify uncertainty and make principled decisions under uncertainty.

Bayesian machine learning uses probability distributions to represent uncertainty about model
parameters and predictions. Instead of finding a single ”best” set of parameters, Bayesian methods
maintain distributions over parameters that reflect our uncertainty. This approach enables more
robust predictions and better calibrated uncertainty estimates.

Probabilistic graphical models use probability theory to represent complex dependencies among
variables in a structured way. These models enable efficient inference and learning in high-
dimensional spaces by exploiting conditional independence relationships.

Generative models use probability distributions to model the data generation process, enabling
the synthesis of new data samples and the understanding of underlying data structures. Examples
include Gaussian mixture models, variational autoencoders, and generative adversarial networks.

8.2 Statistical Inference and Hypothesis Testing

Probability theory provides the foundation for statistical inference, enabling data scientists to
draw conclusions about populations based on sample data while quantifying the uncertainty in
these conclusions.

Confidence intervals use the sampling distribution of estimators (often derived from the Central
Limit Theorem) to provide ranges of plausible values for unknown parameters. The coverage
probability of confidence intervals is guaranteed by probability theory.

Hypothesis testing uses probability theory to quantify the evidence against null hypotheses.
P-values represent the probability of observing data at least as extreme as what was observed,
assuming the null hypothesis is true.

Bootstrap methods use resampling to approximate sampling distributions without making dis-
tributional assumptions. These methods rely on the Law of Large Numbers and provide robust
alternatives to parametric inference procedures.

8.3 Risk Assessment and Decision Making

Probability theory enables the quantification of risk and the development of optimal decision-
making strategies under uncertainty.
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Value at Risk (VaR) and Expected Shortfall use probability distributions to quantify financial
risk. These measures help organizations understand potential losses and make informed decisions
about risk management.

A/B testing uses probability theory to design experiments and analyze results. The framework
enables companies to make data-driven decisions about product changes while controlling error
rates.

Predictive modeling uses probability distributions to quantify uncertainty in predictions. This
enables decision-makers to understand the reliability of predictions and make appropriate decisions
based on the level of uncertainty.

9 Summary

Probability theory provides the mathematical foundation for all of data science and statistical
learning. The measure-theoretic framework ensures mathematical rigor while enabling the unified
treatment of discrete and continuous phenomena. Random variables provide the bridge between
abstract probability spaces and the numerical data we analyze in practice.

The key distributions studied here—Bernoulli, normal, and Poisson—appear frequently in data
science applications and provide building blocks for more complex models. Understanding their
properties and relationships is essential for effective modeling and analysis.

Expectation and variance provide fundamental tools for characterizing distributions and ana-
lyzing the behavior of estimators and algorithms. The linearity of expectation and the properties of
variance enable the analysis of complex systems through decomposition into simpler components.

Joint distributions and conditional probability provide the framework for understanding rela-
tionships among variables and updating beliefs based on evidence. Bayes’ theorem, in particular,
provides the foundation for Bayesian statistics and machine learning.

The limit theorems—Law of Large Numbers and Central Limit Theorem—provide the theoreti-
cal foundation for statistical inference and justify the use of sample statistics to estimate population
parameters. These results enable the construction of confidence intervals and hypothesis tests that
are central to data science practice.

The applications discussed here demonstrate the pervasive role of probability theory in modern
data science, from machine learning algorithms to risk assessment and decision making. A solid
understanding of these foundations is essential for developing new methods and applying existing
techniques effectively.

10 Exercises

1. Probability Space Construction: For a binary classification problem with featuresX1, X2 ∈
{0, 1} and class Y ∈ {0, 1}, construct the probability space (Ω,F , P ). Define appropriate ran-
dom variables and compute joint and marginal distributions.

2. Bayes’ Theorem Application: In email spam detection, suppose P (Spam) = 0.3, P (”free”|Spam) =
0.8, and P (”free”|Not Spam) = 0.1. Calculate P (Spam|”free”) and interpret the result.

3. Central Limit Theorem Verification: Generate samples from an exponential distribution
with rate λ = 2. For sample sizes n = 1, 5, 10, 30, 100, compute sample means and verify
convergence to normality. Plot histograms and compare with theoretical predictions.

12



Week 1: Probability Theory Foundations Introduction to Data Science (MSc)

4. Independence Testing: For two random variables X ∼ N(0, 1) and Y = X2, determine
whether they are independent. Compute E[XY ] and E[X]E[Y ] to verify your conclusion.

5. Variance Decomposition: For a linear regression model Y = β0 + β1X + ϵ where ϵ ∼
N(0, σ2) is independent of X, derive Var(Y ) in terms of Var(X) and σ2.

6. Conditional Expectation: For a mixture model where X|Z = 1 ∼ N(µ1, σ
2) and X|Z =

0 ∼ N(µ2, σ
2) with P (Z = 1) = π, compute E[X] and Var(X) using the law of total

expectation and variance.

7. Sampling Distribution: For the sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2 from a normal

population, derive its expected value and show that it is an unbiased estimator of σ2.

8. Probability Inequalities: Use Chebyshev’s inequality to bound P (|X̄n − µ| > ϵ) for the
sample mean. Compare this bound with the exact probability when the underlying distribu-
tion is normal.
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