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1
INTRODUCTION

All good things are wild and free.

Henry David Thoreau

Species evolution is a complex process that has been studied formally for more than
200 years (Ragan, 2009) but, even today, it presents us with more questions than answers.
In its essence evolutionary biology focuses on two main questions: how and why did
species diversify into the enormous variety of diversity that we see today? The first is a
descriptive study, whereas the second is an explanatory endeavour.

To answer how species diversified, novel DNA sequencing techniques that were de-
veloped in the early 1990s and that were perfected in the past two decades, have been
vital. Their precision and high-throughput nature have made inference of large phyloge-
nies possible. Some examples of large scale phylogenies are the tree of birds (Jetz et al.,
2012), the tree of mammals (Upham et al., 2019), and the recently released tree of plants
(Ramírez-Barahona et al., 2020). Continuous efforts are made to complete the tree of life
(Hug et al., 2016; Hedges et al., 2015a), although the accuracy of these large trees remains
debated (Patel et al., 2013).

Assuming, as a starting point, that current descriptions on how species diversified, i.e,
the underlying phylogenies, are correct, the field of research on the underlying macroevo-
lutionary mechanisms that drive such processes is relatively young but growing (Pagel,
1999). New advancements in phylogenetics are bringing insights into hypotheses that
were difficult to test quantitatively before. The aim of this thesis is to contribute to the
development of methodologies to answer the question: “What are the drivers of species
diversification processes?”

Species diversification is a highly complex process, comprising constantly emerging
effects at multiple scales interacting with each other. That is a general reason why finding
a general quantitative method for analysing the drivers of biodiversity has remained
elusive. This thesis lies at the intersection of macroevolution and statistical modelling;

1



2 1. INTRODUCTION

(a) Phylogeny of Birds provided by Jetz
et. al. (Jetz et al., 2012) in 2012.

(b) Phylogeny of Mammals provided by
Upham et. al. (Upham et al., 2019) in
2019.

(c) Phylogeny of plants provided by
Ramirez et. al. (Ramírez-Barahona
et al., 2020) in 2020.

Figure 1.1 | Three large phylogenies that have recently been published.

we here present a general approach for quantitative inference over a flexible class of
diversification models.

1.1. SPECIES DIVERSIFICATION MODELS

The theory of species diversification models (SDM) and the first mathematical the-
ory of macroevolution date back to the 1920s when Yule started to develop models for
diversification (Aldous, 2001). Yule characterised the evolutionary process as a combi-
nation of several stochastic processes, governed by speciation rates. Kendall et al. (1948)
generalised Yule’s results providing formulas for a process with constant speciation and
extinction rates as well as diversification rates varying as a function of time. He also
provided explicit expressions for the survival probability of the process. Much progress
was achieved in the second half of the last century (Gould et al., 1977; Stanley, 1973;
Raup et al., 1973; Reynolds, 1973, e.g.), where mathematical derivations were provided to
quantify the effects of ecological dynamics on evolutionary processes described by full
phylogenies, but the real application of these methods remained elusive because of the
poverty of the fossil record leading to a lack of information on extinct branches. It was not
until the 1990s when Nee et. al. presented their seminal paper on mathematical theory of
the reconstructed process (Nee et al., 1994), which considers extant species phylogenies
to infer speciation and extinction rates. That allowed evolutionary biologists to test the
developed mathematical theories with modern phylogenies.

The Yule process does not describe real phylogenies well (Blum and François, 2006),
and species diversification models require more complex elaborations (Caron and Pie,
2020) and significant effort to satisfy both sensible biological and mathematical properties
(Popovic, 2004). Biologically we would like to include many potential factors in our
model taking into account the complexity of evolutionary processes, mathematically
we would like to include chaotic dynamics well described by randomness or stochastic
differential equations and statistically we would like to preserve identifiability. Since Nee’s
theory was developed, a large number of SDMs have been designed and tested using real



1.1. SPECIES DIVERSIFICATION MODELS 3

phylogenies. The utility of species diversification models resides in the option to quantify
the relationship of potential covariates that could be related to species diversification
processes defined by speciation and extinction rates,

λt ,s|β = g1

(
p∑
i
β1i vsi

)
and µt ,s|β = g2

(
p∑
i
β2i vsi

)
(1.1)

where a new species emerges from species s at time t with a speciation rate λt ,s|β, which
might be an arbitrarily (continous) function g1 of a linear combination of, potentially,
species-specific covariates {vs1, ..., vsp }, and species can become extinct with an extinction
rate µt ,s|β. Phylogenetic trees are the result of these multiple events of speciation and
extinction.

For example, various SDMs have been developed to test if diversification rates are
related to the age of the species (Hagen et al., 2015), to paleo-enviromental changes
(Descombes et al., 2018), to geographic patterns (Goldberg et al., 2011), to time and space
(Silvestro et al., 2011), to a specific time dependency with key role in mass extinctions
(Höhna, 2015), to species characters (Maddison et al., 2007; Beaulieu and O’Meara, 2016;
Herrera-Alsina et al., 2019), to ecological fitness (Rasmussen and Stadler, 2019), to latitude
(Schluter, 2016), to overall species diversity (Condamine et al., 2019; Etienne et al., 2012a),
or whether speciation times are protracted (Lambert et al., 2015; Etienne et al., 2014), just
to name a few. These individual models have created a kaleidoscopic view of the species
diversification process, although their application in real phylogenies has been criticised
(Rabosky, 2010, 2016), especially when estimating extinction rates from extant species
phylogenies.

The statistical methods of this thesis can be used to test potentially any of the above-
mentioned scenarios. We seek a unified methodology that considers complex interactions.
Still, given that the list of possible factors affecting biodiversity is endless, we decided
to focus all our illustrations on a specific class of models, the diversity-dependent (DD)
diversification models. These models are relevant, because diversity can act as a proxy for
many other ecological interactions.

1.1.1. DIVERSITY-DEPENDENT DIVERSIFICATION MODELS AND THE EFFECT

OF ECOLOGICAL INTERACTIONS ON MACROEVOLUTIONARY PROCESSES

The presence of ecological limits to macroevolutionary processes has been hotly
debated (Harmon and Harrison, 2015; Rabosky and Hurlbert, 2015). The simple and
intuitive idea underlying models of diversity-dependent diversification is that speciation
declines as diversity increases because the number of niches available to speciate into
will decrease as more niches become occupied. This is often translated into a linear
diversity-dependence as follows:

λt ;β =λ0 −βN nt ; µt ;β =µ0, λ0 > 0,βN > 0,µ0 > 0 (1.2)

where λt ;β is the individual speciation rate, nt the number of extant species and µt ,β

represents the individual extinction rate at time t , while λ0,µ0,βN are parameters rep-
resenting the initial speciation rate, the initial extinction rate and the decreasing slope
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of speciation rate per species respectively. In this model the quantity K ′ =λ0/βN is the
value for which the size nt of a clade reaches a limit and cannot expand further as λt ;β = 0.
The carrying capacity K is the value of diversity where the speciation and extinction rates
equal one another, and this is related to K ′ via K = (λ0 −µ0)K ′/λ0. Thus, it is usually
assumed that λ0 is positive and βN is either negative or zero according to the idea that
the more species there are the less room there is for new species (Etienne et al., 2012b).

This model, even though it is currently widely used (Condamine et al., 2019), is a
simplification of the role that diversity plays in diversification. In the first place, it as-
sumes that ecological limits to diversification are fixed in time, which is often not realistic
(Marshall and Quental, 2016). Secondly, it assumes that diversity always has a negative
effect on speciation, and hence that speciation rates cannot become larger than the
initial speciation rate. Third, it uses species richness as a proxy for diversity, while in the
ecological literature other measurements of diversity have been pointed out to be more
representative (Magurran, 2013; Chao et al., 2014). Fourth, it assumes that all species
have the same probability of speciating, ignoring that species might occupy different
ecological niches depending on their similarities and differences. Current inference mod-
els for diversity-dependent diversification, however, rely on these simplifications. While
they can handle increasing rates of speciation as diversity increases or time-dependent
diversification rates, they cannot deal with other measures of diversity or with differential
rates between lineages, although some recent progress has been made (Laudanno et al.,
2020a). In this thesis I will develop methodology to enable inference under such more
complex models of diversity-dependent species diversification.

The main component in the generalisations presented in this thesis is the incorpora-
tion of phylogenetic variation contained in clades of species. Thus, in Chapters 2 and 3 we
consider the phylogenetic diversity of the clade, as a function of time, in the phylogenetic
diversity-dependent diversification model:

λt |θ =λ0 +βnnt +βp
pt − t

nt
; µt |β =µ0 (1.3)

where pt is the phylogenetic diversity at time t . The quantity pt−t
nt

corresponds to the
phylogenetic diversity per species at time t . Note that by subtracting t the phylogenetic
diversity per species in the case of a single species stays 0, as required.

In Chapter 4 we focus on lineage-dependent diversification models where diversifica-
tion rates depend on the phylogenetic uniqueness of species:

λt ,s|θ =λ0 +βN nt +βP
(Pt ,s − P̄t )

nt
; µt ;β =µ0 (1.4)

where Pt ,s is a measure of the phylogenetic uniqueness of species s at time t and P̄t =∑
s Pt ,s /nt is a measure of the overall phylogenetic diversity in the clade.

1.1.2. EXAMPLE

In Figure 1.2, we consider an example phylogenetic tree. The plots underneath de-
scribe different quantities included in the evolutionary process: species richness, global
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Figure 1.2 | Visualization of various types of diversity. At the top we see a phylogenetic tree of extant species,
corresponding to the clade Bucconidae. The second plot is the global phylogenetic diversity per species through
time. The third plot corresponds to the number of lineages through time. The final plot shows the mean pairwise
phylogenetic diversity and the normalised pairwise phylogenetic diversity per species through time.

phylogenetic diversity, and mean pairwise phylogenetic diversity, respectively. We calcu-
late the P matrix of pairwise phylogenetic diversity for four different times t . At time t = 1
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the tree has only two species, so the P matrix is

P (1) =
[

0 1
1 0

]
When new species emerge, the P matrix increases in dimensions. At t = 10 the pairwise
phylogenetic distances can be summarised with the matrix

P (10) =



0 10 6.8 10 10 2.8 10
10 0 10 3.3 2.9 10 2.9
6.8 10 0 10 10 6.8 10
10 3.3 10 0 3.3 10 3.3
10 2.9 10 3.3 0 10 2
2.8 10 6.8 10 10 0 10
10 2.9 10 3.3 2 10 0


while at time t = 20 the matrix is

P (20) =



0 20 16.8 20 20 12.8 20 20 20 20 20 20 1.2
20 0 20 13.3 12.9 20 12.9 7.6 12.9 13.3 2.2 13.3 20

16.8 20 0 20 20 16.8 20 20 20 20 20 20 16.8
20 13.3 20 0 13.3 20 13.3 13.3 13.3 3.3 13.3 3.3 20
20 12.9 20 13.3 0 20 12 12.9 12 13.3 12.9 13.3 20

12.8 20 16.8 20 20 0 20 20 20 20 20 20 12.8
20 12.9 20 13.3 12 20 0 12.9 5 13.3 12.9 13.3 20
20 7.6 20 13.3 12.9 20 12.9 0 12.9 13.3 7.6 13.3 20
20 12.9 20 13.3 12 20 5 12.9 0 13.3 12.9 13.3 20
20 13.3 20 3.3 13.3 20 13.3 13.3 13.3 0 13.3 1.8 20
20 2.2 20 13.3 12.9 20 12.9 7.6 12.9 13.3 0 13.3 20
20 13.3 20 3.3 13.3 20 13.3 13.3 13.3 1.8 13.3 0 20
1.2 20 16.8 20 20 12.8 20 20 20 20 20 20 0



and at time t = 30 the matrix has 25 rows and columns.

P (30) =



0 30 26.8 30 30 22.8 30 30 30 30 30 30 11.2 30 11.2 26.8 30 30 30 11.2 11.2 22.8 30 30 30

30 0 30 23.3 22.9 30 22.9 17.6 22.9 23.3 12.2 23.3 30 9.8 30 30 12.2 23.3 17.6 30 30 30 9.8 23.3 23.3

26.8 30 0 30 30 26.8 30 30 30 30 30 30 26.8 30 26.8 6 30 30 30 26.8 26.8 26.8 30 30 30

30 23.3 30 0 23.3 30 23.3 23.3 23.3 13.3 23.3 13.3 30 23.3 30 30 23.3 13.3 23.3 30 30 30 23.3 13.3 13.3

30 22.9 30 23.3 0 30 22 22.9 22 23.3 22.9 23.3 30 22.9 30 30 22.9 23.3 22.9 30 30 30 22.9 23.3 23.3

22.8 30 26.8 30 30 0 30 30 30 30 30 30 22.8 30 22.8 26.8 30 30 30 22.8 22.8 1.3 30 30 30

30 22.9 30 23.3 22 30 0 22.9 15 23.3 22.9 23.3 30 22.9 30 30 22.9 23.3 22.9 30 30 30 22.9 23.3 23.3

30 17.6 30 23.3 22.9 30 22.9 0 22.9 23.3 17.6 23.3 30 17.6 30 30 17.6 23.3 4.3 30 30 30 17.6 23.3 23.3

30 22.9 30 23.3 22 30 15 22.9 0 23.3 22.9 23.3 30 22.9 30 30 22.9 23.3 22.9 30 30 30 22.9 23.3 23.3

30 23.3 30 13.3 23.3 30 23.3 23.3 23.3 0 23.3 11.8 30 23.3 30 30 23.3 11.8 23.3 30 30 30 23.3 0.9 0.7

30 12.2 30 23.3 22.9 30 22.9 17.6 22.9 23.3 0 23.3 30 12.2 30 30 5 23.3 17.6 30 30 30 12.2 23.3 23.3

30 23.3 30 13.3 23.3 30 23.3 23.3 23.3 11.8 23.3 0 30 23.3 30 30 23.3 4.4 23.3 30 30 30 23.3 11.8 11.8

11.2 30 26.8 30 30 22.8 30 30 30 30 30 30 0 30 6.1 26.8 30 30 30 3.7 3.7 22.8 30 30 30

30 9.8 30 23.3 22.9 30 22.9 17.6 22.9 23.3 12.2 23.3 30 0 30 30 12.2 23.3 17.6 30 30 30 1 23.3 23.3

11.2 30 26.8 30 30 22.8 30 30 30 30 30 30 6.1 30 0 26.8 30 30 30 6.1 6.1 22.8 30 30 30

26.8 30 6 30 30 26.8 30 30 30 30 30 30 26.8 30 26.8 0 30 30 30 26.8 26.8 26.8 30 30 30

30 12.2 30 23.3 22.9 30 22.9 17.6 22.9 23.3 5 23.3 30 12.2 30 30 0 23.3 17.6 30 30 30 12.2 23.3 23.3

30 23.3 30 13.3 23.3 30 23.3 23.3 23.3 11.8 23.3 4.4 30 23.3 30 30 23.3 0 23.3 30 30 30 23.3 11.8 11.8

30 17.6 30 23.3 22.9 30 22.9 4.3 22.9 23.3 17.6 23.3 30 17.6 30 30 17.6 23.3 0 30 30 30 17.6 23.3 23.3

11.2 30 26.8 30 30 22.8 30 30 30 30 30 30 3.7 30 6.1 26.8 30 30 30 0 3.4 22.8 30 30 30

11.2 30 26.8 30 30 22.8 30 30 30 30 30 30 3.7 30 6.1 26.8 30 30 30 3.4 0 22.8 30 30 30

22.8 30 26.8 30 30 1.3 30 30 30 30 30 30 22.8 30 22.8 26.8 30 30 30 22.8 22.8 0 30 30 30

30 9.8 30 23.3 22.9 30 22.9 17.6 22.9 23.3 12.2 23.3 30 1 30 30 12.2 23.3 17.6 30 30 30 0 23.3 23.3

30 23.3 30 13.3 23.3 30 23.3 23.3 23.3 0.9 23.3 11.8 30 23.3 30 30 23.3 11.8 23.3 30 30 30 23.3 0 0.9

30 23.3 30 13.3 23.3 30 23.3 23.3 23.3 0.7 23.3 11.8 30 23.3 30 30 23.3 11.8 23.3 30 30 30 23.3 0.9 0



1.2. THE MODE AND TEMPO OF DIVERSIFICATION PROCESSES

Mathematically, phylogenetic trees have two components: branching times and
topology (Ragan, 2009). In Figure 1.3 we see a tree and matrix representation of an
extant species tree (i.e. an ultrametric tree) and a full tree containing extinctions. The
first column represents the branching times while the next two columns represent the
topology. These two are the mathematical expressions of the mode and tempo of a
dicersification process.

While the timing (or tempo) in the tree can be represented by the total sum of rates of
the system, and hence, lineage-independent diversification models could capture such
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behaviour, the topology of the tree and hence its balance affect the diversification rates of
different lineages differently (Heard, 1996), requiring an extra level of complexity (Savage,
1983) than is available in most of the SDMs for which currently inference methods exist.

Ultrametric trees

1

1

1

2

3


Br t s C hi ld Par ent

0 2 1
t1 3 1
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Non-ultrametric trees
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Figure 1.3 | Phylogenetic trees represented in a diagram and the corresponding matrix notation

In Figure 1.4 we show the mode or topology and tempo characterised by the Colless
and Gamma indices, respectively, for 218 real phylogenies. The first observation in the
plot is that real phylogenies are unbalanced, given that the Colless index is always differ-
ent from zero. The Gamma index values show variability among clades, from negative
to positive, showing that some phylogenies show slowdowns in lineage accumulating
through time, whereas others speed up. The families of the clades do not show different
tendencies among them. Various indices have been developed to capture both balance
and timing (Mir et al., 2013). In this thesis, we do not compare them, but we use two of the
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most common ones instead. However, all analyses can be easily repeated with alternative
indices.
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Figure 1.4 | Distribution of Colless and Gamma index for 5 families describing Mode and Tempo respectively.

1.3. STATISTICAL METHODOLOGIES

This thesis deals with the development of inference techniques for the mathematical
models describing the species diversification process on the basis of extant phylogenetic
trees. The inference procedure we propose relies on a number of statistical techniques
that we describe in this section.

1.3.1. THE LIKELIHOOD APPROACH

By assuming a functional form of the probability distributions of the species diversifi-
cation process, statistical testing (Casella and Berger, 2002; Pfanzagl, 2011) of a wide vari-
ety of hypotheses in macroevolution is possible. The maximum likelihood (ML) method
consists of calculating the parameters θ that maximise the probability of observing the
data y ,

θ̂ = argmax
θ

fM (y |θ).

