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Week #10: Stochastic Diffusion Processes
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Overview

Stochastic diffusion processes represent a fundamental class of continuous-time stochastic models that
describe the random movement of particles, information, prices, or other entities through time and space.
Building upon our previous discussions of counting processes and Poisson processes, this week we explore
the mathematical foundations and applications of diffusion processes. While counting processes track
discrete events occurring at random times, diffusion processes model continuous, often erratic movements
governed by stochastic differential equations.

The study of diffusion processes traces back to the pioneering work of Albert Einstein and Marian
Smoluchowski in 1905, who provided a theoretical explanation for Brownian motion—the random move-
ment of particles suspended in a fluid. Since then, the mathematical framework has evolved significantly,
finding applications across diverse fields including physics, finance, biology, social sciences, and engineering.
Modern approaches to diffusion processes incorporate sophisticated tools from stochastic calculus, partic-
ularly Itd calculus, which provides the mathematical machinery to handle the continuous but nowhere
differentiable paths characteristic of these processes.

In this lecture, we will explore the theoretical foundations of diffusion processes, beginning with
Brownian motion as the canonical example, and then extending to more general stochastic differential
equations. We will examine the Fokker-Planck equation, which connects the microscopic stochastic
description with macroscopic probability distributions. Finally, we will survey recent developments and
applications across various domains, highlighting how these mathematical tools continue to advance our
understanding of complex systems characterized by randomness and uncertainty.

1 Brownian Motion: The Foundation of Diffusion Processes

Definition. Brownian Motion

A stochastic process {W; : t > 0} is called a standard Brownian motion (or Wiener process) if:
(i) Wo = 0 almost surely

(ii) The process has independent increments: for any 0 < s < t < u < v, the random variables W; — W
and W, — W,, are independent

(iii) For any 0 < s < t, the increment W; — W follows a normal distribution with mean 0 and variance
t—s: Wy —Ws ~N(0,t—s)

(iv) The sample paths ¢ — W are almost surely continuous
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Intuition: What is Brownian motion?

Mathematically, Brownian motion represents the limit of a random walk as we take smaller and
smaller steps. Picture a drunk person taking random steps left or right every second. If we make
the steps smaller and more frequent (every millisecond, microsecond, etc.), eventually we get a
continuous but extremely jagged path—this is Brownian motion.

The key insight: despite being completely random at each instant, Brownian motion follows
statistical patterns. The expected displacement is zero (no preferred direction), but the variance of
displacement grows linearly with time—this is why particles diffuse outward from their starting
point at a predictable rate.

\. J

Brownian motion serves as the building block for more complex diffusion processes. Its mathematical
properties make it both theoretically elegant and practically useful. The process was first rigorously
constructed by Norbert Wiener in the 1920s, earning it the alternative name "Wiener process" in
mathematical literature.

1.1 Key Properties of Brownian Motion

1.1.1 Martingale Property

Brownian motion is a martingale, meaning that the expected future value given the current state is equal
to the current value:
E[W|Fs] =W, forall0<s<t

where F; represents all information available up to time s.

Intuition: Martingale property

The martingale property means Brownian motion has no "drift" or bias in any direction. If you’re
currently at position Wy = 5, your best prediction for your future position W; is still 5, regardless of
how you got there. This is like a fair game where your expected future wealth equals your current
wealth—no systematic advantage or disadvantage.

1.1.2 Scaling Property

For any constant ¢ > 0, the scaled process {c_l/ W : t > 0} is also a standard Brownian motion. This
self-similarity across time scales is a distinctive feature of Brownian motion.

Example 1.1 (Scaling property in action). Consider a Brownian motion Wy observed over 1 second, with
typical fluctuations of magnitude 1. If we observe the same process over 4 seconds (i.e., Wy ), the typical
fluctuations will be of magnitude 2 (i.e., /4 = 2 times larger).
This is why if we rescale by dividing by \/c, we get back a standard Brownian motion. For instance,
% has the same statistical properties as Wy.
This scaling property is crucial in applications like option pricing, where we need to understand how

volatility scales with time.

1.1.3 Quadratic Variation

The quadratic variation of Brownian motion over an interval [0,¢] is equal to ¢:
n—1

lim Wti - Wti 2= t
i g( - )
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where IT = {0 =tg < t; < --- < t, = t} is a partition of [0,¢] and |II| denotes the mesh size of the
partition.

Intuition: Quadratic variation

While the total variation (sum of absolute changes) of Brownian motion is infinite over any interval,
the quadratic variation (sum of squared changes) converges to the length of the time interval. This
seemingly technical property is fundamental to It6 calculus.

Think of it this way: if you square the changes in Brownian motion and add them up, you get
approximately the time elapsed, regardless of the specific path taken. This is why in stochastic
calculus, (dW;)? = dt, which has no analog in ordinary calculus.

1.1.4 Non-differentiability

Despite being continuous, Brownian motion is almost surely nowhere differentiable. This property reflects
the highly irregular nature of its paths and necessitates the development of special mathematical tools,
such as It6 calculus, to handle stochastic differential equations driven by Brownian motion.

