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Phylogenetic trees are types of networks that describe
the temporal relationship between individuals, species,
or other units that are subject to evolutionary diversi-
fication. Many phylogenetic trees are constructed from
molecular data that is often only available for extant
species, and hence they lack all or some of the branches
that did not make it into the present. This feature
makes inference on the diversification process challeng-
ing. For relatively simple diversification models, analyt-
ical or numerical methods to compute the likelihood
exist, but these do not work for more realistic mod-
els in which the likelihood depends on properties of
the missing lineages. In this article, we study a general
class of species diversification models, and we provide
an expectation-maximization framework in combina-
tion with a uniform sampling scheme to perform max-
imum likelihood estimation of the parameters of the
diversification process.
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1 INTRODUCTION

Evolutionary relationships of species are commonly described by phylogenetic trees or, in more
general scenarios, by phylogenetic networks (Ragan, 2009). A phylogenetic tree is a hypothesis on
how species or other biological units have diversified over time. It is usually described by a binary
tree whose nodes are ordered in time. Phylogenetic relationships can be inferred from a variety
of sources such as morphology and behaviors of species, biochemical pathways, DNA, and pro-
tein sequences (Lemey, Salemi, & Vandamme, 2009), both from extant, that is, living species or
from extinct species through ancient DNA or the fossil record. However, data on extinct species
are often incomplete and only accurate molecular phylogenies of extant species are available. In
this article, we consider such phylogenetic trees as primary observations. Even though they lack
extinct lineages, they are believed to contain information on how species diversified and hence
they have been used to answer fundamental questions, such as “does diversity affect diversifica-
tion?” (Cornell, 2013; Etienne et al., 2012), “what is the effect of environmental and ecological
interactions on evolutionary dynamics?” (Barraclough, 2015; Ezard, Aze, Pearson, & Purvis,
2011; Lewitus & Morlon, 2017), “how does biodiversity vary spatially?” (Goldberg, Lancaster, &
Ree, 2011; Mittelbach et al., 2007), and “what traits play a key role in species diversification?”
(FitzJohn, Maddison, & Otto, 2009; Lynch, 2009; Paradis, 2005), to name just a few.

To help to answer these questions, specific mathematical models have been developed that can
infer various parameters from phylogenetic diversification pattern (Morlon, 2014). Most current
approaches have started to use likelihood-based methods to perform inference on phylogenetic
trees (Etienne et al., 2012; FitzJohn et al., 2009; Ricklefs, 2007; Stadler, 2011). Although statisti-
cally principled, in each of these models, a new method to compute the likelihood needs to be
developed. These models often rely on describing the macroevolutionary process by coupled ordi-
nary differential equations—the so-called master or Kolmogorov equations—and these quickly
become intractable as model complexity increases, particularly due to the lack of data on extinct
species (Höhna, Stadler, Ronquist, & Britton, 2011; Ricklefs, 2007).

Alternative ways to deal with Kolmogorov equations have been used since the 1950s in
fields outside evolutionary biology. These methods have used point process theory (Daley &
Vere-Jones, 2007; Serfozo, 1990), which does not solve Kolmogorov equations directly but
employs Gillespie-type simulations that were introduced in the context of chemical reaction
modeling (Gillespie, 1976, 1977). A single Gillespie simulation represents an exact sample from
the probability mass function that is the solution of the system, thus allowing for stochastic
optimization methods to maximize the likelihood (Tijms, 1994).

In this article, we present a first step for a general inference procedure of a general species
diversification model. In Section 2, we describe a general diversification process based on a gen-
eralized linear model (GLM) description of a nonhomogeneous point process. This model can
be used to describe many alternative evolutionary hypotheses. In Section 3, we introduce an
expectation-maximization (EM) algorithm to optimize the likelihood under incomplete infor-
mation, namely, the extinct lineages. We present a data augmentation algorithm, involving
stochastic simulation combined with an importance sampler, to perform the E-step. We pro-
vide a proof-of-concept by comparing our inference with that obtained using direct likelihood
calculations. In Section 4, we apply our method to the diversification of a small clade of Vangi-
dae, consisting of a group of medium-sized birds living in Madagascar. Our aim is to discover

Rampal Etienne and Ernst C. Wit jointly contribute to last authorship.



RICHTER et al. 3

whether the evolutionary record supports more the diversity dependence hypothesis (Etienne
et al., 2012) or the phylodiversity hypothesis (Castillo, Verdú, & Valiente-Banuet, 2010), for which
no direct likelihood computation exists. Finally in Section 5, we provide directions for future
extensions of the method that are needed to allow evolutionary biologists to routinely apply
our approach to larger phylogenetic trees to study general diversification dynamics in a unified
framework.