Multiples challenges arise when performing ML estimation in the context of phylogenetic
trees, for example because covariates are typically only observed at the present but they do
contribute to speciation and extinction rates throughout the whole evolutionary process.
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A large number of packages have been developed for specific species diversification
processes, but there is no unified framework that considers all of them. This thesis is a
step towards such a framework.

Current methods to compute the likelihood of a given SDM attempt to solve the so-
called master equations or Kolmogorov equations (Carmona and Delarue, 2014). For each
species diversification model, a new likelihood needs to be calculated, if at all possible.
In this thesis, we implemented a different approach, that does not require solving any
master equations.

1.3.2. EM ALGORITHM

In Chapters 2 and 3 we make use of a novel implementation of the EM algorithm for
inference of SDM parameters. The EM algorithm is an iterative procedure that optimises
a loglikelihood by calculating the expected loglikelihood given some parameters (E-step)
and then maximising it (M-step) providing a new set of parameters for the next iteration.
The EM algorithm is proven to increase the likelihood in every iteration and converge to
the ML estimate for convex likelihoods.

1.3.3. MONTE-CARLO

The Monte-Carlo algorithm is a numerical method for integration that cannot be
calculated analytically or numerically by standard methods. By sampling n realisations,
an approximation of the integral of a function f can be calculated as follows,∫

x∈X
f (x) d x ≈ c

n

∑
xi∼U (X )

f (xi ), (1.5)

where the xi are n uniform draws from X and c = ∫
x∈X d x. In the context presented

here, x is the unobserved part of the tree, typically the species that did not make it to the
present, and hence for computing the likelihood of an extant-species phylogeny, we need
to integrate over all possible extinction patterns that could have given rise to the current
extant tree. When n →∞ the approximation converges to an equality. However, sampling
uniformly on X is not always possible, or it can be particularly inefficient, if for many
values x ∈X the function f contributes negligibly to the integral, f (x) ≈ 0. To deal with
this problem, we use an importance sampling technique.

1.3.4. IMPORTANCE SAMPLING AND DATA AUGMENTATION

Importance sampling is a statistical technique that can be used when sampling from
the desired distribution is difficult. It consists of sampling from an alternative distribution
that contains the support of the desired distribution and correcting for it by the ratio of
the probability f (x) according to the true distribution by the probability of the realisation
x according to the alternative sampling distribution. Thus, we replace equation 1.5 by∫

x∈X
f (x)d x ≈ 1

n

∑
xi∼g

f (xi )

g (xi )
(1.6)
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Observe that choosing g = f leads to Eq. 1.5. A vital component of this method is to find
a “good” importance sampler g . Given that in the current context we need to sample
the extinct species on top of the extant or observed species of the tree, we introduce
a data augmentation algorithm that samples full trees that are in agreement with the
observed trees. In Chapter 2 we use a uniform importance sampler, which is not efficient
in the sense that it does not simulate trees with significant values of f , given that is
ignorant about the true process and parameters, but it is a good starting point for further
comparisons as well as simple to implement and interpret. In Chapter 3 we develop a
sophisticated data augmentation algorithm which allows us to implement the method for
large trees.

The data augmentation algorithms developed in this thesis are not only useful for
our EM algorithm but also for a wide variety of parameter estimation methods including
Bayesian methods or stochastic gradient descent approaches.

1.3.5. STOCHASTIC GRADIENT DESCENT METHOD

In Chapter 4 we propose an alternative to the EM algorithm by maximising the like-
lihood function using a stochastic gradient descent method which is also an iterative
procedure, but now each iteration calculates the next parameter value using

θi = θi−1 − ηG(θ)

where η is a step size, also known as the learning rate in the machine learning literature,
and G is the gradient of the likelihood function. The gradient of the observed likelihood is
defined as

G(θ) = ∂

∂θ

∫
x∈X

f (x, y |θ) d x

Here we use again our data augmentation algorithm developed in Chapter 3 for an
unbiased estimate of the gradient as the direct calculation of this expectation is, again,
not possible. Thus we estimate the gradient G by its Monte Carlo approximation.

Comparison and similarities between the EM algorithm and gradients methods have
been studied (Xu and Jordan, 1996). In this thesis we make use of both of them but do
not necessarily compare them as they are used in different contexts: Chapters 2 and
3, which employ the EM, are implementations of lineage-independent diversification
models while Chapter 4, where we exploit the gradient descent method, contains the
implementation of lineage-dependent diversification models.

1.3.6. GENERALISED ADDITIVE MODELS

Throughout this thesis we will come across expressions of the likelihood that are
complex functions of the parameters. Sometimes, we resolve this issue by means of Monte
Carlo sampling, but in other cases we try to approximate the functional form through
the theory of generalised additive models (GAM). GAMs are smooth functions that can
approximate any continuous function. By fitting linear combinations of polynomials,
typically cubic splines, computationally efficient approximations can be obtained.
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We argue that this theory can be applied as well to estimate a general class of species
diversification models by approximating the likelihood function using GAMs, at least
for models with few parameters. In this thesis, we use the GAM approach to calculate
a conditioning probability as a function of the parameters. Chapter 5 is dedicated to
developing a method to calculate the probability of any conditioning event for any SDM
that can be recorded by simulation.

1.4. THE CONDITIONED EVOLUTIONARY PROCESS

The macroevolutionary processes as we see it now is undoubtedly conditioned to, at
least, the fact that we indeed observe it, i.e., that the process survives to the present. Other
conditioning arguments can be found in the literature to incorporate in the likelihood
function of the species diversification process. Suggested conditioning events are the
survival of the tree given a particular crown or stem age, or the number of tips (Gernhard,
2008) or both (Etienne et al., 2016; Stadler, 2013). However, expressions for calculating
these conditioning probabilities as a function of the SDM parameters have only been
developed for specific species diversification models. In Chapter 5 of this thesis, we
develop a novel implementation for conditioning, where we make use of a combination
of simulations and GAM smoothing to estimate the probability of any condition that can
be used to calculate the conditioned likelihood of the process.

1.5. MODEL SELECTION

Model selection is a standard topic in statistical inference. Information criteria such
as AIC or BIC are well known and used in many statistical applications to selecting the
“best” model from a set of them (Wit et al., 2012). These techniques are used when a
likelihood is available. In the context of species diversification models and phylogenetic
trees, alternative methods have been used to compare the goodness-of-fit of a model
to real data. Simple statistics involve the number of tips or the gamma statistic, which
take into account the timing distribution of the phylogenetic tree. However, they do not
provide a strong tool for model selection. A more sophisticated statistic that captures
the whole evolutionary process is the lineage-through-time (LTT) statistic (Janzen et al.,
2015). The LTT statistic is defined as the integral of the absolute difference between two
phylogenetic trees

LT T (1,2) =
∫ tp

t0

|N1(t )−N2(t )|d t

where Ni (t ) is the number of lineages in the tree i at time t . In Figure 1.5 we see the area
between two LTT plots corresponding to two different trees in blue. This value can be
used to compare two trees but also to assess how similar trees simulated from a specific
model are to the observed tree. Moreover, it can be used to estimate parameters using
a likelihood-free method such as ABC inference (Janzen et al., 2015). The LTT plot is
a curve that does not consider the topology of the tree. Alternatively, we propose the
phylodiversity-through-time (PTT) statistic. This quantity does consider the topology of
the tree by integrating the difference between the phylodiversities of two trees through
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time,

PT T (1,2) =
∫ tp

t0

|P1(t )−P2(t )|d t .

In the literature this has not been studied yet. In the bottom panel of Figure 1.5, we
visualise the difference between phylodiversities at each time point of the two trees.
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Figure 1.5 | Comparison among two phylogenetic trees. Number of lineages and Phylogenetic diversity through
time. The area represents the distance between the trees.
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1.6. OUTLINE OF THE THESIS

This thesis lies on the intersection of evolutionary biology and statistical network
science, providing a systematic development in both areas. Throughout the thesis we in-
crease the generality of our approach to modelling phylogenetic trees in order to achieve
our two main objectives. On the one hand, we aim to develop a methodology to per-
form statistical inference in phylogenetics and macroevolution, allowing for testing of
a wide variety of species diversification dynamics hypotheses. On the other hand, we
develop generalisations of diversity-dependent diversification models, because they are
ideal systems to consider, study and quantify the effect of ecological limits and species
interactions on species diversification processes.

In Chapter 2, we develop an Monte Carlo Expectation-Maximization (MCEM) type
of algorithm in the context of phylogenetic trees, which in combination with a data
augmentation algorithm is a powerful tool for flexible statistical inference and species
evolution modelling. In this chapter, we provide a simple data augmentation scheme
as a basis for future comparisons, while achieving a fast general algorithm for small
phylogenetic trees.

In Chapter 3, we present an efficient and elegant data augmentation algorithm (DAA)
for reconstructed phylogenetic trees. The new DAA together with the MCEM method
developed in Chapter 2, make it possible to perform statistical inference in medium-
size phylogenetic trees. The method is called emphasis, which stands for Expectation-
Maximization in PHylogenetic Analysis with Simulations and Importance Sampling. In
this chapter we also generalise diversity-dependent diversification models including
phylodiversity, an essential type of diversity that considers the genetic distance among
species and thus provides another dimension to the niche filling argument that previous
diversity-dependent diversification models were aiming to capture.

In Chapter 4, we generalise diversity-dependent diversification models even further by
allowing lineage-specific evolutionary advantage with lineage-dependent diversification
models. Moreover, we develop a stochastic gradient descent algorithm to incorporate
in the statistical toolkit for parameter estimation, making use of the data augmentation
algorithm developed in Chapter 3. We provide a model that is flexible and capable of
capturing a large variety of topologies.

In Chapters 2-4, the phylogenetic space considered were all possible phylogenetic
trees. However, the very fact that any inference of data only makes sense for a surviving
clade, there are implicit assumptions, e.g., about the existence of the clade. The practice
of conditioning the observed data is a common practice in phylogenetic analysis. Con-
ditioning means that only a certain part of outcome space is considered feasible for the
observed phylogeny. Although various types of conditioning are used in phylogenetic
analysis, the most common, and most intuitive, one is that the observed phylogeny is not
empty. This affects the likelihood function and maximum likelihood estimates. Explicit
conditioning formulas are elusive, but we dedicate Chapter 5 exclusively to developing a
method that is able to approximate the probability of any condition of a process under
any species diversification model.

Chapter 6 presents a collection of considerations that have come up over the course
of this PhD project. It presents the limitations of the methods presented in this thesis
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as well as considerations for improving some of these methods. Ways of dealing with
incomplete clades as well as with possible extensions to the various models are discussed.
Furthermore, it considers how the methods used in this thesis can be used outside the
field of evolutionary biology.
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ABSTRACT

Phylogenetic trees are types of networks that describe the temporal relationship between
individuals, species or other units that are subject to evolutionary diversification. Many
phylogenetic trees are constructed from molecular data which is often only available for
extant species, and hence they lack all or some of the branches that did not make it into
the present. This feature makes inference on the diversification process challenging. For
relatively simple diversification models analytical or numerical methods to compute the
likelihood exist, but these do not work for more realistic models in which the likelihood
depends on properties of the missing lineages. In this paper we study a general class of
species diversification models, and we provide an expectation-maximization framework in
combination with a uniform sampling scheme to perform maximum likelihood estimation
of the parameters of the diversification process.
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2.1. INTRODUCTION

Evolutionary relationships of species are commonly described by phylogenetic trees
or, in more general scenarios, by phylogenetic networks (Ragan, 2009). A phylogenetic
tree is a hypothesis on how species or other biological units have diversified over time.
It is usually described by a binary tree whose nodes are ordered in time. Phylogenetic
relationships can be inferred from a variety of sources such as morphology and behaviors
of species, biochemical pathways, DNA and protein sequences (Lemey et al., 2009), both
from extant, i.e., living species or from extinct species through ancient DNA or the fossil
record. However, data on extinct species is often incomplete and only accurate molecular
phylogenies of extant species are available. In this manuscript we consider such phylo-
genetic trees as primary observations. Even though they lack extinct lineages, they are
believed to contain information on how species diversified and hence they have been
used to answer fundamental questions, such as “does diversity affect diversification?”
(Etienne et al., 2012b; Cornell, 2013), “what is the effect of environmental and ecological
interactions on evolutionary dynamics?” (Ezard et al., 2011; Barraclough, 2015; Lewitus
and Morlon, 2017), “how does biodiversity vary spatially?” (Goldberg et al., 2011; Mittel-
bach et al., 2007), and “what traits play a key role in species diversification?” (Lynch, 2009;
Paradis, 2005; FitzJohn et al., 2009), to name just a few.

To help to answer these questions specific mathematical models have been developed
that can infer various parameters from phylogenetic diversification pattern (Morlon,
2014). Most current approaches have started to use likelihood based methods to perform
inference on phylogenetic trees (Etienne et al., 2012b; FitzJohn et al., 2009; Ricklefs, 2007;
Stadler, 2011, e.g.). Although statistically principled, in each of these models a new
method to compute the likelihood needs to be developed. These models often rely on
describing the macro-evolutionary process by coupled ordinary differential equations —
the so-called master or Kolmogorov equations — and these quickly become intractable
as model complexity increases, particularly due to the lack of data on extinct species
(Ricklefs, 2007; Höhna et al., 2011).

Alternative ways to deal with Kolmogorov equations have been used since the 1950s
in fields outside evolutionary biology. These methods have used point process theory
(Serfozo, 1990; Daley and Vere-Jones, 2007), which does not solve Kolmogorov equations
directly but employs Gillespie-type simulations that were introduced in the context
of chemical reaction modelling (Gillespie, 1976, 1977). A single Gillespie simulation
represents an exact sample from the probability mass function that is the solution of the
system, thus allowing for stochastic optimization methods to maximize the likelihood
(Tijms, 1994).

In this paper we present a first step for a general inference procedure of a general
species diversification model. In section 2.2 we describe a general diversification process
based on a generalized linear model description of a non-homogeneous point process.
This model can be used to describe many alternative evolutionary hypotheses. In section
2.3 we introduce an expectation-maximization (EM) algorithm to optimize the likelihood
under incomplete information, namely the extinct lineages. We present a data augmenta-
tion algorithm, involving stochastic simulation combined with an importance sampler, to
perform the E step. We provide a proof-of-concept by comparing our inference with that
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Figure 2.1 | Phylogenetic tree with four events: three speciation events and one extinction event. Each branch
represents a species.

obtained using direct likelihood calculations. In section 2.4 we apply our method to the
diversification of a small clade of Vangidae, consisting of a group of medium-sized birds
living in Madagascar. Our aim is to discover whether the evolutionary record supports
more the diversity dependence hypothesis (Etienne et al., 2012b) or the phylodiversity
hypothesis (Castillo et al., 2010), for which no direct likelihood computation exists. Finally
in Section 2.5 we provide directions for future extensions of the method that are needed
to allow evolutionary biologists to routinely apply our approach to larger phylogenetic
trees to study general diversification dynamics in a unified framework.

2.2. A GENERAL DIVERSIFICATION MODEL

We define a phylogenetic tree x = (τ, t , a) on a time interval [0,T ] as a functional object
described by three components: a binary vector τ of event types (speciation or extinction),
a vector of continuous event times t and a network configuration object a, describing
which species speciated or went extinct at each event time. We model the shape and
structure of the tree by means of a collection of point processes, in this case, a set of
dynamical non-homogeneous Poisson processes (NHPP) where speciation and extinction
of species are random events that happen within a time interval [0,T ]. Figure 2.1 shows
an example of a phylogenetic tree with three speciation events and one extinction event.

In this paper, we assume that the process starts at time t0 = 0 with a single species b1.
At this stage, the tree is subject to two Poisson processes: a potential speciation of species
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b1 and a potential extinction of species b1. Both processes are assumed to have a waiting
time with time-continuous ratesλb1 (t ) andµb1 (t ), respectively. In the time-homogeneous
case, the waiting time for the first event to occur is therefore an exponential with rate
λb1 +µb1 . More generally (Daley and Vere-Jones, 2007), the probability density for the
process x to have a single species up to time t1 and a speciation event exactly at time t1 is
given by

f (t1) =λb1 (t1)e−
∫ t1

t0
λb1 (t )+µb1 (t )d t . (2.1)

If indeed a speciation occurs, the process continues with four NHPPs: two potential
speciations and two potential extinctions. This is repeated until the present time T ,
unless the tree dies out before then. We consider a general scenario where at time t each
of the Nt present species b has its own speciation rate λb(t) and extinction rate µb(t)
defined as a linear function via link function h,

h(λb(t )) =
m∑

j=1
β j cb j t , h(µb(t )) =

m∑
j=1

α j cb j t . (2.2)

where cb j t is one of j = 1, . . . ,m possible covariates of species b at time t affecting the
speciation and/or extinction processes. Our entire process is therefore governed by
the parameter set θ = {β1, . . . ,βm ,α1, . . . ,αm}. Typically we will consider the logarithmic
link function h = log, but equation (2.2) can be trivially modified by choosing for h any
monotonous increasing function that maps (0,∞) onto R. The class of statistical models
satisfying these specifications are an extension of the well-known generalized linear
models (GLMs) (Dobson and Barnett, 2008).

This GLM extension to phylogenetic trees spans a very broad spectrum of possibilities
for evolutionary biologists to test hypotheses and integrate their species diversification
data. Diversification rates can be influenced by individual attributes, typically called
traits, environmental factors, such as average temperature, by the composition of the
diversifying clade itself or of its local ecological community. In the literature a range
of models have been explored, where diversification rates are assumed to be constant
(Nee et al., 1994), change through time (Rabosky and Lovette, 2008), depend on diversity
(Etienne et al., 2012b), on individual traits (Paradis, 2005; Freckleton et al., 2008) or other
factors (Morlon, 2014). In order to test realistic models, we are interested in flexible rates
that are able to change dynamically through all those factors simultaneously. For example,
the speciation rate of species b at time t could also depend on other species’ traits.