Example 1.2 (Visualizing non-differentiability). If you zoom in on any portion of a Brownian motion
path, it looks just as jagged as the original path. Unlike smooth curves where zooming in eventually reveals
a straight line (which is differentiable), Brownian motion maintains its roughness at all scales.

This is why we can’t define the "velocity” of a Brownian particle at any instant—the derivative doesn’t
exist. Instead, we must work with the increments dWy, which represent the infinitesimal changes in the
process.

Practice Problems
1. Let W} be a standard Brownian motion. Calculate E[W5] and Var(Ws).

2. Using the properties of Brownian motion, determine whether the process X; = tW,; for t > 0
is a Brownian motion.

Solution:

For problem 1: Since W = 0 and Brownian motion has independent increments with W; — Wy ~
N(0,t — s), we have W5 ~ N(0,5). Therefore, E[W5] = 0 and Var(W;) = 5.

For problem 2: We need to check the four properties of Brownian motion. Clearly Xo =0 W is
undefined, so X; is not a Brownian motion. Additionally, using the scaling property, X; = tW;,, =

t-\/1/t- Wy = V- W1, which does not have independent increments.

2 Stochastic Differential Equations

Stochastic differential equations (SDEs) provide a framework for modeling systems where randomness
plays a crucial role in the dynamics. They extend ordinary differential equations by incorporating a
stochastic term, typically driven by Brownian motion.
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2.1 General Form of SDEs
The general form of a one-dimensional SDE is:
dX: = p( X, t) dt + o( Xy, t) dW;
where:
e X, is the stochastic process being modeled
o u(Xy,t) is the drift coefficient, representing the deterministic component
o 0(Xy,t) is the diffusion coefficient, scaling the random component
e W, is a standard Brownian motion

Intuition: Understanding SDEs

An SDE describes how a variable changes over time when affected by both deterministic and random
factors:

e The pu(Xy,t)dt term represents the predictable part—how the variable would change in a
small time interval dt if there were no randomness.

o The o(Xy,t) dW; term represents the unpredictable part—random fluctuations whose magni-
tude is controlled by o.

Think of a boat on a river: the drift term p is like the current pushing the boat in a predictable
direction, while the diffusion term o is like random waves rocking the boat unpredictably. The
larger o is relative to p, the more the random fluctuations dominate the boat’s movement.

This equation is typically interpreted in the integral form:
t t
X: =X +/ pu(Xs, s) ds+/ o(Xs,s) dWs
0 0

where the first integral is a standard Riemann integral, and the second is an It stochastic integral.

Example 2.1 (Step-by-step derivation of an SDE). Let’s derive an SDE for a simple stock price model.
Assume that:

o The expected return rate is a constant p (e.g., 5% per year)
o The volatility is a constant o (e.g., 20% per year)

e Price changes are proportional to the current price

For a small time interval At:

AS = Ezxpected change + Random fluctuation
= puSAt + o SAW

As At — 0, this becomes the SDE:
dSt == MSt dt + O'St th

This is the famous Geometric Brownian Motion model used in the Black-Scholes option pricing formula.
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2.2 Itd’s Lemma

It6’s lemma is the stochastic calculus counterpart of the chain rule in ordinary calculus. For a twice
continuously differentiable function f(z,¢) and a process X; satisfying the SDE above, It&’s lemma states:

2
df (X¢,t) = (%Jr ?—Fl Qfo

Intuition: Why It6’s Lemma has an extra term

In ordinary calculus, if y = f(z), then dy = f’(x)dz. But in stochastic calculus, we get an extra
term: df = f'(X;)d X + 5 f"(X¢)(dXe)?.

Why? Because (dW;)? = dt (from the quadratic variation property), not zero as in ordinary calculus.
When we expand (dX;)? = (udt + 0dW;)?, the (dW;)? term contributes a non-negligible o2dt term.
This extra "second derivative" term is crucial—without it, option pricing formulas would be wrong,
and many physical models would fail to match reality.

) dt+ O'gdet

This formula is essential for solving SDEs and deriving important results in financial mathematics,
such as the Black-Scholes equation.

Example 2.2 (Applying It6’s Lemma). Let’s use Ito’s Lemma to solve the Geometric Brownian Motion
SDE:
dSt = MSt dt + O'St th

We want to find an expression for Sy in terms of Sy. Let’s try f(S¢) = In(Sy). Then:

af 1
s~ 8
’?f 1
952~ s?

By It6’s Lemma:

1
d(In S;) = Stdt+a Sy dWy + = 02St( )dt

S Sy S?

= pdt + odWy — §U2dt
1
_ (,L _ §a2> dt + odW,
Integrating from 0 to t:
Ly
IHSt—lIlSOZ ,LL—EO' t+0’Wt
1
InS; =1In Sy + (,u — 502> t+ oW,

Taking exponentials:
1
Sy = Spexp ((,u — §a2> t+ aWt>

This is the explicit solution to the GBM equation.
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2.3 Common Stochastic Differential Equations
2.3.1 Geometric Brownian Motion
Geometric Brownian motion (GBM) is widely used in financial mathematics to model stock prices:

dSt == [LSt dt + O'St th

where p represents the expected return rate and o the volatility. The solution to this SDE is:

52
Sy = Spexp Y t+oW;

Intuition: Why GBM for stock prices?