2 A GENERAL DIVERSIFICATION MODEL

We define a phylogenetic tree x = (𝜏, t, a) on a time interval [0,T] as a functional object described
by three components: a binary vector 𝜏 of event types (speciation or extinction), a vector of con-
tinuous event times t, and a network configuration object a, describing which species speciated
or went extinct at each event time. We model the shape and structure of the tree by means of a
collection of point processes, in this case, a set of dynamical nonhomogeneous Poisson processes
(NHPP) where speciation and extinction of species are random events that happen within a time
interval [0,T]. Figure 1 shows an example of a phylogenetic tree with three speciation events and
one extinction event.

In this article, we assume that the process starts at time t0 = 0 with a single species b1. At
this stage, the tree is subject to two Poisson processes: a potential speciation of species b1 and
a potential extinction of species b1. Both processes are assumed to have a waiting time with
time-continuous rates 𝜆b1(t) and 𝜇b1(t), respectively. In the time-homogeneous case, the waiting
time for the first event to occur is therefore an exponential with rate 𝜆b1 + 𝜇b1 . More in general
(Daley & Vere-Jones, 2007), the probability density for the process x to have a single species up
tox time t1 and a speciation event exactly at time t1 is given by

f (t1) = 𝜆b1(t1)e− ∫ t1
t0

𝜆b1 (t)+𝜇b1 (t)dt
. (1)

t1 t2 t3 t4 T
Time

Events

Allocation

t0

τ1 = S τ3 = Sτ2 = S τ4 = E

b1 b3

b2

b1

b1

b4

F I G U R E 1 Phylogenetic tree with four events: three speciation events and one extinction event. Each
branch represents a species
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If indeed a speciation occurs, the process continues with four NHPPs: two potential specia-
tions and two potential extinctions. This is repeated until the present time T, unless the tree dies
out before then. We consider a general scenario where at time t each of the Nt present species
b has its own speciation rate 𝜆b(t) and extinction rate 𝜇b(t) defined as a linear function via link
function h,

h(𝜆b(t)) =
m∑

j=1
𝛽jcbjt, h(𝜇b(t)) =

m∑
j=1

𝛼jcbjt. (2)

where cbjt is one of j = 1,… ,m possible covariates of species b at time t affecting the specia-
tion and/or extinction processes. Our entire process is therefore governed by the parameter set
𝜃 = {𝛽1,… , 𝛽m, 𝛼1,… , 𝛼m}. Typically, we will consider the logarithmic link function h = log, but
Equation (2) can be trivially modified by choosing for h any monotonous increasing function that
maps (0,∞) onto R. The class of statistical models satisfying these specifications are an extension
of the well-known GLMs (Dobson & Barnett, 2008).

This GLM extension to phylogenetic trees spans a very broad spectrum of possibilities for
evolutionary biologists to test hypotheses and integrate their species diversification data. Diver-
sification rates can be influenced by individual attributes, typically called traits, environmental
factors, such as average temperature, by the composition of the diversifying clade itself or of its
local ecological community. In the literature, a range of models have been explored, where diver-
sification rates are assumed to be constant (Nee, May, & Harvey, 1994), change through time
(Rabosky & Lovette, 2008), depend on diversity (Etienne et al., 2012), on individual traits (Freck-
leton, Phillimore, & Pagel, 2008; Paradis, 2005) or other factors (Morlon, 2014). In order to test
realistic models, we are interested in flexible rates that are able to change dynamically through
all those factors simultaneously. For example, the speciation rate of species b at time t could also
depend on other species' traits.

Mathematically, the method allows the inclusion of any set of covariates that might be interest-
ing to incorporate for evolutionary biologists; however, full information on individual covariates,
such as traits, are rarely available—especially not on the missing species. One way to deal with
this is by including an extra augmentation step and simulating full information of traits on aug-
mented trees (Hoehna et al., 2019). Another option is to use observable proxies related to, for
example, trait diversity, such as different forms of phylogenetic diversity. These present interesting
direction for future work.