Mathematically, the method allows the inclusion of any set of covariates that might
be interesting to incorporate for evolutionary biologists; however full information on
individual covariates, like traits, are rarely available – especially not on the missing species.
One way to deal with this is by including an extra augmentation step and simulating full
information of traits on augmented trees (Hoehna et al., 2019). Another option is to use
observable proxies related to e.g. trait diversity, such as different forms of phylogenetic
diversity. These present interesting direction for future work.
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2.3. MLE INFERENCE WITH MCEM USING IMPORTANCE SAM-
PLING

The loglikelihood of a full tree including extinct branches x ∈X involving a total of M
events by extrapolating from (2.1) can easily be shown to be given by

`x (θ) =
M∑

i=1

Nti∑
b=1

[
log

[
λb(ti ;θ)1Sp (ti ,b)+µb(ti ;θ)1E x (ti ,b)

]−∫ ti

ti−1

λb(t ;θ)+µb(t ;θ) d t

]
(2.3)

where 1Sp (ti ,b) = 1 if species b speciates at time ti , 0 otherwise and 1E x (ti ,b) = 1 if

species b becomes extinct at time ti , 0 otherwise. An additional term −∑NtM
b=1

∫ T
tM
λb(t ;θ)+

µb(t ;θ) d t has to be added to the likelihood, if the final event time tM does not corre-
spond to the present T . For the case when diversification rates are step-wise constant this
reduces to the solutions in Wrenn (2012) and Reynolds (1973). When the full phylogenetic
tree and the covariates at all times are given, we can directly maximize the loglikelihood
function (2.3) to obtain the maximum likelihood estimates of the parameters (Paradis,
2005) and perform model selection to determine what factors are important for diversifi-
cation. In practice, however, we almost never observe the full phylogenetic tree, but only
a tree with the extant species.

2.3.1. DIFFICULTIES OF MLE ESTIMATION AND AN MCEM ALGORITHM

Let us denote Y as the space of ultrametric trees (Gavryushkin and Drummond,
2016), i.e., time-calibrated trees without extinct lineages, and X (y) as the space of all
full trees that, when pruning all extinct species, lead to the ultrametric tree y ∈Y . Then
the log likelihood of an observed, extant species only tree y is given by the integral of the
likelihood (2.3) over all possible full trees,

`y (θ) = log
∫
X (y)

exp(`x (θ)) d x. (2.4)

However, because of the complexity of the space X (y) a closed-form solution for equation
(2.4) is not available in most cases(Gavryushkin et al., 2016), making inference, or in
particular, direct MLE computations difficult or impossible.

A typical method for likelihood maximization under incomplete data is the application
of the expectation-maximization (EM) algorithm (Dempster et al., 1977), considering the
information about the extinct species as a missing data problem. In the EM algorithm, a
sequence {θ(s)} of parameter values are generated by iterating the following two steps,

E-step Compute the conditional expectation Q(θ|θ(s)) = Eθ(s) (`X (θ)|Y = y),

M-step Choose θ(s+1) to be the value of θ ∈Ωwhich maximizes Q(θ|θ(s)).

This algorithm is run iteratively until convergence is reached. Under certain regularity
conditions (Dempster et al., 1977), the point of convergence can be shown to be the MLE
for the incomplete data problem, i.e., maximizing `y (θ).



2.3. MLE INFERENCE WITH MCEM USING IMPORTANCE SAMPLING 21

S S EE

Input: Observed Phylogeny

Step 1: Draw number of events (2d), and then 2d event times

Step 2: Draw event types (Dyck word)

Step 3 : Allocate missing species

b1

b3

b2

b1

b3

b2

b1

b3

b2

S S EE

b1

b3

b2

Figure 2.2 | The three components of our phylogenetic tree augmentation algorithm.
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As in the case of equation (2.4), the calculation of Q(θ|θ∗) does not have a closed-form
due to the complexity of the space X (y), so approximations are needed. To perform this
task we use Monte-Carlo integration (Wei and Tanner, 1990), where given a set of sampled
trees x1, ..., xp from an importance sampler distribution g (x|y,θ) we approximate Q(θ|θ∗)
by

Q(θ|θ∗) ≈ 1

p

p∑
i=1

`xi (θ)
fX |Y (xi |y,θ∗)

gX |Y (xi |y,θ∗)

∝ 1

p

p∑
i=1

wi`xi (θ) (2.5)

where the importance weights are defined as wi = fX ,Y (xi ,y |θ∗)
gX |Y (xi |y,θ∗) , using the law of conditional

probabilities to obtain the proportional expression.
In the M-step we optimize (2.5) via numerical methods and the Hessian is calculated

and represents the Fisher information matrix H−1. Assuming that the errors given by
the EM algorithm are independent of the Monte Carlo errors, the standard errors for the
MCEM algorithm are defined as

SE(θ̂i ) =
√
−H−1

i ,i + VMCE

NE M
(2.6)

where −H−1
i ,i corresponds to the diagonal components of the information matrix giving

the EM error, VMCE is the variance of the MC error and NE M is the number of MCEM
iterations considered for estimation. Note that if the EM is run long enough, the second
term in (2.6) goes to zero, making the information matrix the decisive value for standard
errors on MCEM algorithm (McLachlan and Krishnan, 2007). With the standard errors
we can construct confidence intervals for the parameters and test hypotheses about the
significance of covariates of interest.

2.3.2. A SIMPLE IMPORTANCE SAMPLER

To sample trees we propose a tree augmentation algorithm that samples indepen-
dently the three components of the tree: event types, event times and species allocations.
The algorithm is shown in Figure 2.2.

Step 1. Generate event times and number of extinctions. The number of extinct
species d and 2d missing event times, i.e., speciations and extinctions of these d missing
species are sampled uniformly in the following manner:

1. Sample the number of missing species d uniformly from the discrete space {0, . . . , M e }
where M e is a predefined ceiling, such that the probability of more than M e extinc-
tions is extremely unlikely.

2. Sample 2d branching times uniformly from the continuous space (0,T ] and then
sort them.
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The probability of sampling a set of 2d unobserved event times t e = (t e
1 , . . . , t e

2d ) for a tree
of dimension d is

gevent times(d , t e ) = 1

M e +1

(
1

T

)2d

(2d)!

Note that this scheme samples the dimension of the tree uniformly, but the size of the
space of trees grows in a factorial way with the dimension of the tree. This means that the
sample size required to obtain a robust Monte Carlo approximation of the integral (2.4)
must be large. This is a limitation of this importance sampler, and hence it is only reliable
when many extinctions are unlikely.

Step 2. Generate event types We simulate a binary event chain τe = (τe
1, . . . ,τe

2d ) assign-
ing either S (speciation) or E (extinction) to each event time. This chain is subject to the
rule that the number of Es up to any point in the chain should be less than or equal to
the number of Ss in the chain up to that point. The set of allowed chains is known in the
mathematical literature as the set of Dyck words and several methods for sampling Dyck
words have been developed (Kasa, 2010). Furthermore, given a number of events 2d , the
number of possible Dyck words is known as the Catalan number (Zvonkin, 2014),

Cd =
(

2d

d

)
1

d +1
.

By uniformly sampling a Dyck word τe of length 2d , the probability of a specific event
sequence is given by gevents(τe ) = 1/Cd .

Step 3. Species allocation Given the missing event times and missing event types we
can perform the tree allocations by sampling a parent species of each missing speciation
and by defining which species, i.e., the parent species or the inserted “new species”,
becomes extinct at the extinction event. To sample uniformly we just need to count
the number of possible trees in agreement with the event times t e = (t e

1 , . . . , t e
2d ) and

event types. This number, n(τe
2d , t e

2d ), can be calculated by starting with n(τe
0, t e

0 ) = 1 and
applying the following rules when going from root to tips in the phylogenetic tree:

• For each unobserved speciation event at t e
i , i.e., τe

i = S, update n(τe
i , t e

i ) in the
following way,

n(τe
i = S, t e

i ) = n(τe
i−1, t e

i−1)×
(
2N o

t−i
+N e

t−i

)
,

where N o
t− is the number of observed branches just before t and N e

t− is the number
of unobserved branches just before t . Note that events on observed branches count
twice compared to those on unobserved branches. Intuitively, this accounts for
the two eventualities following an unobserved speciation on an observed branch:
either the first or the second daughter species is observed (the other one is unob-
served), while for a speciation on an unobserved branch both daughter species are
unobserved. A more formal argument justifying the factor of two is provided by
Laudanno et al. (2019).
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• For each unobserved extinction event at t e
i , i.e., τe

i = E , update n(τe
i , t e

i ) in the
following way,

n(τe
i = E , t e

i ) = n(τe
i−1, t e

i−1)×N e
t−i

.

As we sample uniformly, the probability for each possible allocation ae of the d missing
species at the missing event times t e with Dyck word τe in the tree of extant species xobs

is then given by gallocation(ae ) = 1
n(τe

2d ,t e
2d ) .

Sampling probability of a uniformly augmented tree The uniform sampling probabil-
ity of the augmented tree xunobs = (d , t e ,τe , ae ) is then given by

g (xunobs|xobs,θ) = 1

M e +1

(
1

T

)2d

(2d)!
1

Cd

1

n(τe
2d , t e

2d )
(2.7)

From this equation we can see how the dimension of the tree space plays an important
role. For this reason, the uniform importance sampler becomes less efficient when many
extinctions are likely. On the other hand, the uniform sampling scheme allows for easy
implementation and quick computation, thereby making it suitable as a default sampler.

2.3.3. CHECKING PERFORMANCE BY COMPARING WITH DIRECT ML

To show that the MCEM works, we compared our method to the linear diversity-
dependence (LDD) diversification model for which the likelihood can be calculated
directly (Etienne et al., 2012b). In this model speciation rates depend on diversity of the
phylogenetic tree at that point. We consider the diversification model with rates

λb(t ) =λ0 −
(
λ0 −µ0

) Nt

K
, µb(t ) =µ0

where Nt is the number of extant species (diver-

sity) at time t and θ = {λ0, µ0−λ0
K ,µ0} are model

parameters. This model is a special case of our
general modelling framework, defined in (2.2).
We perform the MCEM routine on a clade of Mala-
gassy birds, the so-called Vangidae clade shown
in Figure 2.3, which has been analyzed in Jønsson
et al. (2012). We replicated the routine several
times with different sample sizes to observe the
impact of sample size on estimation and the ro-
bustness of the method.

10 8 6 4 2 0
Time (million years ago)

Figure 2.3 | Subclade of the Malagassy Vangi-
dae, obtained from Jønsson et al. (2012).

In table 2.1 we show 6 replicates corresponding to 3 pairs with different sample size orders.
We drop the first 1000 iterations as burn-in, and use the next 1000 MCEM iterations for
parameters estimation, reporting the mean value and the standard error from equation
(2.6). We observe that for small sample sizes (replicates 1 and 2) estimation is poor. For
the cheapest set-up the mean effective sample size (ESS) is approximately 37 and this
does not seem enough to sample in spaces with a substantial number of missing species.
In this scenario, the MCEM estimates are not robust. As sample size increases we see that
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inference becomes more and more accurate and matches the MLE procedure by Etienne
et al. (2012b).

ESS replicate θ̂1 SE(θ̂1) θ̂2 SE(θ̂2) θ̂3 SE(θ̂3)

37 1 1.403 0.077 -0.257 0.016 0.032 0.026
37 2 1.359 0.077 -0.249 0.016 0.031 0.026
373 3 1.709 0.098 -0.307 0.020 0.046 0.031
372 4 1.713 0.098 -0.309 0.020 0.046 0.031
2970 5 1.932 0.127 -0.336 0.026 0.056 0.033
2987 6 1.892 0.121 -0.328 0.025 0.056 0.033
MLE 1.937 -0.326 0.060

Table 2.1 | MCEM estimation for 3 different samples sizes, with 2 replicates each. The first column is the mean
of the effective sample size over the 1000 iterations considered. The last row is the MLE directly calculated by
computing the likelihood (Etienne et al., 2012b). Estimated values are for the linear DD model with θ1 = λ0,
θ2 = (µ0 −λ0)/K and θ3 =µ0.

These replicates are also summarized in Figure 2.4 where we show a visualization of
the dynamical MCEM parameter estimation for logλ0 corresponding to the logarithm of
the initial speciation rate at stem age. The dashed black line indicates the true MLE. We
see in all 6 cases that estimations go quickly to the true MLE with a stable behaviour after
a couple of hundred iterations. To visually compare biases and variation through different
sample sizes we show the replicates for small sample sizes until the 2000th and 2500th
MCEM iteration. We clearly see that for higher sample sizes bias and variation decrease.
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Figure 2.4 | MCEM applied to the tree of Figure 3 under the LDD diversification model. Evolution of the estimate
of the first parameter, the initial speciation rate θ1 = λ0 through EM iterations. We plot 6 replicates: 2 for 3
different sample sizes. For better visualization we cut higher sample sizes at iteration 2000 and 2500.

Note that the effective sample size is between 30% and 40% in these cases. An efficient
importance sampler with 100% effective sample size is a priority for future publications
in order to apply the method to larger phylogenetic trees.
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2.4. DIVERSITY-DEPENDENCE: DIVERSITY OR PHYLODIVERSITY?

Phylodiversity is defined as the total branch length of extant species of a tree, and it
has been proposed as an alternative to diversity in conservation ecology (Faith, 1992).
Figure 2.5 shows phylodiversity and diversity through time for a simple example tree.
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Figure 2.5 | Example of a simple tree with one extinction. The two panels on the right show the difference
between diversity and phylodiversity through time.

As an illustration of the flexibility of our method we now consider a model similar
to diversity-dependence introduced in the previous section, but with dependence on
phylodiversity Pt instead of Nt . Diversity-dependence has been detected in a Vangi-
dae clade (Jønsson et al., 2012) and we would like to extend the analysis to check if
phylodiversity-dependence (LPD) is a more suitable factor in diversification of Vangidae
than diversity-dependence (LDD). In addition to these two models, which both assume
linear dependence of speciation rate on diversity or phylodiversity, we consider the expo-
nential diversity dependence (EDD) and exponential phylogenetic diversity (EPD) models.
The exponential models use the log-link function common in the statistical literature,
rather than the identity link suggested by the evolutionary biology literature. Table 2.2
shows the parameter definitions for the four models tested on the phylogenetic tree of
the Vangidae.

Model λb(t ) θ1 θ2 θ3

LDD λ0 −
(
λ0 −µ0

) Nt
K λ0 −(

λ0 −µ0
) 1

K µ0

LPD λ0 −
(
λ0 −µ0

) Pt
K λ0 −(

λ0 −µ0
) 1

K µ0

EDD λ0e−aNt ln(λ0) −a µ0

EPD λ0e−aPt ln(λ0) −a µ0

Table 2.2 | Four diversity-dependent diversification models, where speciation rate depends on diversity or phy-
lodiversity, either linearly or exponentially. All models assume constant extinction rate and have 3 parameters
to be estimated.

We performed the MCEM routine for each of the four diversification models, obtaining
the ML estimates of the parameters and calculating Monte-Carlo estimation for the
likelihood function and the corresponding AIC values (Wit et al., 2012). Interestingly, we
found that phylodiversity models do not performs better than ordinary diversity models,
but there is an improvement of the exponential diversity-dependence model over the



2.5. DISCUSSION 27

linear DD model. Table 2.3 shows the inference results for each of the four diversification
models.

To get an idea of the computational cost of the method we include, next to table 2.3, a
plot of computing times (for one MCEM iteration) as a function of Monte Carlo sample
size for PD and DD models starting at their respective MLE values reported in the table.
The values are average of 100 replicates performed in an ordinary computer. From the
plot we can see that for our example tree each iteration takes a couple of minutes for large
Monte Carlo sample size, which means that the whole routine should take few hours at
most. We also see that the computing times increases linearly with the MC sample size.

Model θ1 θ2 θ3 loglikelihood AIC

LDD 1.94 -0.33 0.06 -11.36 28.72
LPD 0.31 -0.01 0.04 -14.37 34.74
EDD 2.58 -1.02 0.04 -11.19 28.37
EPD -0.28 -0.04 0.13 -13.44 32.89
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Table 2.3 | Parameter estimation of the four diversity-dependent models of Table 2.2 when applied to the Vanga
tree of Figure 2.3, including Monte-Carlo approximations of the loglikelihood and AIC. Next to the table we see
the plot of average computing times per MCEM iteration (in seconds) for DD and PD models at their respective
MLE.

We conclude that the best model in this analysis is an EDD model with parameters
θ1 = 2.58(0.96), θ2 =−1.02(0.25), θ3 = 0.04(0.03), suggesting an exponential decreasing
speciation rate with a exponential decay constant close to 1, given by θ2. We found an
initial speciation rate of approximately 4.85 species per million years which decreases
until 0.03 at the present time. This indeed suggests that the diversification process of this
Vangidae clade in Madagascar has slowed down dramatically over the past 10 million
years. Moreover, the extinction rate of 0.04 species per million years suggests that the
clade has now reached a stable diversification behaviour, whereby any further speciations
will tend to be offset by extinctions.

2.5. DISCUSSION

We have presented a flexible method for testing a broad variety of diversification
models in phylogenetic analysis and provided some simple examples. This is a first
step towards a robust general methodology to identify potential factors in diversification
processes from phylogenetic trees.

The unobserved extinct species turn the inference problem naturally into a problem
that can be approached by means of an EM algorithm. Given the complexity of the E-step,
a Monte Carlo importance sampler has been proposed, involving a uniform importance
sampler. Given the computational simplicity both in terms of sampling and calculation
of uniform samplers this may be a convenient option for small sized trees, where more
sophisticated importance samplers, involving the underlying non-homogenous Poisson
processes, would not necessarily improve efficiency. As in the case of Vangidae clade
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where few missing species are likely, we found that the uniform importance sampler
leads to accurate estimation. However, the performance of our uniform importance
sampler deteriorates as the dimension of the phylogenetic tree increases. In order to
apply this method on high-dimensional trees a more efficient importance sampler should
be carefully chosen. This we will leave for future work.

Current approaches perform inference by means of likelihood maximization, which
requires that formulas for the likelihood must be derived on a case-by-case basis. Here,
we consider a general class of models that include an augmentation step inside an EM
algorithm, thereby avoiding direct likelihood calculation and thus allowing inference for
a wide variety of diversification models.

In principle, in cases when full information of covariates is still missing after the
augmentation step, extensions of the augmentation procedure are possible. However,
this is beyond the scope of the current paper.

Moreover, to increase efficiency alternatives to MCEM algorithms may be consid-
ered, such as the stochastic approximation version of the EM algorithm (SAEM) (Delyon
et al., 1999) or a Bayesian approach (Richardson and Green, 1997). In both cases the
algorithm could make use of the previous MC samples, thereby improving efficiency at
some computational cost.

Even though in this paper we only refer to the context of a diversification process of
ecological species, a phylogenetic tree is used in many other fields to describe other kinds
of processes, such as language evolution (Greenhill et al., 2010) and cultural diversification
(Mace and Holden, 2005). Therefore, the method that we have developed in this paper is
potentially useful for inferring the underlying driving process of such branching processes.
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In general, however, constructing data augmentation schemes that result in both simple

and fast algorithms is a matter of art in that successful strategies vary greatly with the
models being considered.