GBM is popular for modeling stock prices for three key reasons:
o It ensures prices remain positive (since exp(z) > 0 for any x)
e Returns are normally distributed, matching empirical observations reasonably well
e The model is simple enough to allow closed-form solutions for many derivatives

The § adjustment in the drift term isn’t arbitrary—it ensures that the expected return is truly
. Without this adjustment, the expected return would be higher due to the convexity of the
exponential function (Jensen’s inequality).

2.3.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process models mean-reverting behavior:
dXt = Q(M — Xt) dt + O'th

where 6 > 0 is the rate of mean reversion, p is the long-term mean, and ¢ is the volatility parameter. This
process is widely used in modeling interest rates, commodity prices, and other phenomena that tend to
revert to a long-term average.

Example 2.3 (Ornstein-Uhlenbeck in action). Consider an Ornstein-Uhlenbeck process with 8 = 0.5,
w =100, and o = 10. If the current value is Xo = 80:

o The drift term 0(u — X;) = 0.5 x (100 — 80) = 10 s positive, pushing the process upward toward the
mean.

o If instead Xy = 120, the drift would be 0.5 x (100 — 120) = —10, pushing the process downward
toward the mean.

o The strength of the "pull” toward p is proportional to the distance from L.

o The parameter 8 = 0.5 means that, absent randomness, the process closes about 50% of the gap to
the mean each unit of time.

This makes the Ornstein-Uhlenbeck process ideal for modeling variables like interest rates that tend to
revert to historical averages.
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2.3.3 Cox-Ingersoll-Ross Process
The Cox-Ingersoll-Ross (CIR) process is commonly used to model interest rates:
dXt = H(@ — Xt) dt + [2AV Xt th

The square root in the diffusion term ensures that the process remains positive, making it suitable for
modeling quantities that cannot be negative, such as interest rates or volatility.

Intuition: State-dependent volatility in CIR

The key insight of the CIR model is that volatility should depend on the level of the variable. When
interest rates (or volatility) are low, the absolute size of fluctuations should also be low.

The +/X; term in the diffusion coefficient accomplishes this: when X; is small, the random
fluctuations are also small. This prevents the process from becoming negative, which would be
economically meaningless for interest rates.

Additionally, this specification ensures that as X; approaches zero, the drift term (6 — X;) becomes
strongly positive, pushing the process away from zero.

Practice Problems

1. For a Geometric Brownian Motion with ¢ = 0.1 and ¢ = 0.3, calculate the expected value and
variance of .S; given Sy = 100.

2. Consider an Ornstein-Uhlenbeck process with § = 0.2, 4 =0, and o = 1. If Xy = 5, what is the
expected value of X; at t = 107

3. For the CIR process, explain why the condition 2k > o2 is important for ensuring the process
remains positive.

Solution:

For problem 1: For GBM, we know that S; = Spexp ((,u — %2) t+ O'Wt). Since Wi ~ N(0,1), we

have:
E[S:] = SoE [GXP ((M - %2> t+ UWt>‘|
()

2
= Spexp ((u— % t

= Sp exp(ut)
So E[S] = 100 exp(0.1t). For the variance:
Var(S;) = Sz exp(2ut) (exp(aQt) - 1)

With the given values: Var(S;) = 1002 exp(0.2t) (exp(0.09t) — 1).
For problem 2: For the Ornstein-Uhlenbeck process, the expected value is:

E[X¢|Xo] = p + (Xo — we™ ¥
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With =0, Xg =5, 60 =0.2, and t = 10:
E[X10] = 0+ 5e7%2%10 = 5672 ~ 5 x 0.135 ~ 0.677

For problem 3: In the CIR process, when X; approaches zero, the drift term becomes approximately
k0 (positive) while the diffusion term approaches zero. However, if X, is very close to zero, random
fluctuations could still potentially push it negative. The condition 2xk6 > o2 ensures that the upward
drift is strong enough compared to the potential downward random fluctuations, mathematically
guaranteeing that the process remains positive.

3 The Fokker-Planck Equation

The Fokker-Planck equation (also known as the Kolmogorov forward equation) describes the time evolution
of the probability density function of a stochastic process governed by an SDE.

3.1 Derivation and Interpretation

For a process X; satisfying the SDE dX; = (X3, t) dt + o(X,t) dWs, let p(z,t) denote the probability
density function of X;. The Fokker-Planck equation is:

2
ol (e, 0] + 5 510w Opla 1)

72
Intuition: The Fokker-Planck equation

The Fokker-Planck equation describes how the probability distribution of a stochastic process
evolves over time. It connects the microscopic description (the SDE) with the macroscopic behavior
(the probability distribution).

The equation has two main terms:

o The first term (—a%[,up]) represents the deterministic drift, which shifts the probability mass
in the direction of the drift.

e The second term (%8%2;[021)]) represents diffusion, which spreads out the probability mass due
to random fluctuations.

Think of it like pouring dye into a flowing river: the current (drift) moves the center of the dye
cloud, while diffusion causes the cloud to spread out over time.