3 MLE INFERENCE WITH MCEM USING IMPORTANCE
SAMPLING

The loglikelihood of a full tree including extinct branches x ∈  involving a total of M events by
extrapolating from (1) can easily be shown to be given by

𝓁x(𝜃) =
M∑

i=1

Nti∑
b=1

[
log

[
𝜆b(ti; 𝜃)1Sp(ti, b) + 𝜇b(ti; 𝜃)1Ex(ti, b)

]
− ∫

ti

ti−1

𝜆b(t; 𝜃) + 𝜇b(t; 𝜃) dt
]

(3)

where 1Sp(ti, b) = 1 if species b speciates at time ti, 0 otherwise and 1Ex(ti, b) = 1 if species b
becomes extinct at time ti, 0 otherwise. An additional term −

∑NtM
b=1 ∫ T

tM
𝜆b(t; 𝜃) + 𝜇b(t; 𝜃) dt has to
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be added to the likelihood, if the final event time tM does not correspond to the present T. For
the case when diversification rates are stepwise constant, this reduces to the solutions in Wrenn
(2012) and Reynolds (1973). When the full phylogenetic tree and the covariates at all times are
given, we can directly maximize the loglikelihood function (3) to obtain the maximum likeli-
hood estimates of the parameters (Paradis, 2005) and perform model selection to determine what
factors are important for diversification. In practice, however, we almost never observe the full
phylogenetic tree, but only a tree with the extant species.

3.1 Difficulties of MLE estimation and an MCEM algorithm

Let us denote  as the space of ultrametric trees (Gavryushkin & Drummond, 2016), that is,
time-calibrated trees without extinct lineages and (y) as the space of all full trees that, when
pruning all extinct species, lead to the ultrametric tree y ∈  . Then the log likelihood of an
observed, extant species only tree y is given by the integral of the likelihood (3) over all possible
full trees,

𝓁y(𝜃) = log∫(y)
exp (𝓁x(𝜃)) dx. (4)

However, because of the complexity of the space (y) a closed-form solution for Equation (4)
is not available in most cases (Gavryushkin, Whidden, & Matsen, 2016), making inference, or in
particular, direct MLE computations difficult or impossible.

A typical method for likelihood maximization under incomplete data is the application of the
EM algorithm (Dempster, Laird, & Rubin, 1977), considering the information about the extinct
species as a missing data problem. In the EM algorithm, a sequence {𝜃(s)} of parameter values are
generated by iterating the following two steps:

E-step Compute the conditional expectation Q(𝜃|𝜃(s)) = E𝜃(s) (𝓁X (𝜃)|Y = y).
M-step Choose 𝜃(s+1) to be the value of 𝜃 ∈ Ω which maximizes Q(𝜃|𝜃(s)).

This algorithm is run iteratively until convergence is reached. Under certain regularity con-
ditions (Dempster et al., 1977), the point of convergence can be shown to be the MLE for the
incomplete data problem, that is, maximizing 𝓁y(𝜃).

As in the case of Equation (4), the calculation of Q(𝜃|𝜃∗) does not have a closed-form due
to the complexity of the space (y), so approximations are needed. To perform this task, we use
Monte Carlo integration (Wei & Tanner, 1990), where given a set of sampled trees x1,… , xp from
an importance sampler distribution g(x|y, 𝜃) we approximate Q(𝜃|𝜃∗) by

Q(𝜃|𝜃∗) ≈ 1
p

p∑
i=1

𝓁xi(𝜃)
fX|Y (xi|y, 𝜃∗)
gX|Y (xi|y, 𝜃∗)

∝ 1
p

p∑
i=1

wi𝓁xi (𝜃), (5)

where the importance weights are defined as wi =
fX ,Y (xi,y|𝜃∗)
gX|Y (xi|y,𝜃∗) , using the law of conditional proba-

bilities to obtain the proportional expression.
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In the M-step, we optimize (5) via numerical methods and the Hessian is calculated and repre-
sents the Fisher information matrix H−1. Assuming that the errors given by the EM algorithm are
independent of the Monte Carlo errors, the standard errors for the MCEM algorithm are defined
as

SE(�̂�i) =
√

−H−1
i,i + VMCE

NEM
, (6)

where −H−1
i,i corresponds to the diagonal components of the information matrix giving the EM

error, VMCE is the variance of the MC error, and NEM is the number of MCEM iterations con-
sidered for estimation. Note that if the EM is run long enough, the second term in (6) goes to
zero, making the information matrix the decisive value for standard errors on MCEM algorithm
(McLachlan & Krishnan, 2007). With the standard errors we can construct confidence intervals
for the parameters and test hypotheses about the significance of covariates of interest.