David A van Dyk and Xiao-Li Meng

Richter F, Wit EC, Etienne RS. In preparation.
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ABSTRACT

Diversity-dependent diversification models have been extensively used during the last
decade in phylogenetic analysis to study the effect of ecological limits and feedback of
community structure on species diversification processes, such as speciation and extinction.
Current diversity-dependent diversification models characterise ecological limits by carry-
ing capacities for species richness. Such ecological limits have been justified by niche filling
arguments: as species diversity increases, the number of available niches for diversification
decreases.

However, as species diversify they may diverge from one another phenotypically, which may
open new niches for new species. Alternatively, this phenotypic divergence may not affect
the species diversification process or even inhibit further diversification. Hence, it seems
natural to explore the consequences of phylogenetic diversity-dependent (or phylodiversity-
dependent) diversification. Current likelihood methods for estimating diversity-dependent
diversification parameters cannot be used for this, as phylodiversity is continuously chang-
ing as time progresses and species form and become extinct.

In this chapter, we present a new method based on Monte Carlo Expectation-Maximization
(MCEM), designed to perform statistical inference on a general class of species diversifi-
cation models and implemented in the R package emphasis. We use the method to fit
phylodiversity-dependent diversification models to 14 phylogenies, and compare the re-
sults to the fit of a richness-dependent diversification model. We find that in a number of
phylogenies, phylogenetic divergence indeed spurs speciation even though species richness
reduces it. Not only do we thus shine new light on diversity-dependent diversification, we
also argue that our inference framework can handle a large class of diversification models
for which currently no inference method exists.
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3.1. INTRODUCTION

The hypothesis of diversity-dependent diversification posits that diversification pro-
cesses at macro-evolutionary scales are affected by community structure, and particularly
by diversity (Gould et al., 1977; Walker and Valentine, 1984). One of the underlying ideas
is that there are ecological limits to diversity (there is a limited number of niches that
can be filled with species) and hence to diversification (Rabosky, 2009). The hypothesis
has been extensively studied both empirically and theoretically (Rabosky and Hurlbert,
2015; Etienne et al., 2016; Morlon, 2014; Jønsson et al., 2012; Condamine, 2018; Gibb et al.,
2016; Cunha et al., 2017; Pouchon et al., 2018; Chen et al., 2017; Pinto-Ledezma et al.,
2017; McGuire et al., 2014; Pyron and Wiens, 2013; Xu and Etienne, 2018; Liow et al., 2010;
Herrera-Alsina et al., 2018). However, currently developed inference models for detecting
diversity-dependent diversification from molecular phylogenies consider only species
richness as a proxy for diversity (Etienne et al., 2012b).

Phylogenetic diversity, quantifying the genetic differences among a group of species,
has been identified as a key feature of diversity (Kling et al., 2018; Scheiner et al., 2017) to
be taken into account in conservation biology (Laity et al., 2015; Faith and Baker, 2006)
(but see Cantalapiedra et al. (2019); Mazel et al. (2018)), community ecology (Stadler et al.,
2017; Tucker et al., 2016; Webb et al., 2006; Violle et al., 2011), evolutionary biology (Kling
et al., 2018) and the intersection of these fields. Phylogenetic diversity, or phylodiversity,
provides a different perspective on diversity and ecological limits. Whereas species
richness models suggest that as species diverge there may be less opportunity to speciate
further as the growing phenotypic space between species leaves less room to be occupied,
one may argue, however, that the divergence provides access to more space to speciate
into. Hence, extending diversity-dependence to phylodiversity and developing methods
to infer such phylodiversity-dependent diversification from molecular phylogenies seems
worthwhile. It will allow us to consider the dynamic nature of ecological limits (Costa
et al., 2008; Lister, 1976; Soininen et al., 2011) and thus relax the assumption of fixed limits
(Etienne et al., 2012b; Marshall and Quental, 2016). In this chapter we develop such an
extension.

The incorporation of phylogenetic diversity is not possible with the current simulation-
free methods for inferring diversity-dependent diversification using the Q-approach in-
troduced by Etienne et al. (2012b) and Laudanno et al. (2020b) and implemented in the
R package DDD. This method is based on a hidden Markov model approach whereby the
probability of an extant-species tree is integrated over the infinite set of complete trees
compatible with it, i.e., the trees that also contain now-extinct species. The method relies
on the assumption that only the number of species at any point in time affects the diver-
sification rates, and therefore does not depend on tree topology. Phylogenetic diversity,
defined as the sum of the lengths of all branches in a phylogenetic tree (Faith, 1992),
highly depends on the topology of the tree as well as the branching times. Hence, a new
methodology is needed to incorporate topological characteristics of the diversification
processes.

To do so we generalize a recently developed statistical framework (Richter et al., 2020)
based on Monte Carlo Expectation-Maximization (MCEM) that allows inference on a
general class of diversification models, including models with phylodiversity-dependent
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diversification. In this EMPHASIS (Expectation-Maximization in PHylogenetic Analysis
with Simulations and Importance Sampling) framework, maximum likelihood estimation
is performed on an augmented data set generated by Monte Carlo simulations.

This general class of Species Diversification Models (SDM) contains a broad spectrum
of scenarios considered in the literature where rates can be constant (Nee et al., 1994), be
related to the age of the species (Hagen et al., 2015), to the (changing) paleo-enviroment
(Descombes et al., 2018), to geographic patterns (Goldberg et al., 2011) or to temperature
and diversity (Condamine et al., 2019), just to name a few. For each of these models
specific likelihood formulas have been derived (implemented in different packages), but
our new method can handle them in a single framework, and also applies to combinations
of these models for which no such likelihood formula is available and is often impossible
to derive or compute numerically. It also applies to new models such as the phylodiversity-
dependent models discussed in detail here, and other models with possibly complex
interactions between ecological factors and macroevolution, thereby opening endless
opportunities for macroevolutionary diversification analysis. The main challenge of our
framework is computationally: the Monte Carlo integration is very demanding. In this
chapter we therefore provide a method to perform this integration efficiently.

We illustrate our inference method by applying it to 14 phylogenies, comparing a
phylodiversity-dependent diversification model to a diversity-dependent diversifica-
tion model. We generally find little difference between these two models, although the
phylodiversity-dependent diversification model provides an additional narrative for the
evolution of global speciation through time in several cases.

3.2. DIVERSITY-DEPENDENT DIVERSIFICATION MODELS

Diversity-dependent species diversification models are typically used to quantify the
effect that diversity has on diversification (Condamine et al., 2019; Etienne et al., 2012a;
Cunha et al., 2017; Etienne and Haegeman, 2012; Foote et al., 2018). Under the classical
linear diversity-dependent diversification (LDD) model, it is assumed that speciation rate
is a linear function of species richness:

λt =λ0 +βN Nt ; µt =µ0, (3.1)

where λt is the per species speciation rate, Nt the number of species and µt represents
the per species extinction rate, at time t . Assuming that λ0 is positive, if βN is negative the
quantity K ′ =−λ0βN is called the carrying capacity, which denotes the value for which a
clade approaches a niche limit and consequently experiences a slow-down in speciation.
If βN = 0, then the model reduces to the diversity-independent diversification model, i.e.
the constant-rate model.

Phylogenetic diversity is recognised as a critical feature of diversity to take into consid-
eration in several fields such as conservation ecology, macroecology and macroevolution.
However, so far, it has been studied mostly in a qualitative way, and only as a single
number at the present instead of considering it as a dynamical quantity that changes
through macroevolutionary time. Current diversity-dependent diversification models do
not consider phylodiversity, and assume that diversity slows down diversification (e.g. due
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Figure 3.1 | Phylogeny, number of species and phylogenetic diversity per species.

to niche filling), while qualitative studies suggest that diversity can spur diversification
(Jarne et al., 2017; Hamilton et al., 2020). Likelihood-based inference approaches ignore
phylodiversity; they fully describe the processes by considering the probability that the
clade has Nt lineages at time t , but ignore the topology of the trees. We here introduce a
generalised diversity-dependent diversification model, i.e., a phylodiversity-dependent
diversification (LPD) model, where we assume that the speciation rate also depends on
the phylogenetic diversity per species:

λt ;β =λ0 +βN Nt +βP
Pt − t

Nt
; µt ;β =β0 (3.2)

where Pt is the phylogenetic diversity at time t defined as the total branch length. The
quantity Pt−t

Nt
corresponds to the phylogenetic diversity per species at time t . Note that

by subtracting t from the phylogenetic diversity Pt , the phylogenetic diversity per species
remains 0 for a single species. In Figure 3.1, an example tree is plotted, with the species
richness though time and the phylogenetic diversity per species through time.

In this chapter, we make use of the statistical methods described in chapter two,
combined with an efficient importance sampler, in order to perform statistical inference
assuming diversification dynamics given by the LPD model and compare it with the
diversification dynamics given by the simple LDD model. In this way, we quantify the
signal that phylodiversity leaves in species diversification and evaluate if its incorporation
in diversity-dependent diversification models is promising for further studies.

3.3. MATERIALS AND METHODS

Phylogenetic trees are branching diagrams, reconstructed from DNA sequences, rep-
resenting the evolutionary history of species diversification (Kapli et al., 2020). Mathe-
matically, they are represented by a discrete part given by the topology of the tree and a
continuous part given by its branching times. We define a tree x = {t,τ} as a combination
of branching times and topology. More precisely, the branching times are defined by a
chronological sequence vector of times t = {t0, t1, t2, ..., tp }, with t0 = 0 and tp being
the present time. The topology is defined by a succession of allocation values which
can be characterized in multiple ways such as in network or matrix notation. Here, we
consider the succession of species names s∗1 , s∗2 , ..., s∗p−1 to be the species that diversified
(or became extinct) at branching time ti . Moreover, we define the subsets of subindex
Cx ⊂ {1, ..., p −1} and Ex ⊂ {1, ..., p −1} to be the indices corresponding to speciation and
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Full tree Reconstructed (observed) tree

Figure 3.2 | Full phylogenetic trees (left) and the corresponding reconstructed tree (right). Each branch repre-
sents a species.

extinction events, respectively. This means that if i ∈Cx then ti is a branching time corre-
sponding to a speciation event while if i ∈ Ex then ti is a branching time corresponding
to an extinction event.

Figure 3.2 shows a representation of a tree describing a full evolutionary process
(speciation and extinction events), and the corresponding reconstructed tree, considering
the evolutionary history of currently extant species. In ths case Cx = {0,1,2,4} and Ex =
{3,5}.

Throughout this chapter we consider the extant species trees to be accurate (i.e., no
uncertainty in branching times or topology). Statistically, extant species trees are our
observed data and extinct species are usually latent or unobserved variables, which in the
case of diversity-dependent diversification also affect diversification rates.

3.3.1. DIVERSIFICATION OF SPECIES AS A POINT PROCESS

We consider the species diversification process as a general Point Process where
each species has a waiting time to speciate into two daughter species that follows an
exponential probability distribution with rate λt ,s|θ , for any time t , species s and parame-
ters θ. Species can also become extinct with an exponential distribution with rate µt ,s|θ
for the waiting time to extinction. We will denote the set of extant species at time t by
St = {s1, ..., sNt }, and the number of extant species at time t by Nt . These quantities are
described by a Non-Homogenous Poisson Process (NHPP) (Daley and Vere-Jones, 2007).

Typically, we consider λt ,s|θ = g

(∑
i
θi vi ,t ,s

)
for a set of covariates vi ,t ,s and a link function

g : R→ R (Dobson and Barnett, 2008). The loglikelihood function of the full process
represented by a complete tree (Figure 3.2, left) is given by

`x (θ) =∑
Cx

log
(
λti ,s∗i |θ

)
+∑

Ex

log
(
µti ,s∗i |θ

)
−

p∑
i=1

 ti∫
ti−1

∑
s∈Sti

(λt ,s|θ+µt ,s|θ)d t

 (3.3)
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Phylogenies that are derived from molecular data (e.g. DNA sequences) are, however,
not full trees, as they do not contain the extinct species (Figure 3.2 right). The likelihood
for an observed tree can be written in terms of the likelihood of compatible full trees. In
principle, this is simply the integration over all possible full trees that are in agreement
with the observed tree xobs :

f (xobs |θ) =
∫

x∈X (xobs )
exp(`x (θ|xobs ))d x (3.4)

This integration is usually impossible to compute in practice for most diversification
models. Here, we present a method where maximum likelihood estimation is possible
without calculating directly the likelihood function (3.4), by implementing a combination
of statistical inference and a data augmentation algorithm.

3.3.2. THE EMPHASIS STATISTICAL FRAMEWORK

Our statistical framework is a generalisation of that of Richter et al. (2020), which
makes use of an Expectation-Maximization algorithm for maximising the likelihood
(Dempster et al., 1977). The EM algorithm is an iterative procedure consisting of two
steps: the E-step and the M-step. Starting from an initial value for the parameters,
the E-step involves computing the expected loglikelihood of the observed tree for the
given parameters and the M-step involves computing the parameters that maximise
that expectation of the loglikelihood. Each iteration the parameters are updated with
the values obtained in the M-step of the previous iteration. The E- and M-steps are run
iteratively until convergence is reached. The parameters thus obtained have been shown
to be the maximum likelihood estimators (Dempster et al., 1977).

Because the expectation in the E-step cannot be computed exactly (or numerically)
due to the high dimensionality of the space of complete trees, Richter et al. (2020) pro-
posed to use a stochastic approximation and data augmentation (Tanner and Wong,
1987), specifically a Monte-Carlo method (Chan and Ledolter, 1995) in combination with
importance sampling (Glynn and Iglehart, 1989) in the E-step of their EM-algorithm
(McLachlan and Krishnan, 2007), and calculated

Qθ = Eθ∗ [`x (θ) | xobs ] ≈ 1

N

∑
xi∼ f (xi |θ,xobs )

`xi (θ)

= 1

N

∑
xi∼ fα(xi |θ,xobs )

`xi (θ)wi

(3.5)

where

wi = f (xi |θ, xobs )

fα (xi |θ, xobs )
(3.6)

are called the importance weights and are highly dependent of the importance sampler fα.
The importance weights reflects how accurate the data augmentation is in comparison
with the desired distribution, importance weights equal to 1 shows that the importance
sampler is the same distribution as the likelihood f , distribution that generates the
process of interest. The data augmentation scheme used by Richter et al. (2020) was



36 3.

mathematically correct but computationally inefficient, as the paper was aimed at the
conceptual framework rather than performance. Here we present an improved version
of the framework, hereafter called emphasis, with a very efficient data augmentation
scheme, because the choice of data augmentation scheme is crucial for computational
performance (Van Dyk and Meng, 2001).

M step

mcE step Tree Augmentation

Input

EMPHASIS

return

Figure 3.3 | Monte-Carlo EM algorithm diagram in the context of phylogenetic trees.

3.3.3. AUGMENTATION OF OBSERVED TREES, A NOVEL IMPORTANCE SAM-
PLER FOR PHYLOGENETIC INFERENCE

Richter et al. (2020) presents an MCEM algorithm where trees are augmented by draw-
ing uniformly the number of branching events and its corresponding branching times.
The method worked well for small trees, but the variance of the estimates grows fast as
the tree gets larger for constant number of samples, making the method computationally
intractable for medium-sized to large clades. This is due to the curse of dimensionality,
i.e., the problem of exploring high-dimensional spaces efficiently (Friedman, 1997). Our
proposed alternative for the data augmentation algorithm augments trees according to
the underlying diversification model, encouraging samples in the regions of parameter
space that are likely under the proposed SDM.
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To sample the extinct species in the tree, we approximate the diversification process
of extinct lineages conditional on the extant species in the data as a birth-death process
with rates

λm
t ,s|θ =λt ,s|θPα(t , tp ), µm

t ,s|θ = µt ,s|θ
Pα(t , tp )

(3.7)

where Pα(t , tp ) is an approximation of the probability that a species observed at time t will
not have any descendants at time tp . Kendall (1948) showed that, for lineage-independent
models, the exact probability is given by

P0(tc , tp ) =

tp∫
tc

µτ,s|θe
−

τ∫
tc

(λr,s|θ−µr,s|θ)dr
dτ

1+
tp∫
tc

µτ,s|θe
−

τ∫
tc

(λr,s|θ−µr,s|θ)d s
dτ

(3.8)

Note that the probability depends on information on λt s|θ and µt s|θ for tc < t < tp . For
constant rates this information is available and calculation of Eq. 3.8 is easy. However, for
most SDM information on the full process is not available. For instance, in the case of
diversity-dependent diversification models the quantity Nt is unknown.

We augment the observed tree with hidden speciation events. These events can be
allocated to all lineages, but not with equal probability. Speciation events occurring on an
observed lineage have twice the weight of speciation events occurring on an unobserved
lineage (Etienne et al., 2012b). Figure 3.4 shows an example when a tree is augmented with
a new speciation event at a time that there are two extant lineages and one extinct lineage.
In that case, there are five possible allocations. More generally, there are N e

t− + 2N o
t−

possible allocations, where N e
t− is the number of currently extinct lineages alive just

before time t and N o
t− is the number of currently extant lineages just before time t .

Therefore, we can compute the probability distribution for the waiting times for the
augmented speciation events (which we will call missing speciation events) considering
the N e

t− +2N o
t− non-homogenous Poisson processes together. Because the minimum

waiting time for exponential distributed processes is also an exponential process, given
a time t0, the waiting time for the first missing speciation event to occur is given by an
exponential distribution with rate

σt |θ =
∑

s∈S m
t

λm
t ,s|θ+2

∑
s∈S 0

t

λm
t ,s|θ

where S m
t and S o

t are the sets of observed and missing species at time t respectively.
Hence, the probability density of the waiting time for any speciation to occur at time t ,
starting the process at initial time ti , is a non-homogeneous exponential distribution with
rate σt |θ, that is

fB (tc | ti ,θ) =σt |θe
−

tc∫
ti

σt |θd t

.

Once a missing speciation event has occurred, the new lineage needs to get an allocation
and a extinction time assigned to be included in the tree. In a model where speciation
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Figure 3.4 | Phylogenetic tree with 2 observed species and 1 missing species at time t . When a new species is
created there are 2N0 +Nm possible allocations, in this case 2∗2+1.

rates are the same for all lineages, all allocations have the same probability

PA(τ|tc ,θ) = 1

N e
t− +2N o

t−
.