Example 3.1 (Deriving the Fokker-Planck equation). Let’s derive the Fokker-Planck equation for a
simple case with constant coefficients: dX; = udt + odWy.
Consider the expected change in any smooth test function f(x) over a small time interval:

1
ELf (Xerar) = FOX0) X0 = 2] = B[ (@) (Xepor = X0) + 5 "(@) (Xupor = Xo + .1, = a]
= F@)pdt + % F(2)0%6t + o(6t)
Now, using the definition of the generator L of the process:

L) = uf (@) + 50° 1" (@)
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The adjoint of this operator acting on the probability density gives us the Fokker-Planck equation:

op . 0 18,
gt = Lp=—5 lurl+ 555 07D)

This is the Fokker-Planck equation for constant drift and diffusion coefficients.

3.2 Stationary Distributions

For time-homogeneous processes (where p and o do not explicitly depend on time), a stationary distribution
may exist, representing the long-term equilibrium distribution of the process. The stationary distribution

ps(x) satisfies:

2
_%[M(m)ps(ﬂv)] + %%[02(3:);95(:1:)]

Example 3.2 (Finding the stationary distribution). Let’s find the stationary distribution for the Ornstein-
Uhlenbeck process:

0=

dXt = 9(# - Xt) dt + O'th
The stationary distribution satisfies:

d 1 d?

0= ——[0(u — 2)ps(2)] + 5@[022%(93)]
0.2 d2

=—0(pn— x)%ps(fﬂ) + st(x) + ?@ps(‘f)

For a stationary Gaussian distribution with mean p and variance g—;:
0 0(z — p)°
x) =1\ —=exp| —————
ps(2) o2 p( o2
We can verify this is the solution by substituting back into the equation.

For the Ornstein-Uhlenbeck process, the stationary distribution is Gaussian:

0(z — u)2>

o2

ps(x) = i2 exp (—

o

For the CIR process, the stationary distribution is a gamma distribution:

_ c” a—1_—cx
ps(x) = F(a)$ e

where o« = 20%9 and ¢ = i—';

Practice Problems

1. For a process with p(z) = —z and o(z) = 1, write down the Fokker-Planck equation and find
its stationary distribution.

2. Show that for a process with u(z) = —U’(x) and o(x) = /2, the stationary distribution is

proportional to e~ U(®),

3. For the CIR process, verify that the gamma distribution given above is indeed the stationary
distribution by substituting it into the stationary Fokker-Planck equation.
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Solution:

For problem 1: The Fokker-Planck equation is:

dp 0 10%p
ot~ oaP T 352
For the stationary distribution, we set % =0:
0 10%p,
0=— -
Ox [ops] + 2 Ox?
0%ps 0
— 9
Ox? Oz [=ps]
This is satisfied by a Gaussian distribution:
() = = exp(~a?)
x) = —exp(—z
pS ﬁ p

For problem 2: The Fokker-Planck equation for the stationary distribution is:

d?ps
Ox?

0= S [0 (@] +

Let’s try ps(z) o< e=V(®), Then:

%ps _ _U/(x)e—U(z)

T

2

Th — U (@) 4 (U(@) e U)

Substituting:

0="U'(z)e V@ + ;[U’(aj)eU(z)]
X
_ U/(x)e—U(w) + U//(:E)e—U(a:) _ (U/(x))Qe—U(a:)

= e VO (@) + U"(z) — (U'(2))?]
For problem 3: For the CIR process, the stationary Fokker-Planck equation is:

2
0=~ 5(6 —~ 2ps(a)] + 5 - o%aps(a)]

Substituting the gamma distribution and verifying it satisfies this equation is left as an exercise.
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4 Recent Advances in Diffusion Processes

4.1 Fractional Brownian Motion and Long-Range Dependence

Standard Brownian motion assumes independent increments, but many real-world phenomena exhibit
long-range dependence. Fractional Brownian motion (fBm) generalizes Brownian motion by introducing a
parameter H € (0,1), called the Hurst exponent:

E[(Bf - BI)*) = |t — s

Intuition: Fractional Brownian motion

Fractional Brownian motion captures a crucial feature missing in standard Brownian motion:
memory. Depending on the Hurst parameter H:

o When H = 1/2: We get standard Brownian motion with independent increments.

o When H > 1/2: The process exhibits "persistence'—if it was increasing in the past, it’s more
likely to continue increasing. This creates smoother, more trending paths.

o When H < 1/2: The process exhibits "anti-persistence"—if it was increasing, it’s more likely
to decrease next. This creates rougher, more mean-reverting paths.

This flexibility makes fBm valuable for modeling phenomena from network traffic (often H > 1/2)
to volatility in financial markets (often H < 1/2).

\ J

When H = 1/2, {Bm reduces to standard Brownian motion. For H > 1/2, the process exhibits positive
autocorrelation (persistence), while for H < 1/2, it shows negative autocorrelation (anti-persistence).
Fractional Brownian motion has found applications in modeling financial time series, network traffic, and
various natural phenomena.