3.2 A simple importance sampler

To sample trees we propose a tree augmentation algorithm that samples independently the three
components of the tree: event types, event times, and species allocations. The algorithm is shown
in Figure 2.

3.2.1 Step 1. Generate event times and number of extinctions

The number of extinct species d and 2d missing event times, that is, speciations and extinctions
of these d missing species are sampled uniformly in the following manner:

1. Sample the number of missing species d uniformly from the discrete space {0,… ,Me}, where
Me is a predefined ceiling, such that the probability of more than Me extinctions is extremely
unlikely.

2. Sample 2d branching times uniformly from the continuous space (0,T] and then sort them.

The probability of sampling a set of 2d unobserved event times te = (te
1,… , te

2d) for a tree of
dimension d is

gevent times(d, te) = 1
Me + 1

( 1
T

)2d
(2d)!

Note that this scheme samples the dimension of the tree uniformly, but the size of the space
of trees grows in a factorial way with the dimension of the tree. This means that the sample size
required to obtain a robust Monte Carlo approximation of the integral (4) must be large. This is
a limitation of this importance sampler, and hence it is only reliable when many extinctions are
unlikely.

3.2.2 Step 2. Generate event types

We simulate a binary event chain 𝜏e = (𝜏e
1,… , 𝜏e

2d) assigning either S (speciation) or E (extinc-
tion) to each event time. This chain is subject to the rule that the number of Es up to any point in
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F I G U R E 2 The three
components of our
phylogenetic tree
augmentation algorithm

S S EE

Input: Observed Phylogeny

Step 1: Draw number of events (2d), and then 2d event times

Step 2: Draw event types (Dyck word)

Step 3 : Allocate missing species

b1

b3

b2

b1

b3

b2

b1

b3

b2

S S EE

b1

b3

b2

the chain should be less than or equal to the number of Ss in the chain up to that point. The set
of allowed chains is known in the mathematical literature as the set of Dyck words and several
methods for sampling Dyck words have been developed (Kasa, 2010). Furthermore, given a num-
ber of events 2d, the number of possible Dyck words is known as the Catalan number (Zvonkin,
2014),

Cd =
(

2d
d

)
1

d + 1
.

By uniformly sampling a Dyck word 𝜏e of length 2d, the probability of a specific event sequence
is given by gevents(𝜏e) = 1∕Cd.
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3.2.3 Step 3. Species allocation

Given the missing event times and missing event types we can perform the tree allocations by
sampling a parent species of each missing speciation and by defining which species, that is, the
parent species or the inserted “new species,” becomes extinct at the extinction event. To sam-
ple uniformly we just need to count the number of possible trees in agreement with the event
times te = (te

1,… , te
2d) and event types. This number, n(𝜏e

2d, te
2d), can be calculated by starting with

n(𝜏e
0, te

0) = 1 and applying the following rules when going from root to tips in the phylogenetic
tree:

• For each unobserved speciation event at te
i , that is, 𝜏e

i = S, update n(𝜏e
i , te

i ) in the following way,

n(𝜏e
i = S, te

i ) = n(𝜏e
i−1, te

i−1) ×
(

2No
t−i
+ Ne

t−i

)
,

where No
t− is the number of observed branches just before t and Ne

t− is the number of unob-
served branches just before t. Note that events on observed branches count twice compared
with those on unobserved branches. Intuitively, this accounts for the two eventualities follow-
ing an unobserved speciation on an observed branch: either the first or the second daughter
species is observed (the other one is unobserved), while for a speciation on an unobserved
branch, both daughter species are unobserved. A more formal argument justifying the factor
of two is provided by Laudanno, Haegeman, and Etienne (2019).

• For each unobserved extinction event at te
i , that is, 𝜏e

i = E, update n(𝜏e
i , te

i ) in the following way,

n(𝜏e
i = E, te

i ) = n(𝜏e
i−1, te

i−1) × Ne
t−i
.

As we sample uniformly, the probability for each possible allocation ae of the d missing species
at the missing event times te with Dyck word 𝜏e in the tree of extant species xobs is then given by
gallocation(ae) = 1

n(𝜏e
2d,t

e
2d)

.

3.2.4 Sampling probability of a uniformly augmented tree

The uniform sampling probability of the augmented tree xunobs = (d, te, 𝜏e, ae) is then given by

g(xunobs|xobs, 𝜃) =
1

Me + 1

( 1
T

)2d
(2d)! 1

Cd

1
n(𝜏e

2d, te
2d)

. (7)

From this equation, we can see how the dimension of the tree space plays an important role.
For this reason, the uniform importance sampler becomes less efficient when many extinctions
are likely. On the other hand, the uniform sampling scheme allows for easy implementation and
quick computation, thereby making it suitable as a default sampler.