The lineage produced at the missing speciation event must become extinct before the
present. The extinction time of the species s born at time tc is a random variable with a
density distribution that is conditioned on extinction occurring before time tp ,

f (te |s, tc ) =µte ,s|θ
e
−

te∫
tc

µq,s|θd q

1−e
−

tp∫
tc
µq,s|θd q

.

Note that this probability also depends on the extinction rate of the full process (i.e., at
times later than tc ), which is not always available, as it may depend, for example, on
diversity at those later times. Hence, we propose to sample the extinction time from the
truncated distribution

fD (te |s, t ,θ) = µt ,s|θ
e−µt ,s|θ(te−t )

1−e−µt ,s|θ(tp−t )
.

The full sampling probability of the missing part of a tree under this scheme is then given
as

fm(x|θ) = ∏
i ∈ Mτ

fB (ti | ti−1)PA(ai |ti ) fD (t e
i |ai , ti ). (3.9)
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THE DATA AUGMENTATION ALGORITHM (DAA)
The main idea for our proposed data augmentation algorithm is to replace Pα(t ) by

the probability that the newly created species (and not the entire clade that will descend
from it) will become extinct before the present time

P1(tc , tp ) = 1−e−µtc (tp−tc )

Thus, we consider the evolutionary process with diversification rates

λm
t ,s|θ =λt ,s|θ(1−e−µtc (tp−tc )), µm

t ,s|θ = µt ,s|θ
(1−e−µtc (tp−tc ))

(3.10)

The algorithm is based on a Gillespie-type simulation algorithm which is computa-
tionally simple and feasible relatively simple digital computer algorithm (Gillespie, 1976;
Kieu, 2018).

The algorithm proceeds as follows:

1. Input: Set t0 = 0, i = 1.

2. Draw a missing speciation time t from distribution

fB (t | ti ,θ) =σt |θe
−

t∫
ti

σt |θd t

.

where
σt |θ =

∑
s∈S m

t

λt ,s|θ(1−e−µt (tp−t ))+2
∑

s∈S 0
t

λt ,s|θ(1−e−µt (tp−t ))

3. Draw an allocation for the species from distribution

P A(τ|t ,θ) = 1

N e
t− +2N o

t−

4. Draw the corresponding extinction time from distribution

fD (te |s(τ), t ,θ) = µt ,s|θ
e−µt ,s|θ(te−t )

1−e−µt ,s|θ(tp−t )

5. Set ti = t , if ti < tp update the tree with the new species (speciation time, extinction
time and allocation) and go to step 2; if ti > tp stop the algorithm and return the
augmented tree.

An interpretation of this process is as follows:

• We observe a process with varying extinction rates, but as soon as a new missing
species arises the extinction rate of that species is fixed throughout the rest of the
process.

• When allocating a new species we assume that all possible allocations have a
uniform probability distribution.
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Input: Observed Phylogeny,

parameters set

Draw the extinction time of the new species from a truncated exponential distribution

Allocate new species at allocation
from a uniform distribution.

Step 0: Initialization

Step 3: Simulate extinction time

Step 2: Simulate allocation

Simulate a speciation time from non-homogenous exponential distribution

Step 1: Simulation speciation time

text

Figure 3.5 | Tree augmentation algorithm based on the underlying non-homogeneous Poisson process.
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• We consider alternative probabilities Pα(t ,T ), thus indexed by α, instead of the
probability of not having any descendants P0(t ,T ). In our proposed importance
sampler we consider the probability of extinction P1 of the just created lineage.

Figure 3.5 shows a diagram with the steps of the proposed data augmentation algorithm.
Using equation (3.9) with the data augmentation scheme described above we have

the following sampling probability of the full augmentation process:

fm((t ,τ)|xobs ,θ) = ∏
i ∈ Mτ

fB (ti | ti−1)P A(τi |ti ) fD
(
t e

i |τi , ti
) = (3.11)

[ ∏
i ∈ Mτ

∑
s∈Sti

λti ,s|θ
N e

t−i
+2N o

t−i

µti ,s∗i |θe
−µti ,s∗

i
|θ

(
t e

i −ti
)] ∏

i ∈ {1,...,p}
e
−

ti∫
ti−1

[ ∑
b∈St

λr,b|θ,v

(
1−e−µr,b|θ,v (tp−r )

)]
d t


(3.12)

Taking the logarithm we have

`m(θ) = −
tp∫

t0

[ ∑
s∈St

λt ,s|θ
(
1−e−µt ,s|θ(tp−t ))]d t + ∑

i∈Mτ

log

 ∑
s∈Sti

λti ,s|θ
(
1−e−µti ,s|θ(tp−ti )

)
− log

(
N e

t−i
+2N o

t−i

)
+ log

(
µti ,s∗i |θ

)
−µti ,s∗i |θ

(
t e

i − ti
)

(3.13)

Example. Consider a model with a speciation rate that is the same for all lineages and
with a constant extinction rate, i.e.,

λt ,s;|θ =λt |θ ,∀s ∈St , and µt ,s;|θ =µo ,∀t , s; |θ,

then, the sampling probability of the DAA is

fm((t ,τ)|xobs ,θ) =µ#Mτ
0

∏
i ∈ Mτ

e−µ0(t e
i −ti )

Nt−i λti |θ
N e

t−i
+2N o

t−i

∏
i ∈ {1,...,p}

e
−Nti

ti∫
ti−1

[
λt |θ

(
1−e−µ0(tp−t )

)]
d t

.

SAMPLE SIZE

In Monte-Carlo methods, the variance of the estimates and the convergence time are
determined by the sample size, the explored region of the parameter space and the type
of data. From these three factors, we have control only over the sample size. MC methods
require a sensible choice of the sample size, and it much depends on the type of problem.
In iterative algorithms such as the MCEM algorithm, it is usually efficient to start with
small sample size and increase it while parameters are approaching the MLE (Delyon
et al., 1999), but there is no general rule for the choice of sampling sizes (Atanassov and
Dimov, 2008).

To determine the required sample size in the emphasis method, we consider the
estimator the distribution fm .
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f (xobs |θ) =
∫

x∈X (xobs )

f (x, xobs |θ) d x ≈ 1

M

∑
xi∼ fm

f (x, xobs |θ)

fm(xi |xobs ,θ)
= áf (xobs |θ)

where {x1, ..., xM } are full trees sampled from fm((t ,τ)|xobs ,θ). We will assume that if

SE
( ̂̀(θ)

)
< C then ̂̀(θ) is good enough, for a small constant C . Note that, by taking a

Taylor expansion of the logarithm of the estimated likelihood around the observed tree
xobs , we can write

E
[

log áf (xobs |θ)
]

≈ E[log f (xobs |θ) +
( áf (xobs |θ) − f (xobs |θ)

) 1

f (xobs |θ)

+1

2

( áf (xobs |θ) − f (xobs |θ)
)2 −1

f 2 (xobs |θ)
]

= `(θ)− 1

2

V
( áf (xobs |θ)

)
f 2(xobs |θ)

where the last term represents the first-order bias. So, typically our method will underesti-
mate the loglikelihood. Furthermore, the estimation tends to be variable. The variability
can be assessed by a first order Taylor expansion, i.e.,

V
[

log áf (xobs |θ)
]

≈ V

[
log f (xobs |θ) +

( áf (xobs |θ) − f (xobs |θ)
) 1

f (xobs |θ)

]

=
V

( áf (xobs |θ)
)

f 2 (xobs |θ)

The variance of áf (xobs |θ) can be easily estimated by the sample variance of the impor-

tance weights divided by the sample size, i.e., V
( áf (xobs |θ)

)
≈V (w1, ..., wM )/M . To assess

the total possible deviation of the MC estimation we consider the bias and the standard
error combined:

áDeviation = 1

2

V (w1, ..., wM )

M
( áf (xobs |θ)

)2 +
p

V (w1, ..., wM )p
M áf (xobs |θ)

where the weights wi are given by equation 3.6. The first term of the equation is an
estimate of the bias and the second term an estimate of the standard error.

If it is feasible to perform a large number of trial simulations, then the standard error
becomes of a lower order than the bias and, thus, we have that approximately,

̂̀(θ) > `(θ)− B̂ias ≈ `(θ)− K1

M

for a constant value K1 = V (w1, ..., wM )/
(
2 áf 2 (xobs |θ)

)
, which can be further used to

do a bias-correction of our likelihood. With this, we can calculate an approximation
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of the required sample size M to reach a desired level of accuracy. Figure 3.6 shows an
illustration on the method we use to assess the required sample size. We sample trees with
different sample sizes in order to obtain different estimates of the loglikelihood, and we

can fit a curve of the form c1 + c2

M
. With the fitted model we can calculate the asymptotic

value of the loglikelihood c1. We set the sample size M such that for a given tolerance

level ε,
c1

M
< ε.

Required Sample Size
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Figure 3.6 | To calculate the required sample size, we simulate trees and estimate the loglikelihood via Monte-
Carlo with at least two different sample sizes. We then calculate the curve that fits the relationship between the
sample size and the estimated MC loglikelihood. This curve indicates the sample size required under a given
tolerance level.

The MCEM algorithm can be replaced by the SAEM, MCMC or variations and combi-
nations of them (Delyon et al., 1999; Celeux et al., 1995; Rydén et al., 2008; Wang, 2007;
Kuhn and Lavielle, 2004). All these algorithms rely on a sampling scheme and importance
samplers. Our sampling scheme and sample size determination strategy can be used in
any of these methods.

3.3.4. MODEL SELECTION

It is possible to apply standard model selection tools such as AIC or BIC (Wit et al.,
2012) to the obtained loglikelihood. Furthermore, in the context of phylogenetic trees,
specific statistics have been developed to test how well a model describes an observed
tree. An informative summary statistic is the lineage-through-time (LTT) statistic (Janzen
et al., 2015), defined as

LT T (1,2) =
∫ tp

t0

|N (1)
t −N (2)

t |d t
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where N (i )
t is the number of species of a tree i at time t . This statistic can also be used to

assess how well a model describes an observed tree, simulating trees from the desired
model and then calculating the LTT statistic between each simulated tree and the ob-
served tree. It is also possible to calculate the mean number of species through time into a
single "average" tree and calculate the LTT statistic of that tree compared to the observed
tree.

The LTT statistic and model 3.1 are mathematical expressions that take into account
the branching times of the tree, but ignore the topology. That is, the parent-child re-
lationship among species is not relevant; only the branching times are considered. In
this chapter, we introduce an alternative to the LTT statistic, considering phylogenetic
diversity instead of species richness. We define the phylodiversity-through-time (PTT)
statistic as

PT T (1,2) =
∫ tp

t0

|P (1)
t −P (2)

t |d t

where P (i )
t is the phylogenetic diversity for tree i at time t . In Figure 3.7 we present two

example trees and the species richness for both trees as well as the phylogenetic diversity.
The blue area represents the LTT statistic, while the green area represents the PTT statistic.

In this chapter, we will consider the LTT statistic, the PTT statistic and the AIC weights
for model comparison and general goodness-of-fit considerations.

3.4. APPLICATION

To illustrate our method, we quantitatively compare model (3.2) with model (3.1)
for 14 phylogenies obtained from (Condamine et al., 2019), with sizes ranging between
16 and 141 species and crown ages between 5 My and 65 My. Figure 3.8 represents the
distribution of the number of species and crown age of the clades.

In this application, the ultimate use of the emphasis framework is to find the maximum
likelihood estimates for the model (3.2) and compare them with model (3.1), to quantify
the impact of phylodiversity-dependent diversification. But first, we will perform initial
steps to evaluate the required sampling size for different phylogenetic trees. This will give
insight about which phylogenies we can apply emphasis to and at what computational
cost.

3.4.1. MONTE-CARLO APPROXIMATION WITH THE PROPOSED IMPORTANCE

SAMPLER

Before performing analysis with the model (3.2), we want to test the efficiency of the
Monte-Carlo method with the importance sampler introduced in Section 3.3.3. Monte-
Carlo methods require a sensible choice of the sample size, and this largely depends
on the type of problem. For sampling full trees, the relationship between accuracy and
sample size is complex. For the uniform importance sampler presented in Chapter 2,
the required MC sample size becomes huge for most empirical trees. We first want to
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Figure 3.7 | Comparison between two phylogenetic trees using the LTT (Number of lineages) and PTT (Phyloge-
netic diversity) through time. The area represents the distance between the trees.

test that the non-homogenous sampler presented in this chapter can provide accurate
approximations.
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Clade Age Species
Indicatoridae 17.07 16
Spheniscidae 22.89 17
Megapodiidae 35.01 20
Sittidae 17.06 23
Dendroica 5.00 24
Tenrecidae 57.20 24
Foraminifera 64.95 31
Phalacrocoracidae 11.01 32
Ctenomyidae 9.59 50
Timaliidae 21.65 54
Laridae 18.26 98
Nectariniidae 41.06 126
Estrildidae 11.15 139
Cisticolidae 23.75 141

Figure 3.8 | Distribution of crown ages and numbers of species of 14 phylogenetic trees.

Note that,

E
[

f (xobs |θ)
] =

∫
x∈X (xobs )

f (x|θ)d x

=
∫

x∈X (xobs )

f (x|θ)

fm(x|θ, xobs )
fm(x|θ, xobs )d x

≈ 1

M

∑
xi∼ fm (x|θ,xobs )

f (xi |θ)

fm(xi |θ, xobs )
(3.14)

so we can use the Monte-Carlo sampling to approximate the likelihood for every param-
eter. To assess how well our importance sampler does as a function of MC sample size,
we compare MC estimations for the 14 phylogenies for the LDD model, for which an
existing solution exists. For each phylogeny, we calculate the MLE for the LDD model
with the DDD R package. With these parameters, we perform Monte-Carlo sampling and
approximate the expectation (3.14) with 4 different MC sampling sizes. In Table 3.1 we
show the MC estimations and, in the last column, the analytical solution.

If the difference between the analytical loglikelihood and the MC approximated log-
likelihood is less than 1, we will conclude that the estimation is good enough. Under this
assumption, we found that a sample size of 1000 is good enough for phylogenies up to
approximately 70 species. With a sample size of 106 we have very accurate estimations
for all clades with the exceptions of Nectariniidae, Estrildidae and Cisticolidae. These are
the larger trees with more than 100 species. Table 3.1 contains detailed estimation for 4
different sample sizes for each phylogeny.
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102 103 104 105 106 Analytical
Indicatoridae -42.04(1.1e-01) -42.39(1.1e-01) -41.97(4.9e-02) -42.01(4.1e-02) -41.95(4.8e-02) -41.89
Spheniscidae -50.22(3.4e-01) -50.64(1.8e-01) -50.49(1.1e-01) -50.23(8.1e-02) -50.35(4.3e-02) -50.23

Megapodiidae -68.98(6.1e-02) -68.77(4.6e-02) -68.3(1.9e-02) -68.1(2.1e-02) -68.09(1.0e-02) -68
Sittidae -64.72(3.8e-01) -64.19(2.3e-01) -64.42(1.0e-01) -64.38(7.6e-02) -64.32(3.0e-02) -64.31

dendroica -38.97(3.5e-01) -39.2(2.3e-01) -39.04(1.1e-01) -38.97(6.0e-02) -39.03(4.3e-02) -38.91
Tenrecidae -89.68(1.7e-01) -89.12(6.0e-02) -88.84(3.6e-02) -89.05(2.1e-02) -88.42(4.4e-02) -88.4

foraminifera -118.48(5.9e-02) -117.7(4.3e-02) -116.48(2.4e-02) -116.34(1.9e-02) -115.75(1.1e-02) -115.73
Phalacrocoracidae -79.92(4.6e-02) -81.06(9.5e-02) -80.42(5.7e-02) -80.46(4.0e-02) -80.4(2.0e-02) -80.25

Ctenomyidae -122.66(1.4e-01) -120.8(1.1e-01) -120.61(6.1e-02) -120.7(4.0e-02) -120.63(5.6e-02) -120.65
Timaliidae -154.23(4.7e-03) -154.93(5.1e-03) -153.75(3.0e-03) -153.91(2.2e-03) -153.56(9.8e-04) -153.48

Laridae -232.12(5.9e-03) -232.15(3.1e-03) -231.52(2.0e-03) -231.23(1.1e-03) -231.14(8.7e-04) -231.07
Nectariniidae -416.2(6.3e-04) -410.81(2.7e-05) -404.61(2.0e-06) -402.19(7.4e-07) -400.74(3.3e-07) -399.04

Estrildidae -321.31(5.4e-03) -316.31(1.7e-04) -311.26(2.7e-05) -312.22(2.8e-05) -310.93(1.4e-05) -309.35
Cisticolidae -410.16(2.5e-04) -403.73(2.3e-05) -402.29(1.0e-05) -402.06(7.3e-06) -400.6(4.0e-06) -397.94

Table 3.1 | Monte-Carlo approximation of the loglikelihood for each tree at its corresponding MLE for the
diversification process generated under the LDD model, for different sample sizes. The last column contains
the analytical value obtained with the R package DDD.

3.4.2. ESTIMATION AND MODEL SELECTION

In Table 3.2 we report the parameter estimations for the two models of interest for the
14 case-study phylogenies. Looking at the LTT statistics, we can observe that there is only
a slight improvement of the LPDD model over the LDD model in most of the cases. This
is confirmed when we see the loglikelihood values, where the improvement is not large
enough to justify preferring the LPDD model, which is confirmed with the AIC weights
which always prefer the LDD model.

Note that the AIC weights are based on a Monte-Carlo approximation of the likeli-
hood which will slightly underestimate models with more parameters. As a result, the
AIC is more conservative than a test where the AIC values are calculated using the true
value of the loglikelihood. Note that in some cases the loglikelihood for the LPDD model
is still smaller than the loglikelihood of the LDD model, which cannot be correct be-
cause the LDD model is nested within the LPDD model, and hence the LPDD likelihood
should be always smaller than the LPDD likelihood. We argue that this is because the
Monte-Carlo approximation is not good enough yet. These computational issues suggest
that hypothesis testing with AIC might not be an appropriate tool for model selection.
Significance tests, instead, do not depend on the approximation of the likelihood but
on the approximation of the Hessian of the likelihood (see equation 2.6); because the
likelihood is asymptotically quadratic near its maximum (hence the second derivative is
constant), the approximation of the Hessian should not present the computational issues
that the approximation of the likelihood presents, and hence significance tests seem
more reliable. Based on the significance test results, we conclude that the phylodiversity-
dependent diversification model provides an alternative/better explanation to/than the
diversity-dependent diversification model, at least in some of our clades.