Example 4.1 (Estimating the Hurst exponent). To estimate the Hurst exponent from data, we can use
the fact that for fBm:
E[|B/T = B "] oc [t — s
Taking logarithms:
log(E[| B — BE|?]) ~ constant + 2H log(|t — s|)

So by plotting the log of mean squared increments against the log of time differences, we can estimate
H from the slope of the regression line.

For example, analyzing high-frequency financial data often yields H ~ 0.1 for volatility, indicating
strong mean-reversion in volatility processes.

4.2 Jump Diffusion Models

Pure diffusion processes have continuous sample paths, but many real-world processes exhibit sudden
jumps. Jump diffusion models incorporate both continuous diffusion and discrete jumps:

dXt = ,u(Xt, t) dt + O'(Xt, t) th + th

where J; is a jump process, typically a compound Poisson process. These models are particularly relevant
in finance for capturing market crashes, in seismology for modeling earthquakes, and in neuroscience for
describing neuronal firing patterns.
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Intuition: Why we need jumps

Continuous diffusion models assume that changes happen smoothly, but reality often includes
sudden, discontinuous changes:

In finance: Stock prices can jump on unexpected news (earnings surprises, geopolitical events)

In insurance: Catastrophic events cause sudden large claims

In physics: Quantum transitions occur instantaneously

In biology: Neurons fire in discrete spikes

Jump diffusion models combine the continuous small fluctuations of diffusion with occasional large
jumps, providing a more realistic model for many phenomena.

Example 4.2 (Merton’s jump-diffusion model). In Merton’s jump-diffusion model for stock prices, the
SDE is:
dSy
¢
where Ny is a Poisson process with intensity X\, and Y is a random variable representing the jump size
(typically log-normal).

=pdt +odWy+ (Y —1)dN;

If a jump occurs (with probability Adt in a small interval), the price jumps from Sy to Y'Sy. The term
(Y — 1) represents the proportional change in price.

This model captures both the continuous day-to-day fluctuations and occasional large moves due to
significant news events.

4.3 Rough Volatility Models

Recent empirical studies in finance have suggested that volatility is rougher than previously thought, with
a Hurst exponent H = 0.1 rather than the H = 1/2 implied by classical models. Rough volatility models
use fractional processes with H < 1/2 to capture this roughness:

dSt = ,uSt dt + UtSt th
doy = k(0 — o¢) dt + vo; dBE

where B is a fractional Brownian motion with Hurst exponent H < 1/2.

Intuition: Rough volatility

Traditional stochastic volatility models assume volatility changes relatively smoothly (H = 1/2).
However, empirical evidence suggests volatility is actually much rougher (H ~ 0.1).
This roughness explains several key features of options markets:

e The steep at-the-money skew in short-dated options
e The term structure of volatility
e The behavior of volatility of volatility

Rough volatility models provide a more parsimonious explanation of these features than traditional
models, which often require many more parameters to fit market data.
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Practice Problems

1. For fractional Brownian motion with Hurst exponent H, calculate the correlation between
increments Bﬁrl — B and Bf — B,.

2. In Merton’s jump-diffusion model, if jumps follow a log-normal distribution with parameters .y
and oy, derive the expected return of the stock.

3. Explain how rough volatility models can better capture the term structure of implied volatility
compared to traditional stochastic volatility models.

Solution:

For problem 1: For fractional Brownian motion, the covariance between increments is:

1
Cov(Bff, — B, B = BiL,) = 5(\2|2H — 21 + Jo]*¥)

L oon
= — -2
S22 —2)
The variance of each increment is |1|2 = 1, so the correlation is:
L oon
= - —2
p=5l )

For H = 1/2, p = 0 (independent increments). For H > 1/2, p > 0 (positive correlation). For
H < 1/2, p < 0 (negative correlation).

For problem 2: In Merton’s jump-diffusion model, the expected return must compensate for both
diffusion risk and jump risk:

E [d;t} — udt +E[(Y — 1)dN)]
_ udt + E[Y — 1]Adt
— (1 + ME[Y] — 1))dt

For log-normal jumps with parameters p; and oy, E[Y] = e/’ +03/2 Therefore:

E {dst} =(n+ )\(6“1+03/2 —1))dt
St
For problem 3: Rough volatility models capture the observed fact that volatility exhibits stronger
mean-reversion at shorter time scales. This naturally produces a steeper implied volatility skew for
short-dated options that flattens for longer maturities, matching market observations. Traditional
models with H = 1/2 struggle to simultaneously fit both short-term and long-term implied volatility
surfaces without introducing additional parameters or time-dependent coefficients.