3.3 Checking performance by comparing with direct ML

To show that the MCEM works, we compared our method to the linear diversity-dependence
(LDD) diversification model for which the likelihood can be calculated directly (Etienne et al.,
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F I G U R E 3 Subclade of the
Malagassy Vangidae, obtained from
Jønsson et al. (2012)

10 8 6 4 2 0

Time (million years ago)

T A B L E 1 MCEM
estimation for three
different samples sizes, with
two replicates each

ESS Replicate �̂�1 SE(�̂�1) �̂�2 SE(�̂�2) �̂�3 SE(�̂�3)

37 1 1.403 0.077 −0.257 0.016 0.032 0.026

37 2 1.359 0.077 −0.249 0.016 0.031 0.026

373 3 1.709 0.098 −0.307 0.020 0.046 0.031

372 4 1.713 0.098 −0.309 0.020 0.046 0.031

2970 5 1.932 0.127 −0.336 0.026 0.056 0.033

2987 6 1.892 0.121 −0.328 0.025 0.056 0.033

MLE 1.937 −0.326 0.060

Note: The first column is the mean of the effective sample size over the 1,000 iterations
considered. The last row is the MLE directly calculated by computing the likelihood
(Etienne et al., 2012). Estimated values are for the linear DD model with 𝜃1 = 𝜆0,
𝜃2 = (𝜇0 − 𝜆0)∕K and 𝜃3 = 𝜇0.

2012). In this model, speciation rates depend on diversity of the phylogenetic tree at that point.
We consider the diversification model with rates

𝜆b(t) = 𝜆0 − (𝜆0 − 𝜇0)
Nt

K
, 𝜇b(t) = 𝜇0

where Nt is the number of extant species (diversity) at time t and 𝜃 = {𝜆0,
𝜇0−𝜆0

K
, 𝜇0} are model

parameters. This model is a special case of our general modeling framework, defined in (2). We
perform the MCEM routine on a clade of Malagassy birds, the so-called Vangidae clade shown in
Figure 3, which has been analyzed in Jønsson et al. (2012). We replicated the routine several times
with different sample sizes to observe the impact of sample size on estimation and the robustness
of the method.

In Table 1 we show six replicates corresponding to three pairs with different sample size
orders. We drop the first 1,000 iterations as burn-in, and use the next 1,000 MCEM iterations for
parameters estimation, reporting the mean value and the standard error from Equation (6). We
observe that for small sample sizes (Replicates 1 and 2), the estimation is poor. For the cheapest
setup, the mean effective sample size (ESS) is approximately 37 and this does not seem enough
to sample in spaces with a substantial number of missing species. In this scenario, the MCEM
estimates are not robust. As sample size increases, we see that inference becomes more and more
accurate and matches the MLE procedure by Etienne et al. (2012).
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MCEM parameter estimation for three different sample sizes

F I G U R E 4 MCEM applied to the tree of Figure 3 under the LDD diversification model. Evolution of the
estimate of the first parameter, the initial speciation rate 𝜃1 = 𝜆0 through EM iterations. We plot six replicates: two
for three different sample sizes. For better visualization we cut higher sample sizes at iteration 2,000 and 2,500

These replicates are also summarized in Figure 4, where we show a visualization of the
dynamical MCEM parameter estimation for log 𝜆0 corresponding to the logarithm of the initial
speciation rate at stem age. The dashed black line indicates the true MLE. We see in all six cases
that estimations go quickly to the true MLE with a stable behavior after a couple of 100 iterations.
To visually compare biases and variation through different sample sizes, we show the replicates
for small sample sizes until the 2,000th and 2,500th MCEM iteration. We clearly see that for higher
sample sizes, bias and variation decrease.

Note that the ESS is between 30% and 40% in these cases. An efficient importance sam-
pler with 100% ESS is a priority for future publications in order to apply the method to larger
phylogenetic trees.

4 DIVERSITY-DEPENDENCE: DIVERSITY OR
PHYLODIVERSITY?

Phylodiversity is defined as the total branch length of extant species of a tree, and it has been
proposed as an alternative to diversity in conservation ecology (Faith, 1992). Figure 5 shows
phylodiversity and diversity through time for a simple example tree.