In Figure 3.9 we see an example of the expected lineages-through-time plot for each
model in comparison with the observed lineage through time plot corresponding to
the Timaliidae phylogeny, and the speciation rates through time plot. We can see that
both models agree that speciation happened roughly at a rate of 0.2 species per million
rate during the last 10 million years; however, they diverge on the estimates for the
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period between 20 and 10 million years ago. Including phylogenetic diversity involves a
fluctuating speciation rate around 0.2 spe/Mye reaching its maximum around 15 years
ago while the LDD model assumes a monotonously decreasing speciation rate. In general,
the difference between the two models is not large and this pattern is present across all
the 14 phylogenies.

Finally, in Table 3.3 we report the loglikelihood estimates for the LPDD model. We
see that for most of the cases the sample size was large enough, but for larger trees the
convergence performs much slower for the LPDD case than for the LDD case.

Clade Age Tips Model AICw LTT PTT loglikelihood µ0 λ0 βN βP

LDD 0.73 0.49 0.49 -42.01 0.22 1.62 -0.085 0
Indicatoridae 17.07 16

LPDD 0.27 0.51 0.51 -41.99 (6e-02) 0.21 (4e-03) 1.61 (5e-04) -0.085 (5e-05) -0.001 (3e-04)

LDD 0.83 0.41 0.52 -50.23 0.2 1.61 -0.081 0
Spheniscidae 22.89 17

LPDD 0.17 0.59 0.48 -50.79 (3e-02) 0.16 (2e-03) 1.49 (1e-02) -0.079 (6e-04) 0.004 (7e-04)

LDD 0.78 0.45 0.48 -68.1 0.1 0.83 -0.036 0
Megapodiidae 35.01 20

LPDD 0.22 0.55 0.52 -68.37 (3e-02) 0.09 (1e-03) 0.83 (6e-04) -0.036 (4e-05) 0 (1e-04)

LDD 0.79 0.5 0.46 -64.38 0.15 0.58 -0.018 0
Sittidae 17.06 23

LPDD 0.21 0.5 0.54 -64.72 (1e-01) 0.12 (9e-04) 0.4 (1e-03) -0.021 (3e-04) 0.039 (1e-03)

LDD 0.77 0.46 0.53 -38.97 0.16 3.05 -0.117 0
Dendroica 5.00 24

LPDD 0.23 0.54 0.47 -39.16 (8e-02) 0.14 (1e-03) 2.99 (2e-02) -0.118 (1e-03) 0.007 (3e-03)

LDD 0.74 0.46 0.47 -89.05 0.11 0.59 -0.02 0
Tenrecidae 57.20 24

LPDD 0.26 0.54 0.53 -89.1 (3e-02) 0.09 (6e-04) 0.59 (4e-04) -0.02 (8e-05) 0.001 (2e-04)

LDD 0.84 0.39 0.42 -116.34 0.1 1.18 -0.034 0
Foraminifera 64.95 31

LPDD 0.16 0.61 0.58 -117.01 (4e-03) 0.08 (4e-04) 1.17 (1e-04) -0.034 (2e-06) 0 (4e-06)

LDD 0.71 0.41 0.48 -80.46 0.24 1.67 -0.044 0
Phalacrocoracidae 11.01 32

LPDD 0.29 0.59 0.52 -80.34 (4e-02) 0.24 (3e-03) 1.59 (2e-02) -0.038 (3e-04) -0.027 (3e-03)

LDD 0.74 0.46 0.42 -120.7 0.16 1.15 -0.02 0
Ctenomyidae 9.59 50

LPDD 0.26 0.54 0.58 -120.75 (6e-02) 0.14 (1e-03) 1.08 (6e-03) -0.019 (2e-04) 0.007 (2e-03)

LDD 1 0.48 0.53 -153.91 0.14 0.5 -0.006 0
Timaliidae 21.65 54

LPDD 0 0.52 0.47 -158.63 (7e-03) 0.07 (1e-03) 0.22 (8e-03) -0.006 (2e-04) 0.034 (2e-03)

LDD 0.68 0.19 0.5 -231.23 0.13 0.32 0 0
Laridae 18.26 98

LPDD 0.32 0.81 0.5 -231.01 (6e-02) 0.02 (1e-03) 0.46 (2e-03) 0.001 (2e-05) -0.061 (7e-04)

LDD 0.66 0.54 0.83 -402.19 0.14 0.32 -0.001 0
Nectariniidae 41.06 126

LPDD 0.34 0.46 0.17 -401.83 (4e-02) 0.02 (4e-04) 0.25 (1e-03) 0 (2e-05) -0.019 (3e-04)

LDD 0.88 0.5 0.77 -312.22 0.28 1.05 -0.005 0
Estrildidae 11.15 139

LPDD 0.12 0.5 0.23 -313.21 (6e-03) 0.12 (2e-03) 0.42 (7e-03) -0.006 (3e-04) 0.176 (1e-02)

LDD 0.51 0.48 0.76 -402.06 0.16 0.48 -0.002 0
Cisticolidae 23.75 141

LPDD 0.49 0.52 0.24 -401.11 (2e-02) 0.05 (1e-03) 0.37 (4e-03) 0 (5e-05) -0.04 (1e-03)

Table 3.2 | Parameter estimations for LDD and LPDD model for 14 phylogenies. The fifth column shows the
AIC weights for the comparison of these two models. The sixth column is the normalised LTT statistic. The last
four columns represent the parameter estimates. Between parentheses we report the standard deviation of the
Monte-Carlo approximation.

3.5. DISCUSSION

Diversity-dependent diversification models have been developed during the last
decade in order to understand and quantify the existence and impact of ecological limits
to macroevolutionary dynamics. At the moment, only models with a dependence of
diversification rates on species richness have been implemented, but these models ignore
other facets of diversity, such as phylodiversity.

In this chapter, we have completed the statistical methodology introduced in Chapter
2, with the design of a data augmentation scheme that provides an efficient importance
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102 103 104 105 106

Indicatoridae -42.49(1.3e-01) -42.15(1.0e-01) -42.26(6.5e-02) -41.99(6.1e-02) -42.02(2.7e-02)
Spheniscidae -51.66(2.4e-01) -50.68(1.1e-01) -50.9(6.4e-02) -50.79(3.0e-02) -50.75(1.6e-02)

Megapodiidae -68.97(2.1e-01) -68.19(8.1e-02) -68.42(6.2e-02) -68.37(3.5e-02) -68.26(4.0e-02)
Sittidae -65.49(2.7e-01) -64.49(2.0e-01) -64.83(1.2e-01) -64.72(1.2e-01) -64.73(2.4e-02)

dendroica -39.25(2.9e-01) -39.33(1.9e-01) -39.22(9.4e-02) -39.16(8.0e-02) -39.14(3.2e-02)
Tenrecidae -89.06(8.6e-02) -88.65(6.0e-02) -89.61(3.9e-02) -89.1(3.4e-02) -89.12(1.5e-02)

foraminifera -119.3(1.2e-02) -117.71(5.1e-03) -117.94(3.4e-03) -117.01(4.5e-03) -117.3(2.3e-03)
Phalacrocoracidae -79.61(1.2e-01) -81.02(8.5e-02) -80.54(6.5e-02) -80.34(4.1e-02) -80.56(2.1e-02)

Ctenomyidae -119.95(1.8e-01) -121.08(2.0e-01) -120.87(8.2e-02) -120.75(5.6e-02) -120.77(7.6e-02)
Timaliidae -159.57(4.8e-02) -158.95(2.0e-02) -158.37(1.4e-02) -158.63(6.8e-03) -158.16(6.9e-03)

Laridae -230.98(6.3e-01) -230.86(2.2e-01) -231.03(1.0e-01) -231.01(5.6e-02) -231(3.8e-02)
Nectariniidae -402.09(1.9e-01) -402.01(9.6e-02) -401.81(6.9e-02) -401.83(3.9e-02) -401.87(3.0e-02)

Estrildidae -315.33(3.0e-02) -313.25(1.3e-02) -313.13(1.1e-02) -313.21(6.0e-03) -313.28(3.7e-03)
Cisticolidae -403.78(5.9e-02) -401.9(3.6e-02) -401.52(2.4e-02) -401.11(1.7e-02) -401(8.2e-03)

Table 3.3 | Loglikelihood approximations of the LPD model at its MLE value for the 14 phylogenies.
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Figure 3.9 | Evolution of extant species richness (LTT-plot) and evolution of global speciation rates for 13 clades
under LDD (blue) and LPD (green) models.

sampler, which is a substantial improvement in comparison to the uniform importance
sampler considered in the Chapter 2, as it enables applying the method to a large number
of empirical phylogenies.

In the application to 14 example phylogenies, we studied the LPDD model, i.e., a
model with a linear effect of phylodiversity on speciation. We found that including
phylodiversity does not provide a substantial improvement in comparison with richness-
dependent diversification models. However, phylodiversity does provide an alternative
and slightly more complete explanation to speciation dynamics; the LTT statistic and
the PTT statistic provide insights and, most of the times, reflects that trees generated by
the LPDD model are closer to real phylogenies than the trees generated under the LDD
model. While the model with fewer parameters is preferred using AIC, the phylodiversity
component is statistically significant, suggesting that it should not be ignored.
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This may not be the final word because there are some technical improvements to be
made. In particular, we did not condition the likelihood on non-extinction of the clade;
even though this is generally recommended (Etienne et al., 2016; Stadler, 2013). Such
conditioning is covered in Chapter 5.

Our method is not limited to phylogenetic diversity-dependent diversification models,
but allows inference of a general class of species diversification models, considering
time, traits, climate, functional diversity, just to name a few. With the data augmentation
described her we have provided a general tool that can be potentially used to quantify
and test a large number of hypotheses in macroevolutionary diversification.
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The ‘art’ of building a good model is to capture the essential features of the biology without
burdening the model with non-essential details.

Darren J. Wilkinson

Richter F, Wit EC, Etienne RS. In preparation.
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ABSTRACT

Modelling species diversification processes and performing statistical inference on these
processes using phylogenetic trees is an active area of research. It requires the development of
novel quantitative tools to study the influence of ecological factors on (macro)evolutionary
processes. The Yule model or constant-rate birth-death models are still widely used, because
of their simplicity that allows fast computation of the likelihood, i.e., the probability of the
phylogenetic tree given the diversification model parameters.

The development of more complex species diversification models that consider additional
factors typically involves the computation of the likelihood for the diversification model,
via the master equation. These more complex models consider species interactions and
need to integrate across all such interactions, due to the lack of information about these
interactions in the past — which are unlikely to ever become available.

A promising alternative is to use a proxy for (past) species interactions. Species diversity is
one such proxy, and it has indeed been possible to compute the likelihood for models in
which diversification rates depend on diversity. However, this proxy assumes that all species
interact in the same way. To accommodate variation in these interactions, we propose
to use phylogenetic diversity as a proxy, because phylogenetic diversity between species,
defined as the time to the most common ancestor, represents the niche distance among
species.

In this chapter, we integrate per-species phylogenetic distance into diversity-dependent
diversification models, the results of which we will call lineage-dependent diversification
models. We show that these models cover a broad range of topologies, consistent with those
of real trees. In addition, we develop a stochastic gradient descent framework that will
enable parameter estimation for these models. In summary, with the minimal modification
of phylodiversity dependence we expand diversity-dependent diversification models to rep-
resent a much broader range of models that can mimic complex topological characteristics
of phylogenetic trees.
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4.1. INTRODUCTION

Studying the mechanisms underlying species diversification has been an active area
of research (Ragan, 2009) and particularly during the last three decades since large-scale
DNA sequencing and phylogenetic analysis has been possible (Reynolds, 1973; Nee et al.,
1994; Morlon, 2014). Larger and more accurate phylogenies continue to appear (Jetz
et al., 2012; Upham et al., 2019; Ramírez-Barahona et al., 2020; Condamine et al., 2019;
Hedges et al., 2015b) and species diversification models are more and more sophisticated
in order to capture and study multiple hypotheses on how species diversified (Morlon,
2014; Ricklefs, 2007; Etienne and Apol, 2009). In 1925 Yule published a mathematical
characterisation of a process where species diversifies with a constant rate without extinc-
tion (Yule, 1925). In 1948, Kendall generalised Yule’s results by allowing for extinction and
time dependent speciation and extinction rates (Kendall et al., 1948). In 1994 Nee et al.
presented the likelihood for the time-dependent birth-death process given a phylogenetic
tree (Nee et al., 1994), which typically does not contain extinct species. In the last 20
years, a large number of species diversification models have been developed, includ-
ing diversity-dependent (Etienne et al., 2012b), state-dependent (Maddison et al., 2007;
Herrera-Alsina et al., 2019; FitzJohn et al., 2009; Paradis, 2008; Ng and Smith, 2014), and
(paleo-)environment-dependent (Condamine et al., 2019; Lewitus and Morlon, 2017)
diversification rates. Still, these models have only scratched the surface of all possible
diversification processes and more inference methods are needed (Rabosky and Goldberg,
2015).

Maximum likelihood approaches have become a standard to compare various macro-
evolutionary scenarios using reconstructed phylogenies (Nee, 2006), even though this
comparison may have limitations on identifiability (Louca and Pennell, 2020). The design
of stochastic birth-death-type species diversification models (SDM) lends itself well for
easy testing of hypotheses. Within SDM we can identify two nested classes of models.
One class considers global diversification rates, i.e. all species have the same probability
to speciate or become extinct. A more general class of SDM considers diversification rates
that can differ between species. We will call these models lineage-dependent diversifica-
tion (LDD) models. Models that assume a global rate for all lineages (lineage-independent
diversification (LID) models) are by far the most used and are generally assumed to be a
good starting point for analysis. Current LDD diversification models range from simply
assuming a shift in the rates (Laudanno et al., 2020c; Rabosky, 2014; Höhna et al., 2019;
Maliet et al., 2019), or dependence on a dynamic state (Maddison et al., 2007).

Despite the development of sophisticated (LDD) models, simple constant-rate birth-
death models are still commonly used, even though their predictions on temporal (Phillimore
and Price, 2008) and topological (Heard, 1996; Mooers et al., 2007; Purvis et al., 2011;
Shao, 1990) properties deviate from those in empirical phylogenies. One of the reasons
for the limited use of LDD models is that likelihood calculation is much more compli-
cated (Laudanno et al., 2020b) than for lineage-independent diversification (LID) models.
However, LDD models are the next generation models that are needed to incorporate
more complex ecological interactions, such as niche differentiation and/or facilitative
interactions (Barraclough, 2015; Fox, 2005; Olave et al., 2020; Bairey et al., 2016; Roy et al.,
2020). Current diversity-dependent diversification models consider such interactions by
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simply accounting for the role of species richness on diversification, and for more than a
decade diversity-dependence models have already been extensively used in macroevolu-
tionary analysis, detecting clade-level "carrying capacities" and studying the influence of
species richness on macroevolutionary processes. In the previous chapter, we generalised
diversity-dependent diversification models by allowing diversification rates to depend
on phylogenetic diversity, and hence not only the number of species but also their dis-
tinctiveness is taken into account. However, this model still assumes that all species are
equally likely to diversify, and is therefore an LID model. Current inference procedures
mostly use the branching times of the trees as their only input. With LDD models we can
take into account topology as well. Per-species phylogenetic distance, defined as the time
of the most common ancestor among two species, has not been included in phylogenetic
analysis for macroevolutionary studies while it serves as one of the most common proxies
for ecological similarities.

In this manuscript, we present and study a LDD model, the lineage-dependent
phylodiversity-dependent (LDPD) model and study its effect on macroevolutionary pro-
cesses. First, in Section 4.2, we discuss the relationship between tree shape and evolution-
ary advantage, the state of the art of LDD models, and current challenges and we propose
a general LDD model that satisfies several desired biological and mathematical properties
that makes it a powerful tool for quantitative macroecological and phylogenetic analysis.
Then, in Section 4.3, we introduce the lineage-dependent phylodiversity-dependent mod-
els and analyse how these models can help capture proper tree shapes and balance levels
observed in current phylogenies. We describe the Phylodiversity Matrix, as a dynamical
matrix that captures the genetic distance among pairs of species. Finally, in section 4.4 we
provide a methodology (stochastic gradient descent) for parameter estimation and derive
the required equations for the LDPD model. We use the data augmentation algorithm
introduced in the previous chapter to approximate the gradient of the likelihood. We
discuss potential directions, advantages and limitations of the method.

4.2. MODE AND TEMPO IN EVOLUTIONARY PROCESSES AND REAL

PHYLOGENIES

Mathematically the diversification process is characterised by two components, time
and balance. Biologically, they represent the tempo and mode of the macro-evolutionary
dynamics. Several statistics or measurements have been designed to describe both
components. The gamma index describes the distribution of the waiting times between
events throughout the process (Pybus and Harvey, 2000; Fordyce, 2010). It is especially
useful to capture diversification rate decreases compared with higher rates in the past.
The ρ-metric introduced in Pigot et al. (2010) is an alternative to the gamma-statistic
providing values between -1 and 1 indicating speedup in speciation rates towards 1.
Regarding the topology of the tree, the Colless index (Colless, 1982) is probably the
most used statistic for characterising tree balance; however, dozens of other indices to
summarise the shape of the tree have been developed. One example is the Sackin’s index
(M. Coronado et al., 2020), which computes the sum of the number of ancestors for each
tip of the tree; Another example is the Cophenetic index that computes the sum of the
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depths of the least common ancestor of every pair of leaves of the tree. The Cophenetic
index is a proportion of the MPD index in (Mazel et al., 2016), which calculates the mean
pairwise distance between all species in the clade, that is, the mean of the per-species
phylogenetic diversity. In this manuscript, we focus on Gamma and Colless, but our
analysis can be easily replicated with other metrics.

In figure 4.1, we show the distribution of tempo and mode of 64 Mammal phylogenies
represented by the Gamma (GI) and Colless index (CI). We use a normalised version of the
CI (PDA normalisation), where high values represent highly unbalanced trees and values
close to zero represent highly balanced trees. We use the R packages ape and treeshape
to calculate gamma and Colless indices respectively.
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Figure 4.1 | Distribution of tempo and mode for 64 mammal phylogenies, characterised by the Gamma and
Colless index.

Many studies have analysed and reported gamma and Colless indexes for standard
species diversification models (Mooers and Heard, 1997), but this has not been done
extensively for diversity-dependent diversification models. We performed a simulation
study to study how well such models capture these tree features. We used the standard
linear diversity dependence model (LDD) (Etienne et al., 2012b) for four sets of parameters.
In Figure 4.2, we plot the four extreme phylogenies with maximum and minimum indices.
To be consistent with observed phylogenies, we computed the MLE for the four extreme
phylogenies described above, and used these to simulate phylogenies under the LDD
model and computed the Gamma and Colless distributions. Figure 4.3 shows that both
extremes in the mode (Colless) and one in the tempo (gamma) cannot be mimicked by
the simulations.
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high gamma high colless

low gamma low colless

Figure 4.2 | Example of the 4 most extreme mammal phylogenies. Rhinolophidae is the clade with maximum
gamma index, Leporidae is the clade with maximum Colless index, Vespertilionidae is the clade with minimum
gamma index and Peramelidae is the clade with minimum Colless index.