Stochastic Methods — Week 10 14

5 Applications of Diffusion Processes

5.1 Financial Mathematics
5.1.1 Option Pricing

The Black-Scholes model, based on geometric Brownian motion, revolutionized option pricing. The price
of a European call option with strike price K and maturity T is given by:

C(S,t) = SB(dy) — Ke "THd(dy)

where ® is the standard normal cumulative distribution function, and:

b In(S/K) +J(&%/2)(T - t)’ dy = dy — oVT =1

Example 5.1 (Black-Scholes option pricing step-by-step). Let’s price a European call option with:
o Current stock price S = $100
o Strike price K = $105
o Time to maturity T'—t = 0.5 years
o Risk-free rate r = 0.05 (5%)
o Volatility o = 0.2 (20%)
Step 1: Calculate dq and ds:

In(100/105) + (0.05 4+ 0.22/2) x 0.5
0.2 x /0.5
—0.0488 + 0.025 + 0.01

0.2 x 0.7071
—0.0138

0.1414
= —0.0976

dy =

do = d; — 0.2 x v/0.5 = —0.0976 — 0.1414 = —0.239
Step 2: Calculate ®(dy) and ®(d2): ®(—0.0976) ~ 0.4611 &(—0.239) ~ 0.4055
Step 3: Calculate the option price:

C =100 x 0.4611 — 105 x e~ 29x05 5 0.4055
=46.11 — 105 x 0.9753 x 0.4055
=46.11 — 41.54
= $4.57

This is the fair price of the call option according to the Black-Scholes model.

Recent extensions include stochastic volatility models (e.g., Heston model), jump diffusion models
(e.g., Merton model), and rough volatility models.
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Intuition: The genius of Black-Scholes

The key insight of Black-Scholes is that option pricing doesn’t depend on the expected return of the
stock. This seems counterintuitive—how can the price of a derivative not depend on the expected
return of the underlying?

The answer lies in the concept of risk-neutral pricing: by constructing a continuously rebalanced
portfolio of the stock and a risk-free bond, one can perfectly replicate the option payoff. Since this
replication is riskless, it must earn the risk-free rate to avoid arbitrage.

This insight transformed finance by providing a way to price complex derivatives without needing
to estimate expected returns, which are notoriously difficult to estimate accurately.

5.1.2 Interest Rate Modeling

Short-term interest rates are commonly modeled using mean-reverting processes such as the Vasicek model
(Ornstein-Uhlenbeck process) or the CIR model. These models form the basis for pricing interest rate
derivatives and managing interest rate risk.

5.1.3 Portfolio Optimization

Diffusion processes underpin modern portfolio theory, particularly in continuous-time settings. The Merton
portfolio problem, which seeks to maximize expected utility of terminal wealth, leads to explicit solutions
for optimal investment strategies under various market models.

Example 5.2 (Merton’s portfolio problem). Consider an investor who can invest in a risk-free asset with
return v and a risky asset following GBM with expected return p and volatility o. The investor wants to
mazximize the expected utility of terminal wealth E[U(Wr)] where U(W) = Wl/i; (constant relative risk
aversion).

The optimal proportion © to invest in the risky asset is:

*_:U’_r
s 70_2

For example, if p = 0.1, r =0.03, 0 = 0.2, and v = 2:

*

~0.1-003 007

5% 022 ~o0g 08T

So the investor should put 87.5% of their wealth in the risky asset and 12.5% in the risk-free asset.

5.2 Physics and Engineering
5.2.1 Particle Diffusion

The original application of diffusion processes was in modeling the movement of particles in fluids. The
diffusion equation (a special case of the Fokker-Planck equation) describes how the concentration of
particles evolves over time:

Odc
= — pDVv2
5 Ve

where D is the diffusion coefficient.
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Intuition: Diffusion in physics

Diffusion is nature’s way of evening things out. If you put a drop of ink in water, it spreads out
over time, moving from regions of high concentration to low concentration.

The diffusion equation captures this behavior mathematically. The key insight is that the rate of
change of concentration at a point is proportional to the "curvature" of the concentration (V2c).
Where the concentration curve is concave down, concentration decreases; where it’s concave up,
concentration increases.

This simple principle explains countless phenomena, from heat conduction to the spread of pollutants
in the atmosphere.

5.2.2 Signal Processing and Filtering

The Kalman filter, which provides optimal estimates of the state of a linear dynamic system with Gaussian
noise, is based on diffusion processes. Extensions like the extended Kalman filter and particle filters handle
nonlinear systems and non-Gaussian noise.

Example 5.3 (Kalman filter in action). Consider tracking a moving object with noisy position measure-
ments. The state evolves according to:

xp = Frp_ 1 +wp_q

where F' is the state transition matriz and wg_q1 S process noise.
Measurements follow:
2z = Hxp + vy

where H is the measurement matriz and vy is measurement noise.
The Kalman filter recursively updates the state estimate Ty and error covariance Py in two steps:
Predict:
T, = Fip_
P, =FP, 1 FT +Q
Update:
K, =P H'(HP_ H' + R)™!
T =12, + Ky (z, — H:ﬁ;)
P,=(—-KyH)P_

This provides the optimal estimate given the noisy measurements.

5.2.3 Control Theory

Stochastic control theory deals with optimizing systems subject to random disturbances, often modeled as
diffusion processes. Applications include robotics, aerospace systems, and manufacturing processes.

5.3 Biology and Medicine
5.3.1 Population Genetics

The Wright-Fisher diffusion model describes the evolution of gene frequencies in a population under
genetic drift:
X (1 - Xy)

AW,
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where X; represents the frequency of an allele, u(X};) captures selection effects, and N is the effective
population size.