As an illustration of the flexibility of our method, we now consider a model similar to
diversity-dependence introduced in the previous section, but with dependence on phylodiver-
sity Pt instead of Nt. Diversity-dependence has been detected in a Vangidae clade (Jønsson et al.,
2012) and we would like to extend the analysis to check if phylodiversity-dependence (LPD) is
a more suitable factor in diversification of Vangidae than diversity-dependence (LDD). In addi-
tion to these two models, which both assume linear dependence of speciation rate on diversity or
phylodiversity, we consider the exponential diversity dependence (EDD) and exponential phylo-
genetic diversity (EPD) models. The exponential models use the log-link function common in the
statistical literature, rather than the identity link suggested by the evolutionary biology literature.
Table 2 shows the parameter definitions for the four models tested on the phylogenetic tree of the
Vangidae.
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F I G U R E 5 Example of a simple tree with one extinction. The two panels on the right show the difference
between diversity and phylodiversity through time

T A B L E 2 Four
diversity-dependent
diversification models, where
speciation rate depends on
diversity or phylodiversity,
either linearly or exponentially

Model 𝝀b(t) 𝜽1 𝜽2 𝜽3

LDD 𝜆0 − (𝜆0 − 𝜇0)
Nt
K

𝜆0 − (𝜆0 − 𝜇0) 1
K

𝜇0

LPD 𝜆0 − (𝜆0 − 𝜇0)
Pt
K

𝜆0 − (𝜆0 − 𝜇0) 1
K

𝜇0

EDD 𝜆0e−aNt ln(𝜆0) −a 𝜇0

EPD 𝜆0e−aPt ln(𝜆0) −a 𝜇0

Note: All models assume constant extinction rate and have three parameters to be
estimated.
Abbreviations: EPD, exponential phylogenetic diversity; LDD, linear
diversity-dependence; LPD, linear phylodiversity-dependence.

We performed the MCEM routine for each of the four diversification models, obtaining the
ML estimates of the parameters and calculating Monte Carlo estimation for the likelihood func-
tion and the corresponding AIC values (Wit, Heuvel, & Romeijn, 2012). Interestingly, we found
that phylodiversity models do not performs better than ordinary diversity models, but there is an
improvement of the exponential diversity-dependence model over the linear DD model. Table 3
shows the inference results for each of the four diversification models.

To get an idea of the computational cost of the method we include, next to Table 3, a plot of
computing times (for one MCEM iteration) as a function of Monte Carlo sample size for PD and
DD models starting at their respective MLE values reported in the table. The values are average of
100 replicates performed in an ordinary computer. From the plot we can see that for our example
tree, each iteration takes a couple of minutes for large Monte Carlo sample size, which means that
the whole routine should take few hours at most. We also see that the computing times increases
linearly with the MC sample size.

We conclude that the best model in this analysis is an EDD model with parameters 𝜃1 =
2.58(0.96), 𝜃2 = −1.02(0.25), 𝜃3 = 0.04(0.03), suggesting an exponential decreasing speciation rate
with an exponential decay constant close to 1, given by 𝜃2. We found an initial speciation rate of
approximately 4.85 species per million years which decreases until 0.03 at the present time. This
indeed suggests that the diversification process of this Vangidae clade in Madagascar has slowed
down dramatically over the past 10 million years. Moreover, the extinction rate of 0.04 species per
million years suggests that the clade has now reached a stable diversification behavior, whereby
any further speciations will tend to be offset by extinctions.
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T A B L E 3 Parameter estimation of the four diversity-dependent models of Table 2 when applied to the
Vanga tree of Figure 3, including Monte Carlo approximations of the loglikelihood and AIC
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5 DISCUSSION

We have presented a flexible method for testing a broad variety of diversification models in phy-
logenetic analysis and provided some simple examples. This is a first step toward a robust general
methodology to identify potential factors in diversification processes from phylogenetic trees.

The unobserved extinct species turn the inference problem naturally into a problem that can
be approached by means of an EM algorithm. Given the complexity of the E-step, a Monte Carlo
importance sampler has been proposed, involving a uniform importance sampler. Given the com-
putational simplicity both in terms of sampling and calculation of uniform samplers, this may be
a convenient option for small sized trees, where more sophisticated importance samplers, involv-
ing the underlying nonhomogenous Poisson processes, would not necessarily improve efficiency.
As in the case of Vangidae clade where a few missing species are likely, we found that the uni-
form importance sampler leads to accurate estimation. However, the performance of our uniform
importance sampler deteriorates as the dimension of the phylogenetic tree increases. In order
to apply this method on high-dimensional trees, a more efficient importance sampler should be
carefully chosen. This we will leave for future work.