Figure 4.3 | Comparison of LDD simulations with empirical phylogenies. Each small point represents the
Colless vs gamma coordinate of a simulated tree under the LDD model. Each colour represents a parameter
combination for which we used the maximum likelihood estimators for the four trees shown in Figure 4.2. The
Colless and Gamma statistics for these four trees are shown as large circles.



4.3. THE PHYLOGENETIC-DIVERSITY MATRIX IN LID MODELS 57

4.3. THE PHYLOGENETIC-DIVERSITY MATRIX IN LID MODELS

The development of LDD models has only just started; the vast majority of developed
and used SDM are LID models (Morlon, 2014), especially because if their computational
simplicity (Slowinski and Guyer, 1989). The few LDD models (e.g. (Oliveira et al., 2020))
do not take into account ecological interactions and other essential properties of the
diversification process. Here we aim to generalise diversity-dependent diversification
models in order to keep them flexible enough to capture mode and tempo, even in ex-
treme phylogenetic trees. We thus search for a model which: (1) incorporate time-varying
carrying capacities (Marshall and Quental, 2016), (2) has heritable rates (Caron and Pie,
2020), (3) has the flexibility to promote speciation for younger species for unbalanced
trees and promotes speciation in older clades for balanced trees (Jones, 2011), (4) con-
siders community interactions among lineages, (5) considers the dynamical nature of
niche diversity (Smaldino et al., 2019) as the ecological role that an organism plays in an
ecosystem changes.

4.3.1. PHYLOGENETIC DIVERSITY

Phylogenetic diversity or phylodiversity is an ideal candidate for capturing interac-
tions between species, because it is associated with functional diversity (Oliveira et al.,
2020), character diversity and other ecological features, although there is still some con-
troversy about this association (Mazel et al., 2018; Tucker et al., 2016). Here we use a
per-species phylogenetic diversity index, so we can model LID models where the spe-
ciation rate of each species is proportional to the phylogenetic distance of this species
holds to the rest of the species in the clade. For this purpose we define a phylogenetic
diversity matrix, known also as phylogenetic distance matrix although this term is not
only restricted in the literature to the process here defined.

Let St be the set of all species in the phylogenetic tree at time t . We define the
phylogenetic diversity matrix P (t ) as a dynamic matrix, with dynamic dimension |St |×
|St |, that takes into account the phylogenetic distance between species. The entries of
the matrix are defined as the times to the most recent common ancestor for each pair of
species,

Pi j (t ) = time to most recent common ancestor of species i and j .

Figure 4.4 shows a simple tree as an example with calculations of the phylogenetic diver-
sity matrix at three different times.

We then define for each species s the mean phylogenetic diversity (Mazel et al., 2016)
as

Ps,t = 1

|St |
∑

s′∈St

Ps,s′ (t );

which is proven to be closely related to Faith’s phylogenetic diversity (Faith, 1992) which is
widely used in both macroevolution and ecology. We define the overall mean phylogenetic
diversity as

PDMt = 1

|St |
∑

s∈St

Ps,t
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Figure 4.4 | Phylogenetic diversity matrix at three different time points

which represents the average distance that each species has with the rest of the species in
the phylogeny. It describes how phenotypically distinct it is from the other extant species.

These quantities have both a robust biological meaning and elegant and convenient
mathematical properties. Note that, between branching times (i.e in periods when no
speciation or extinction happens) we have that

Ps,ti+t = Ps,ti + t ; PDMti+t = PDMt + t (4.1)

Our definition of PDMt entails ∑
s

(
PDMt −Pt ,s

)= 0 (4.2)

We use these properties to develop fast and efficient inference algorithms.

4.3.2. THE LID MODELS

We here propose a generalisation of the diversity dependence model (Etienne et al.,
2012b) which considers differences among species introduced in the speciation rate,

λt ,s =λ0 +βN (2−Nt )+βP
(
PDMt −Pt ,s

)
; λ0 > 0,βN > 0,βP > 0 (4.3)

This model considers a speciation rate that linearly decreases with the number of species
as in the usual LDD model (Etienne et al., 2012b) and adds a LID effect which gives a
speciation advantage to species with on average shorter distance to other species. This
model, called the lineage-dependent phylodiversity-dependent diversification (LDPD)
model thus assumes that species that speciate faster will produce species that speciate fast
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as well (Caron and Pie, 2020), which will lead to more unbalanced trees. If we change the
constraintβP > 0 toβP < 0, the model assumes that species that are more phylogenetically
distant to other species are more likely to speciate (Nyman, 2010), resulting in more
balanced trees.

Note that the properties (4.1, 4.2) imply that the overall speciation rate does not accel-
erate or decrease relative to the LDD overall speciation rate but only creates differences
between the rates of different species.

To analyse how the LDPD model can capture balance and tempo we performed
a simulation study. We fixed parameters λ0 = 0.5,βN = −0.05,µ0 = 0.1 and we varied
βP = 0,0.001,0.05,0.1,0.5. We performed 100 simulations for each parameter value. Figure
4.5 shows the distribution of mode and tempo of the simulated data. We can see that by
changing βP we can cover the different balance values found in empirical trees, while
the distribution of gamma remains wide. This simulation shows the flexibility of the
model presented here, especially in relationship with topology. Note that the scale in both
indices is larger than for the mammal phylogenies, which suggest that with this model,
we can cover balance and tempo observed in nature.

Figure 4.5 | Distribution of tempo and mode, characterised by the Gamma and Colless index, for 5 different
values for the PD effect. We used λ0 = 0.5,βN =−0.05,µ0 = 0.1 and we constrain simulation to a crown time of
15My.

4.4. PARAMETER ESTIMATION

In previous chapters we developed an MCEM algorithm for likelihood optimisation.
In this chapter, we propose a different approach where the EM optimisation is replaced
by a stochastic gradient descent method (Robbins and Monro, 1951; Chen et al., 2014).
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The aim is to maximise the likelihood function

f (y |θ) =
∫

x∈X (y)

f (x, y |θ) d x =
∫

x∈X (y)

f (x, y |θ)

g
θ

(x)
g
θ

(x)d x = Ex∼g
θ

[
f (x, y |θ)

g
θ

(x)

]

where y is the observed phylogenetic tree and x is a variable describing all full trees that are
in agreement with y . The distribution or importance sampler gθ can be, for instance, the
uniform sampler introduced in Chapter 2 or the efficient emphasis algorithm developed
in Section 3.3.3.

Thus, the maximum likelihood estimator is

θ̂ = argmax
θ

Ex∼g
θ

[
f (x, y |θ)

g
θ

(x)

]
To maximise this function, we propose a Stochastic Gradient Descent (SGD), which
iteratively computes

θi = θi−1 − ηG(θ)

where η is a step size (also known as the learning rate in the machine learning literature)
and G(θ) is the gradient of the likelihood function

G(θ) = ∇ Ex∼g
θ

[
f (x, y |θ)

g
θ

(x)

]
= Ex∼gθ

f (x, y |θ)

gθ(x)

[
∂ log f (x, y |θ)

∂θ
− ∂ log gθ(x)

∂θ

]
This gradient can typically not be calculated analytically, but we can use an unbiased
Monte-Carlo estimator,

�G(θ) ≈ 1

n

∑
xi∼gθ

f (xi , y |θ)

g
θ

(xi )

[
∂ log f (xi , y |θ)

∂θ
− ∂ log gθ(xi )

∂θ

]
,

where n is the number of sampled trees from the DAA developed in section 3.3.3. Thus,
we compute the next-step iteration of the SGD as

θi = θi−1 − η �G(θ).

This can be evaluated by observing that in the case of species diversification processes,
the loglikelihood function is

log f (x|θ) = ∑
i∈H spe

log
(
λti ,s∗i |θ

)
+ ∑

i∈Hext

log
(
µti ,s∗i |θ

)
−

tp∫
t0

∑
s∈St

(λt ,s|θ+µt ,s|θ)d t

where H spe is the set of indices where the i -th event is speciation and Hext is the set of
indices where the i -th event is an extinction, ti is the i -th event time and s∗i is the species
that performed an action (speciated or became extinct) at time ti .
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The sampling probability, under the emphasis data augmentation algorithm, is

log g (x|θ) = ∑
i∈M

log

 ∑
s∈Sti

λti ,s|θ

− log
(
N e

t−i
+2N o

t−i

)
+ log

(
µ0

) −µ0(t e
i − ti )


−

tp∫
t0

[ ∑
s∈Sr

λr,s|θ
(
1−e−µ0(tp−r ))]dr

where N e
t−i

is the number of missing species just before time t and N o
t−i

is the number of

extant species just before t , M is the set of indexes corresponding to missing speciations,
and t e

i is the extinction time of the species that speciated at time ti .
We are interested in the logarithm of the ratio

logr (x|θ) = log f (x|θ)− log g (x|θ).

In the case of constant extinction rate µti ,s∗i |θ = µ0 there are several simplifications
and the log of the ratio is

logr (x|θ) = ∑
H spe

log
(
λti ,s∗i |θ

)
−

p∑
i=1

N o
ti
µ0(ti − ti−1)+

p∑
i∈M

log
(
N e

t−i
+2N o

t−i

)
− log

 ∑
s∈Sti

λti ,s|θ

+
tp∫

t0

∑
s∈St

λt ,s|θe−µ0(tp−t )d t

Thus, for the LDPD model we have

logr (x|θ) = ∑
i∈H spe

log
(
λ0 +βN (2−Nti )+βP P ′

ti ,s∗
)
+

p∑
i∈M

[
log

(
N e

ti
+2N o

ti

)− log
(
Nti (λ0 +βN (2−Nti ))

)]+
p∑

i=1
N o

ti
µ0(ti − ti−1)+Nti (λ0 +βN (2−Nti ))

e−µ0tp

µ0
[eµ0ti −eµ0ti−1 ]

(4.4)

where P ′
t ,s =

(
PDMt −Pt ,s

)
. Thus, the gradients with respect to the various parameters is

calculated with the partial derivatives

∂ logr (x|θ)

∂µ0

= ∑
i=1,...,p

N o
ti

(ti − ti−1)+

1

µ2
0

Nti

[
λ0 + (2−Nti )βN

][
eµ0(ti−tp )[µ0(ti − tp )−1]−eµ0(ti−1−tp )[µ0(ti−1 − tp )−1]

]
,

(4.5)
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∂ logr (x|θ)

∂λ0

= ∑
i∈H spe

[
1

λ0 +βN (2−Nti )+βP P ′
ti ,s∗

]
+

∑
i∈Mx

[ −Nti

Nti (λ0 +βN (2−Nti ))

]
+

∑
i∈{1,...,p}

[
Nti

e−µ0tp

µ0

[
eµ0ti −eµ0ti−1

]]
,

(4.6)

∂ logr (x|θ)

∂βN

= ∑
i∈H spe

[
(2−Nti )

λ0 +βN (2−Nti )+βP P ′
ti ,s∗

]
+

∑
i∈Mx

[ −Nti

Nti (λ0 +βN (2−Nti ))

]
+

∑
i∈{1,...,p}

[
Nti

e−µ0tp

µ0

[
eµ0ti −eµ0ti−1

]]
,

(4.7)

and

∂ logr (x|θ)

∂βP

= ∑
i∈H spe

[
P ′

ti ,s∗

λ0 +βN (2−Nti )+βP P ′
ti ,s∗

]

Thus, we have an explicit form to compute the stochastic gradient descent step and
perform optimisation. The method can be used for any kind of model, but gradients need
to be calculated in every case.

4.5. SUMMARY

Species diversification models can be used to quantify the relationship of different
ecological variables with species diversification processes. Most current implemented
species diversification models assume that all species are equally probable to speciate
or become extinct, which does not allow to quantify the effect of the topology on the
processes.

We have presented a generalised diversity-dependence model that preserves the
relationship between speciation rate and species richness of previously studied models
but adds an ecological advantage to species that are either more or less phylogenetically
distant to the other species in the clade. With simulations we have shown that this model
is flexible enough to capture a large variety of topologies. We propose this model as a
standard alternative to current diversity-dependent diversification models. This model
can be also complemented with the model of the previous chapter, which also takes into
account dynamical carrying capacities.

Finally, we have presented an estimation method based on a stochastic gradient
descent method and provide the corresponding equations to use it for the LDPD model.
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ABSTRACT

In cosmology, the anthropic principle describes the argument that any calculation of the
probability of (intelligent) life in the universe has to take into account that the mere fact
of performing such calculation presupposes intelligent life. Although not as extreme, in
phylogenetic analyses similar considerations occur. For example, the probability of an
observed phylogenetic tree presupposes that this tree is not empty.

It is common practice, therefore, in likelihood-based methods of fitting a species diver-
sification model to an observed phylogenetic tree to condition the likelihood. Typical
conditioning events include survival of the process to the present, the age of the tree, the
number of species in the tree, or a combination of these. To condition a likelihood, the
probability of the condition event is needed as a function of the parameters. The calculation
of these probabilities is usually not trivial and often unfeasible.

Here, we present a general method that can be used to approximate the probability of any
conditioning event under any species diversification model from which it is possible to
obtain samples. This is crucial for inference in a large number of real-world scenarios. We
provide an example and compare our results with probabilities that are computed using
standard methods in cases in which analytic solutions are available. We find that our
method is fast and accurate.
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5.1. INTRODUCTION

Under ideal laboratory circumstances, a probabilistic experiment will have a set of
possible outcomes y ∈Y . If θ represents the parameters of the model that gives rise to
the outcome y , then maximum likelihood estimation would aim to find θ̂ = argmaxθ fθ(y).
However, if in the real experimental setting only values within C ⊂Y are possible, then
this should be taken into consideration when performing inference. In fact, C will act as a
conditioning event in the estimation, i.e., θ̂ = argmaxθ fθ(y |C ).

Conditioning as part of inference of the species diversification model is important
for the estimation of the speciation and extinction parameters from phylogenetic trees
(Etienne et al., 2016; Stadler, 2013). Several types of conditioning are commonly applied
in the literature, including conditioning on crown or stem age, i.e., assuming the process
started at the given age, conditioning on the survival of the clade to the present, i.e.,
that at least one or two species are found at the present for a tree with a stem or crown
age respectively, conditioning on the number of species observed at the present, i.e.,
the number of tips in the phylogenetic tree, or conditioning on having at least a certain
number species at the present. It has been argued that at least some conditioning is
needed to remove bias in estimates, but not too much to avoiding skewing the information
in the data (Etienne et al., 2016; Stadler, 2013). Here, we do not further discuss which
condition should be used when analysing phylogenetic data under different scenarios,
but we provide a general method that can be used for any condition.

To condition a likelihood function fθ(y) with parameters θ on a condition C satisfied
by our data y ∈C , we consider the conditional likelihood

fθ(y |C ) = fθ(y,C )

Pθ(C )
= fθ(y)

Pθ(C )

where Pθ(C ) is the probability of the condition C for the parameter combination θ. In this
chapter, we propose a method for estimating the probability of any conditioning event by
connecting our general simulation scheme for the diversification model with the theory
of generalised additive models (Hastie and Tibshirani, 1990).

5.2. MATERIAL AND METHODS

The mathematical problem we want to solve in this chapter can be describes as follows.
Assume that the species diversification is governed by a species diversification model
(SDM) with rates

λt = g1(x ′
tθ1), µt = g2(x ′

tθ2)

where λt and µt are the speciation and extinction rates at time t , gi are arbitrarily link
functions, xt is a vector of covariates or ecological variables of the diversification process
at time t , and θ = (θ1,θ2) are the parameters that relate the speciation and extinction
rates to these covariates. We want to calculate the probability that a tree with parameters
θ satisfies a condition C .

Our framework consists of two phases: (i) the simulation or data generation phase
and (ii) the GAM estimation phase, where an estimation of the probability of the desired
conditioning event as a function of the parameters is calculated.
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Conditioning the likelihood consists of calculating the probability that the desired
condition holds for a given SDM Mθ for any parameter combination. The functional
relationship between Pθ(C ) and θ may be complex, but we assume that Pθ(C ) is a contin-
uous function of θ, in a compact subspaceΘ0 ⊂ Θ. We also assume that simulating the
phylogenetic process according to the model Mθ is possible and fast.

5.2.1. SIMULATION

To perform non-parametric estimation of the probability of a condition we first gener-
ate the required data in a finite gridΘG = {θ1,θ2, ...,θM } ⊂Θ0 , where M can be determined
by the user, depending on the desired level of precision. We simulate one tree y at every
point of the grid. We then define the Dirac delta function δC that is equal to 1 at that point
if the tree y satisfies the desired condition C and a 0 if it does not satisfy this condition,
i.e.,

δC (y) =
{

1 if y ∈C ,

0 otherwise.

The key observation that makes our framework work is that

Pθ(C ) = Ey∼θ[δC (y)]

Our data is given by M pairs,

{(θ1,δC (y1)), ..., (θM ,δC (yM ))} (5.1)

Simulation of the phylogenetic trees is typically done in a straighforward manner using a
Gillespie-type algorithm (Gillespie, 1977), which was designed in the 1970s in the context
of chemical reactions. For simulations of the phylogenetic trees described in this thesis
this algorithm can be used. For a detailed study on simulation methods in macroevolution
see Huelsenbeck (1995).

5.2.2. ESTIMATION

In order to obtain the probability Pθ(C ) of satisfying the condition as function of the
parameters, we perform functional estimation using our simulated data. We assume that,
for a continuous function Pθ(C ) and a large value K , we can express

logit(Pθ(C )) ≈
K∑

j=1
β j b j (θ) (5.2)

where b1, ...,bK are basis functions. For the basis functions, we can use, for example,
univariate or bivariate cubic splines (Durrleman and Simon, 1989). In Figure 5.1 we see
an example of basis functions in one dimension.

Thus, given the data obtained in (5.1), we can calculate the log-likelihood of a logistic
regression in the generalized additive model setting,

`P (β|θ) =
M∑

i=1
`δC (yi )(β|θ)+Pen(β)
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Figure 5.1 | Set of basis functions in one dimension, {t , t 2, t 3, (t − 1.5)3, , (t − 3)3, (t − 5)3}. The set of linear
combination of them generate a large subset of continuous functions.

where Pen is typically some smoothness penalty and

`δC (yi )(β|θ) = log

([
gM ,β(θ)

1+ gM ,β(θ)

]δC (yi ) [ 1

1+ gM ,β(θ)

]1−δC (yi )
)

and

gM ,β(θ) =
M∑

j=1
β j b j (θ).