Intuition: Wright-Fisher diffusion

The Wright-Fisher diffusion models how the frequency of a gene variant changes in a population

due to random sampling in reproduction (genetic drift) and natural selection.

The diffusion term % captures a key insight: genetic drift is strongest when the allele

frequency is around 0.5 (maximum diversity) and weakest when the frequency is near 0 or 1 (near
fixation). The factor ﬁ shows that genetic drift is stronger in smaller populations.

This model helps explain why small, isolated populations often show reduced genetic diver-
sity—random drift drives alleles to either fixation (frequency 1) or extinction (frequency 0) more
quickly in small populations.

5.3.2 Neuroscience

The Ornstein-Uhlenbeck process is used in the leaky integrate-and-fire model of neuronal dynamics:
1
avy = —;(Vt' — Viest) dt + o dW;

where V; is the membrane potential, 7 is the membrane time constant, and Vie is the resting potential.

Example 5.4 (Neuronal firing). In the leaky integrate-and-fire model, a neuron’s membrane potential
Vi evolves according to an Ornstein-Uhlenbeck process until it reaches a threshold Vi, at which point the
neuron "fires" and the potential resets to Vyeset-

For a neuron with parameters T = 20 ms, Viest = =70 mV, Vi, = =55 mV, Vieser = =75 mV, and

o=5mV/y/ms:

o Without input current, the membrane potential fluctuates around V,esy due to moise, occasionally
crossing threshold and generating spontaneous spikes.

o With a constant input current I, the effective resting potential shifts to Viest + IT, increasing the
firing rate.

o The mean time to first spike (from reset to threshold) can be calculated using the theory of first
passage times for diffusion processes.

This simple model captures many features of real neuronal behavior while remaining mathematically
tractable.

5.3.3 Reaction-Diffusion Systems

Reaction-diffusion systems combine chemical reactions with diffusion to model pattern formation in
biological systems:

8ui
ot

where u; represents the concentration of the i-th species, D; is its diffusion coefficient, and f; captures the
reaction kinetics. Stochastic versions incorporate randomness in both reaction and diffusion processes.

= D;Vu; + filui,...,un)
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Intuition: Pattern formation

Reaction-diffusion systems explain how complex patterns can emerge from simple chemical interac-
tions. The key insight, first proposed by Alan Turing, is that diffusion—which normally smooths
out differences—can actually create patterns when multiple chemicals interact.

For example, if an activator chemical stimulates its own production but diffuses slowly, while an
inhibitor suppresses the activator but diffuses quickly, stable patterns can form. This mechanism
explains diverse biological patterns:

o Animal coat patterns (spots, stripes)
e Fingerprint formation
e Arrangement of leaves on a stem

o Patterns of ecological habitation

The stochastic version adds randomness to capture the inherent variability in biological systems,
explaining why no two zebras have identical stripes.

5.4 Social Sciences and Network Analysis
5.4.1 Information Diffusion in Social Networks

Recent research has developed stochastic diffusion models for influence maximization in social networks.
These models treat influence probabilities as random variables with unknown distributions, reflecting the
uncertain and time-varying nature of social interactions. Learning automata-based algorithms can estimate
these probabilities by sampling from the network, enabling more effective identification of influential
nodes.

Example 5.5 (Stochastic influence maximization). In a social network with n users, the traditional
Independent Cascade model assigns fixed influence probabilities p;; to each edge (i,j). When user i is
activated, they have one chance to activate each neighbor j with probability p;;.

The stochastic diffusion model extends this by treating each p;; as a random variable with unknown
distribution. For example, p;j might follow a Beta distribution whose parameters are updated based on
observed interactions.

To find influential users, we can use a learning automata approach:

1. Initialize estimates of influence probabilities
Select a set of seed nodes based on current estimates
Observe the resulting cascade

Update probability estimates based on observations

GvoB e e

Repeat until convergence

This approach outperforms traditional methods on real-world networks where influence probabilities
vary over time.
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5.4.2 Opinion Dynamics

Continuous-time models of opinion formation often use diffusion processes to capture how individuals’

opinions evolve through social interaction:
n
dXz(t) = Z Qg5 (Xj (t) — Xz(t)) dt + ag; dWZ(t)
j=1

where X;(t) represents the opinion of individual 4, a;; is the influence weight of individual j on individual
1, and the stochastic term captures random fluctuations in opinions.

Intuition: Opinion dynamics

Opinion dynamics models capture how people’s views evolve through social interaction. The
deterministic part of the equation represents social influence—people tend to adjust their opinions
toward those of their connections, weighted by how much they trust or are influenced by each
person.

The stochastic term captures the inherent randomness in opinion formation—exposure to media,
random events, or mood fluctuations that cause opinions to change unpredictably.

These models help explain phenomena like:

e Opinion polarization in social networks
e The emergence of consensus in some groups but not others

e How the structure of social networks affects the spread of information and misinformation

5.4.3 Urban Growth and Spatial Economics

Diffusion processes model the spread of urban development and economic activity across space:

9p _

o V- (D(x)vP) +g(p,x,t)

where p represents population density, D(z) is a spatially varying diffusion coefficient, and g captures
growth factors.