Current approaches perform inference by means of likelihood maximization, which requires
that formulas for the likelihood must be derived on a case-by-case basis. Here, we consider a
general class of models that include an augmentation step inside an EM algorithm, thereby avoid-
ing direct likelihood calculation and thus allowing inference for a wide variety of diversification
models.

In principle, in cases when full information of covariates is still missing after the augmentation
step, extensions of the augmentation procedure are possible. However, this is beyond the scope
of the current article.

Moreover, to increase efficiency alternatives to MCEM algorithms may be considered, such as
the stochastic approximation version of the EM algorithm (SAEM; Delyon, Lavielle, & Moulines,
1999) or a Bayesian approach (Richardson & Green, 1997). In both cases, the algorithm could
make use of the previous MC samples, thereby improving efficiency at some computational cost.

Even though in this article we only refer to the context of a diversification process of ecological
species, a phylogenetic tree is used in many other fields to describe other kinds of processes, such
as language evolution (Greenhill, Atkinson, Meade, & Gray, 2010) and cultural diversification
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(Mace & Holden, 2005). Therefore, the method that we have developed in this article is potentially
useful for inferring the underlying driving process of such branching processes.

ACKNOWLEDGEMENTS
This work is part of the research program Mathematics for Planet Earth with project number
657.014.005, which is financed by the Dutch Research Council (NWO). F.R. and E.W. would also
like to acknowledge the contribution of the COST Action CA15109.

ORCID
Francisco Richter https://orcid.org/0000-0002-0924-4613
Ernst C. Wit https://orcid.org/0000-0002-3671-9610

REFERENCES
Barraclough, T. G. (2015). How do species interactions affect evolutionary dynamics across whole communities?

Annual Review of Ecology, Evolution, and Systematics, 46, 25–48.
Castillo, J. P., Verdú, M., & Valiente-Banuet, A. (2010). Neighborhood phylodiversity affects plant performance.

Ecology, 91, 3656–3663.
Cornell, H. V. (2013). Is regional species diversity bounded or unbounded? Biological Reviews, 88, 140–165.
Daley, D. J., & Vere-Jones, D. (2007). An introduction to the theory of point processes: Volume II: General theory and

structure. Berlin, Germany: Springer Science & Business Media.
Delyon, B., Lavielle, M., & Moulines, E. (1999). Convergence of a stochastic approximation version of the em

algorithm. The Annals of Statistics, 27, 94–128.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society: Series B Methodological, 39(1), 1–38.
Dobson, A. J., & Barnett, A. (2008). An introduction to generalized linear models. Boca Raton, FL: CRC Press.
Etienne, R. S., Haegeman, B., Stadler, T., Aze, T., Pearson, P. N., Purvis, A., & Phillimore, A. B. (2012).

Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of
the Royal Society B: Biological Sciences, 279(1732), 1300–1309.

Ezard, T. H., Aze, T., Pearson, P. N., & Purvis, A. (2011). Interplay between changing climate and species ecology
drives macroevolutionary dynamics. Science, 332, 349–351.

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.
FitzJohn, R. G., Maddison, W. P., & Otto, S. P. (2009). Estimating trait-dependent speciation and extinction rates

from incompletely resolved phylogenies. Systematic Biology, 58, 595–611.
Freckleton, R. P., Phillimore, A. B., & Pagel, M. (2008). Relating traits to diversification: A simple test. The American

Naturalist, 172, 102–115.
Gavryushkin, A., & Drummond, A. J. (2016). The space of ultrametric phylogenetic trees. Journal of Theoretical

Biology, 403, 197–208.
Gavryushkin, A., Whidden, C., & Matsen, F. (2016). The combinatorics of discrete time-trees: Theory and open

problems. bioRxiv, 063362.
Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. Journal of Computational Physics, 22, 403–434.
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry,

81, 2340–2361.
Goldberg, E. E., Lancaster, L. T., & Ree, R. H. (2011). Phylogenetic inference of reciprocal effects between

geographic range evolution and diversification. Syst Biol, 60, 451–465.
Greenhill, S. J., Atkinson, Q. D., Meade, A., & Gray, R. D. (2010). The shape and tempo of language evolution.