Using the standard maximum likelihood estimator (Wood and Wood, 2015)

β̂= argmax`P (β)

we can predict for all θ ∈Θ0 the probability of the conditioning event as

Pθ(C ) = egM ,β̂(θ)

1+egM ,β̂
, (5.3)

which is the desired probability.
Figure 5.2 contains a representation of the two phases of the method. First, we

simulate trees for a grid in the parameter space, and we record the binary variable that
indicates if the condition is satisfied or not. We then perform statistical inference to find
the continuous function that best represents the simulated data; the estimation step is a
standard generalized additive model fit (Hastie and Tibshirani, 1990). We end up with
an estimation of the probability of the condition as a function of the parameters. We can
make the estimation as accurate as we want by increasing the resolution of the grid.

5.3. APPLICATION

To check the feasibility of the method, we calculate the probability of survival of the
process generated by a linear diversity-dependent diversification model LDD (Etienne
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Figure 5.2 | Schematic representation of our framework to compute the conditional probability. Given a grid in
parameter space, we simulate one tree at every point and record a zero if the tree does not satisfy the condition
C and a one if it does satisfy condition C . With the values at every point of the grid we estimate the probability
surface. The estimated curve is an approximation of the desired probability function. The accuracy of this
estimation is expected to increase with the resolution of the grid.

et al., 2012a) introduced in the previous chapters, starting with one initial species. We
assume the speciation rate to be

λt ,s =λ0 −βN Nt ; λ0 > 0,βN > 0 (5.4)

and the extinction rate to be constant µt ,s =µ0.
The probability of survival of the diversification process at the present can be calcu-

lated directly using the DDD package in R. We will compare this solution with the estimated
solution obtained with our new method.

We approximate the function in the parameter grid where µ0 ∈ [0.1,0.5], λ0 ∈ [0.55,1.5]
and βN ∈ [−0.005,−0.0002]. For this we use the fit_gam_survival function in the R
package emphasis, which critically depends on the gam function of the mgcv package
(Wood and Wood, 2015). When fitting a Generalised Additive Model, it is required to
define the splines functions that should be used. In this application, we used univariate
and bivariate splines (Nürnberger and Zeilfelder, 2000). In Figure 5.3 we plot predictions
for 6 different grid resolutions in the simulation step. Each point corresponds to the
probability of survival at a different parameter value; in the x-axes we compute the
analytical solution of the probability and in the y-axes we plot the GAM approximation.
In green points corresponds to the estimations with bivariate splines and in blue points
are predictions using univariate splines, in most cases the choice of the type of spline
makes little difference. We observe that estimations are quite accurate, just being a bit off
in the borders of the parameter space.

In Table 5.1, we see the computational cost (in seconds) and the error in the predic-
tions. We calculate the error as the mean of the absolute difference between the analytical
and the predicted results, across all points in the grid. We see that the error decreases
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Figure 5.3 | Estimation of the survival probability for different values of the number of simulations M . The x-axis
represents the analytical results obtained with package DDD for various values of the parameters (µ0,λ0,β0) and
the y-axis corresponds to the predictions of the probability of survival with the method presented in this chapter.
The black thin line represents the relationship y = x. Panels contains predictions using univariate (green) and
bivariate (blue) splines for GAM estimation.

quite fast, at a small cost. 106 simulations are enough to get accurate predictions.
In Table 5.2, we have a summary of the fitted models when a resolution of 100×100×

100 was used in an hypercube for the simulation step. We see that for the first model all
parameters in the GAM are significant. We slightly prefer the bivariate model, but the
difference among them is small.

With the estimated parameters, we have a linear combination of univariate splines
that estimates the probability of survival of a tree governed by a LDD model. Figure 5.4
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Number of points Simulation time [sec] Estimation time [sec] Error
1000 0.6 0.3 0.035
8000 4.6 1.6 0.014

27000 15.5 4.7 0.008
125000 71.3 64.3 0.003
421875 237.3 149.3 0.002

1000000 581.8 446.5 0.002

Table 5.1 | Cost and estimation of the probability of condition with different number of simulations. Last column
contains the deviance of the predicted values in relation with the analytical values. Columns 2 and 3 reports the
cost (in seconds) to obtain the estimating function. The first columns contains the number of points utilised in
the simulation step.

shows a visualisation of the estimated probability of survival as a function of the first two
parameters.

Figure 5.4 | Survival probability surface obtained with our new method for the LDD example.

This illustrative example shows the capacity of this method to provide accurate pre-
dictions in a few minutes. The computing times reported in table 5.1 are obtained with a
standard laptop and with code that can be easily optimised (e.g. parallelised) to increase
efficiency.
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Bivariate Univariate
(Intercept) 0.94∗∗∗ 0.94∗∗∗

(0.00) (0.00)
EDF: s(µ0,λ0) 13.16∗∗∗

(17.30)
EDF: s(µ0,βN ) 10.59∗∗∗

(13.87)
EDF: s(λ0,βN ) 0.48∗∗∗

(27.00)
EDF: s(µ0) 6.25∗∗∗

(7.41)
EDF: s(βN ) 2.73

(3.40)
EDF: s(λ0) 4.12∗∗∗

(5.08)
AIC 1132386.62 1132701.08
BIC 1132684.69 1132867.76
Log Likelihood −566168.09 −566336.44
Deviance 1132336.17 1132672.87
Deviance explained 0.07 0.07
Dispersion 1.00 1.00
R2 0.09 0.09
GCV score 0.13 0.13
Num. obs. 1000000 1000000
Num. smooth terms 3 3
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 5.2 | Summary of estimated GAMs using univariate and bivariate basis splines.
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5.4. DISCUSSION

We have presented a methodology to estimate the probability of any condition or
outcome that can be simulated, given an arbitrary species diversification model. This
represents an application of the theory of generalised additive models in the context of
networks and trees.

As a proof of concept, we calculate the probability of survival of any species after
a fixed time for the species diversification process under a LDD model. We provide a
functional polynomial form that represents an estimation of the survival probability
of the process. We found that the method performs well at a low computational cost.
However, it is only tested so far in a three-parameter model. We did not explore how the
efficiency of the method decreases with an increase in parameters. For high dimensional
problems, where the diversification models depends on many covariates, adaptations to
high-dimensional GAM modelling is possible (Meier et al., 2009, e.g.).

We add two remarks

• The limits of the grid are important. In the example presented here predictions can
be used in the cube µ0 ∈ [0.1,0.5], λ0 ∈ [0.55,1.5] and βN ∈ [−0.005,−0.0002] only.
Extrapolations must be avoided.

• The estimation of the function is based on a smooth polynomial (splines) approx-
imation, so to have proper approximation we assume that the probability of the
condition is a smooth function, which is biologically sensible to assume.

In conclusion, we recommend using this method when conditioning a species diver-
sification process and the probability of the condition is not available, but simulation
of the process is possible. This method is complementary with the theory presented
throughout this thesis. In Chapters 2, 3 and 4 we have presented a likelihood approach in
different contexts for statistical inference, however, to keep the focus on the statistical
methodologies presented we did not consider any conditioning to the estimated like-
lihoods. The estimated probability can be incorporated in both the MCEM algorithm
presented in Chapters 2 and 3 and in the SGD algorithm presented in Chapter 4. In all
cases the condition probability have to be computed only once at the start of the statistical
inference routine, unless the MCEM or the SGD goes to parts of parameter space that
weren’t explored by the GAM; then a new simulation needs to be done including the new
explored parameter space.
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REGARDING SPECIES

DIVERSIFICATION MODELLING

The formation of different languages and of distinct species, and the proofs that both have
been developed through a gradual process, are curiously parallel.

Darwin C. 1879

The intersection between macroevolution and statistical modelling represents a fun-
damental and growing area of research for the understanding of how species diversified.
In this thesis, using combinations of statistical methods, I have presented methodological
tools that will contribute to the study of species diversification in a rather general way,
i.e., applying to a wide variety of scenarios in macroecology and macroevolution. Still,
despite the potential of the methods presented here, we have focused all the applications
on a particular class of models which considers diversity as the primary driver of diversifi-
cation. Diversity dependent diversification models possess attractive properties in both
evolutionary biology and mathematics.

In evolutionary biology, the incorporation of diversity-dependent diversification mod-
els is a sensible, quantitative way to test the influence of ecological limits on diversification.
Until now, diversity-dependent diversification models have used species richness as a
proxy for diversity. This is a substantial simplification considering that different species
may contribute differently to ecological limits; by considering only species richness we as-
sume that all species in a clade compete in the same way for the same niches. Throughout
this thesis, I have incorporated phylogenetic diversity, generalising diversity-dependent
diversification models, the inference of which has so far not been possible with current
statistical methods. With the incorporation of phylogenetic diversity we take into ac-
count the genetic difference among species. Phylodiversity in combination with species
richness includes dynamic carrying capacities instead of fixed ones. When considering
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pairwise phylogenetic diversity, we also consider variable ecological interactions among
species.

Mathematically, both species richness and phylogenetic diversity are relevant proper-
ties of phylogenetic trees. Moreover, given that this information is provided by the tree
itself, there is no need for imputing other unobserved variables than the extinct species.
This is relevant for the accuracy of the methods. Its simplicity provides an elegant way
to deal and incorporate other factors, such as ecological similarities between lineages.
As William of Ockham suggested, a mathematical model should aim for capturing the
behaviour of a complex system with a maximum level of simplicity (Schaffer, 2015). Our
generalisations to diversity dependent diversification models share these properties.

The applications presented here represent a contribution to statistical network sci-
ences in biology. We do not only demonstrate the feasibility of optimisation methods
such as the EM and the SGD algorithms in point processes describing trees, but we also
provide insights into the design of efficient data augmentation algorithms for trees and
networks.

The journey of this thesis has met with a lot of trial and error, exploring several ap-
proaches that end up not being as appropriate as the MCEM and SDG methods described
in Chapters 2, 3 and 4. In practice what I have presented in this thesis is a small fraction
of what I have tried in order to provide an efficient way to perform statistical inference on
species diversification processes. Moreover, I am aware that this is a small contribution
and a first step into the long-term development of a general theory that will eventually
improve the methods here presented. In the next sections, I discuss the limitations of
these methods and possible directions for improvement and development.

6.1. LIMITATIONS IN SYSTEMATIC BIOLOGY AND DIRECTIONS

FOR IMPROVEMENT

6.1.1. INCOMPLETE SAMPLING AND DIFFERENT LEVELS OF ORGANISMS

Throughout this thesis, I have assumed that the phylogenies contain all the extant
species of the biological system of interest. In practice, that is seldom true. Even though
phylogenies are becoming every year more complete and accurate, incomplete sampling
is the most probable situation for most of the phylogenies, especially in groups such as
insects or non-vertebrates, to name two examples. Assuming that the sampled phylogeny
is complete is a common practice, but further research should consider the consequences
of incomplete sampling in phylogenetic analysis. Some authors have considered incom-
plete sampling in their methodologies (Carstens and Knowles, 2007; Wiuf, 2018), but there
is still a long way to go.

For the methodologies here presented, the natural extension to consider incomplete
sampling would be to slightly modify the data augmentation scheme proposed on sec-
tion 3.3.3, allowing a less restrictive space of trees, where the sampled full trees do not
necessarily have the same number of species at present. The theory and implementation
of this extension are easy, but assumptions need to be made. For instance, some current
methods provide the option to add ”the number of missing species” at present, this is a
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very strong assumption. A more relaxed assumption would be to assume a probability dis-
tribution to the species sampling scheme. Such an assumption is also possible to include
in our frameworks in a nearly straightforward mathematically and computationally way;
in contrast, biologically, the assumed probability distribution would always be debatable.

6.1.2. EXTINCTION DYNAMICS

In order to compare and analyse the generalisations presented here, I decided to focus
in all models on dynamic speciation rates while the extinction rates are assumed to be
constant. However, the methodologies presented in this thesis are more general and in
principle can deal with non-constant extinction rates. In all illustrations and experiments,
the same methods can be used for non-constant extinction rates with almost no additional
work. I suggest that further research incorporates this characteristic when testing the
hypothesis of non-constant extinction rates. A natural generalisation that align with this
thesis would be the diversity-dependent extinction models, supposing a linear extinction
rate as a function of diversity (i.e species richness and phylogenetic diversity).

6.1.3. IMPLEMENTING THE GENERAL CLASS OF MODELS

The methods presented here have been developed to answer the question: ”What
factors can play a role in species diversification?” As mentioned in the introduction,
despite the great potential of the general class of models that our new inference methods
accommodates, I did all the illustrations in diversity-dependence models or generalisa-
tions of them. In future work, depending on the focus of the different required analysis,
incorporating extreme events, climate or other time-dependent functions, individual
characteristics of species or other factors could be incorporated.

In Figure 6.1 I illustrate a process where each species has a binary trait represented by
a circle or a triangle. This can be, for instance, presence/absence of legs in squamates
or viviparity. Given that the species-level covariate data is typically only available at
the present, as shown in Figure 6.1a, there are a large number of compatible covariate
histories over which any inference procedure should integrate. In principle, our emphasis
simulation and inference framework is capable of dealing with such situations, but it
is not clear to what extent the methods presented here can handle a large number of
species-level covariates and it is expected that if the unavailable data on these covariates
is large, the integration across them will be challenging.

6.2. DIRECTIONS FOR STATISTICAL METHODS

I have presented a number of statistical methods, which I would classify in three
categories: statistical network processes modelling, data augmentation algorithms and
parametric statistical inference. These methodologies open up an endless set of combina-
tions.

In the statistical modelling I consider the theory of point process, assuming that speci-
ation and extinction can be realistically generated by combinations of non-homogeneous
Poisson processes. That theory was primarily developed by Yule in the 1920s, Kendall



76 6. FURTHER CONSIDERATIONS REGARDING SPECIES DIVERSIFICATION MODELLING

(A) (B)

Figure 6.1 | a) Extant phylogenetic tree without extinctions and b) complete phylogentic tree with extinctions.
Both trees are shown with a binary trait indicators.

in the 1940s and Nee in the 1990s. All this work and subsequent developments have
solved a great variety of problems, but there has never been any attempt to define a
general class of species diversification models, as I have tried to present in this thesis.
One of the main reasons why inference in this class of models has remained elusive is the
complexity involved in the underlying system of stochastic differential equations given
by the combination of point processes involved in the macroevolutionary dynamics. I
have provided an alternative to direct likelihood calculations, by means of an importance
sampling simulation scheme. In principle, this may allow to integrate inference of a
general class of species diversification models in one single framework. Still, a lot of work
is needed; for instance, in the NHPP I do not allow multiple speciations at the same time
or protracted speciation, i.e., speciation events that take time (i.e. not instantaneous).

For statistical inference I have proposed two alternatives to calculate and optimise the
likelihood of the species diversification process under incomplete information. One is the
MCEM algorithm developed in Chapters 2 and 3. The other is the SGD method developed
in Chapter 4. These approaches are two examples of likelihood methods combined with
data augmentation through simulations. Both are methods to optimise the likelihood and
find the maximum likelihood estimator for complex processes where the likelihood of the
observed process is impossible to be calculated directly, but for which the augmented
process likelihood is much easier. Other approaches, such as Bayesian approaches or
alternative optimisation algorithms such as the SAEM algorithm or its variations, have
not been fully explored in this thesis.

Data augmentation algorithms (DAAs) are powerful statistical tools for studying the
full or augmented process likelihood, as they provide a solution in cases where the like-
lihood for the original data is difficult or impossible to calculate, such as is the case in
general species diversification processes where only the reconstructed tree is available. In
this thesis I have provided two DAAs: (i) a uniform sampler that augment trees indepen-
dent of the model parameters by simulating branching times and topology uniformly and
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(ii) an efficient importance sampler that considers the parameters of the diversification
model in order to sample trees in close accordance to the generative process. Although I
have implemented the DAA inference methods in an R package, computational efficiency
was not the main focus of this thesis and I believe that this can be improved as well.

6.3. EVOLUTIONARY TREES APPLICATIONS, BEYOND BIOLOGY

The theory presented in this thesis describes a theory of diversification in a general
sense. Thus, nothing stops us from applying this framework in contexts different from
evolutionary biology where also diversification processes take place. One can think of
language evolution (Greenhill et al., 2010; Whitfield, 2008; Zhang et al., 2020) or cultural
evolution (Creanza et al., 2017), to name just two examples. More abstractly, tree-like
diversification happens in many different processes. In Figure 6.2 I show nine tree-
shape phenomena taken from many different fields. This is a small sample of tree-like
diversification in nature.

Figure 6.2 | 1. Image of river from space. 2. Tree. 3. Human bronchus (upside down). 4. Upward lightning. 5.
Coral. 6. Slime mold. 7. Mocha diffusion. 8. Lichtenberg figures on wood. 9. Human neuron. 10. Cracked ice.
11. Waterfall - Katsushika Hokusai (1831) (upside down)
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Moreover, even within biology, multiple other applications can benefit from the
statistical methodologies here presented. In this thesis, we have focused on species-level
trees. However, diversification processes happen at all levels of organisms and scales of
times (Aldous et al., 2008; Stadler and Bokma, 2013).

6.4. NETWORK SCIENCES APPLICATIONS, BEYOND TREES

Trees are the most common representation for the diversification of species. How-
ever, other mathematical objects have been suggested to describe species diversification,
such as phylogenetic networks, phylogenetic cactus or phylogenetic corals (Ragan, 2009;
Podani, 2017), among others. Statistical network science is a growing area of research
(Molontay and Nagy, 2019) and it has great potential to contribute to the field of evolution-
ary phylogenetics (Huson and Bryant, 2006; Chamberlain et al., 2014; Kunin et al., 2005;
Bandelt, 1995). Moreover, biological networks can also be potential drivers of evolutionary
processes and thus incorporated as covariates in species diversificaion models (Farajtabar
et al., 2017).

In Figure 6.3, I show an example of a phylogenetic network where different biological
process are incorporated, generalising a phylogenetic tree (Schliep et al., 2016). I am
convinved that all methods presented in this thesis can be generalised to networks in a
mathematically natural way. Future research should consider this direction as another
generalisation for species diversification models in order to describe macroevolutionary
processes more realistically.

Figure 6.3 | Phylogenetic network from Schliep et al. (2016)
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