Proceedings of the Royal Society B: Biological Sciences, 277, 2443–2450.
Hoehna, S., Freyman, W. A., Nolen, Z., Huelsenbeck, J., May, M. R., & Moore, B. R. (2019). A Bayesian approach

for estimating branch-specific speciation and extinction rates. bioRxiv, 555805.
Höhna, S., Stadler, T., Ronquist, F., & Britton, T. (2011). Inferring speciation and extinction rates under different

sampling schemes. Molecular Biology and Evolution, 28, 2577–2589.

https://orcid.org/0000-0002-0924-4613
https://orcid.org/0000-0002-0924-4613
https://orcid.org/0000-0002-3671-9610
https://orcid.org/0000-0002-3671-9610


14 RICHTER et al.

Jønsson, K. A., Fabre, P.-H., Fritz, S. A., Etienne, R. S., Ricklefs, R. E., Jørgensen, T. B., … Irestedt, M. (2012).
Ecological and evolutionary determinants for the adaptive radiation of the madagascan vangas. Proceedings of
the National Academy of Sciences, 109, 6620–6625.

Kasa, Z. (2010) Generating and ranking of Dyck words. arXiv preprint arXiv:1002.2625.
Laudanno, G., Haegeman, B., & Etienne, R. S. (2019). Additional analytical support for a new method to compute

the likelihood of diversification models. bioRxiv, 693176.
Lemey, P., Salemi, M., & Vandamme, A.-M. (2009). The phylogenetic handbook: A practical approach to phylogenetic

analysis and hypothesis testing. Cambridge, MA: Cambridge University Press.
Lewitus, E., & Morlon, H. (2017). Detecting environment-dependent diversification from phylogenies: A simula-

tion study and some empirical illustrations. Systematic Biology, 67, 576–593.
Lynch, V. J. (2009). Live-birth in vipers (viperidae) is a key innovation and adaptation to global cooling during the

cenozoic. Evolution: International Journal of Organic Evolution, 63, 2457–2465.
Mace, R., & Holden, C. J. (2005). A phylogenetic approach to cultural evolution. Trends in Ecology & Evolution, 20,

116–121.
McLachlan, G., & Krishnan, T. (2007). The EM algorithm and extensions (Vol. 382). New York, NY: John Wiley &

Sons.
Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., … Sax, D. F. (2007).

Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecology Letters, 10,
315–331.

Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecology Letters, 17, 508–525.
Nee, S., May, R. M., & Harvey, P. H. (1994). The reconstructed evolutionary process. Philosophical Transactions of

the Royal Society of London B: Biological Sciences, 344, 305–311.
Paradis, E. (2005). Statistical analysis of diversification with species traits. Evolution, 59, 1–12.
Rabosky, D. L., & Lovette, I. J. (2008). Explosive evolutionary radiations: Decreasing speciation or increasing

extinction through time? Evolution, 62, 1866–1875.
Ragan, M. A. (2009). Trees and networks before and after Darwin. Biology Direct, 4, 43.
Reynolds, J. F. (1973). On estimating the parameters of a birth-death process. Australian Journal of Statistics, 15,

35–43.
Richardson, S., & Green, P. J. (1997). On bayesian analysis of mixtures with an unknown number of components

(with discussion). Journal of the Royal Statistical Society: Series B Statistical Methodology, 59, 731–792.
Ricklefs, R. E. (2007). Estimating diversification rates from phylogenetic information. Trends in Ecology & Evolu-

tion, 22, 601–610.
Serfozo, R. F. (1990). Point processes. Handbooks in Operations Research and Management Science, 2, 1–93.
Stadler, T. (2011). Inferring speciation and extinction processes from extant species data. Proceedings of the National

Academy of Sciences, 108, 16145–16146.
Tijms, H. C. (1994). Stochastic models: An algorithmic approach (Vol. 994). Chichester, England: John Wiley & Sons.
Wei, G. C., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data

augmentation algorithms. Journal of the American Statistical Association, 85, 699–704.
Wit, E., Heuvel, E. V. D., & Romeijn, J.-W. (2012). All models are wrong: An introduction to model uncertainty.

Statistica Neerlandica, 66, 217–236.
Wrenn, F. (2012). General birth-death processes: Probabilities, inference, and applications (Doctoral dissertation).

UCLA.
Zvonkin, A. K. (2014). Enumeration of weighted plane trees. arXiv preprint arXiv:1404.4836.

How to cite this article: Richter F, Haegeman B, Etienne RS, Wit EC. Introducing a
general class of species diversification models for phylogenetic trees. Statistica
Neerlandica. 2020;1–14. https://doi.org/10.1111/stan.12205

https://doi.org/10.1111/stan.12205