Example 5.6 (Urban growth modeling). Consider a simplified model of urban growth where population
density p(zx,y,t) evolves according to:
Ip

_ = 2 —
91 DV p—l—rp(l

)
K(z,y)
This combines:
e Diffusion (DV?p): People move from high-density to low-density areas
o Logistic growth (rp(1 —p/K)): Population grows until reaching the local carrying capacity K(z,y)

The carrying capacity K(x,y) can incorporate geographical features (rivers, mountains), infrastructure
(roads, utilities), and economic factors (job opportunities).

Stmulating this model can reproduce observed patterns of urban sprawl, the formation of suburbs, and
the impact of transportation networks on development patterns.
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Practice Problems

1. In the Black-Scholes model, calculate the delta (A = g—g) of a European call option and explain
its significance for hedging.

2. For the Wright-Fisher diffusion model, calculate the expected time for a neutral allele (no
selection) with initial frequency p to reach fixation or extinction.

3. In a social network with 5 users, if influence probabilities follow Beta distributions with
parameters o;; and (3;;, describe how you would update these parameters after observing that
user 1 successfully influenced user 2 but failed to influence user 3.

Solution:

For problem 1: The delta of a European call option in the Black-Scholes model is:

oC
A= 99 = D(dy)

where @ is the standard normal CDF and d; is as defined in the Black-Scholes formula.

Delta represents the rate of change of the option price with respect to changes in the underlying
stock price. It’s significant for hedging because holding A shares of the stock for each option sold
creates a locally risk-neutral portfolio. For example, if A = 0.7, holding 70 shares of stock hedges 100
call options against small price movements.

For problem 2: For the Wright-Fisher diffusion with no selection, the expected time to fixation or
extinction for an allele with initial frequency p is:

E[T] = =2N[pIn(p) + (1 — p) In(1 — p)]

where IV is the effective population size. This formula shows that alleles starting at frequency 0.5
take the longest to reach fixation or extinction, while those starting near 0 or 1 resolve quickly.

For problem 3: In a Bayesian framework with Beta priors, after observing that user 1 successfully
influenced user 2 but failed to influence user 3:

a12 = aj2 + 1 (add one success)
B12 — P12 (no change in failures)
a13 — a3 (no change in successes)
Bis — B3 +1 (add one failure)

The updated Beta distributions reflect our revised beliefs about the influence probabilities based
on the observed interactions.

6 Computational Methods for Diffusion Processes

6.1 Numerical Solutions of SDEs
6.1.1 Euler—-Maruyama Method

The simplest explicit time-stepping scheme for an SDE

dXt = /,L(Xt, t) dt + O'(Xt, t) th
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is the Euler—-Maruyama update
Xnt1 = Xp + (X, tn) At + o( Xy, ty) AW,

where AW, ~ N (0, At).

Euler-Maruyama Simulation [1] Initial value Xo, drift u(-,-), diffusion o(-,-), time step At, number
of steps N Approximate path {X,}N. o X < Xon = 0,...,N — 1 Draw AW ~ N(0,At) X <+
X+ p(X,tn) At + o(X,t,) AW Record Xp41 < X {X,}

Example 6.1 (Ornstein—Uhlenbeck Process). Simulate
dX; =0(p— Xp)dt + odWy
with parameters @ = 0.5, u = 1.0, 0 = 0.2, Xg = 0 over [0,10]. Use the Euler—Maruyama algorithm above
with N steps to observe fluctuations around the mean p = 1.0.
6.1.2 Milstein Method
To achieve strong order 1, the Milstein scheme adds the It6 correction:
Xnt1 = Xn + w(Xp) At + 0(X,) AW, + 3 0(X,) o/ (Xn) [(AW,)? — At],

where 0/ = 0o /0X.
Milstein Simulation [1] Xo, (), o(-), o’(-), At, N {X,}N y X + Xon =0,...,N — 1 Draw
AW ~N(0,At) X + X 4 p(X) At +0(X) AW + 1 0(X) o/ (X)[(AW)? — At] Record Xy 41 + X {X,}

Intuition: Why Milstein is more accurate

Euler—-Maruyama is a first-order It6—Taylor truncation. Milstein includes the quadratic variation
correction [(AW)? — At], crucial when ¢ (X) varies with X, reducing bias in the diffusion term.

6.1.3 Implicit Methods
For stiff or mean-reverting SDEs, one may use an implicit drift:
Xn+1 = Xn + M(Xn—i-h tn+1) At + O'(Xn, tn) AWn,

solving a (small) nonlinear equation for X,,+1 at each step to enhance stability.

6.2 Monte Carlo Simulation

Monte Carlo methods approximate expectations by averaging many sample paths. For example, to price
a European call with payoff max(Sy — K, 0) under risk-neutral drift r, we simulate

dSt =T St dt +o St th, SO = given,
then estimate

M
Co=e¢"T L > maX(S;m) - K,0).
M m=1

Monte Carlo Option Pricing [1] Sp, K,r,0,T, M (paths), N (steps per path) Estimate of call price
Cosum <~ O0m=1,....M S <~ Syn=1,...,N Draw AW ~ N(O,%) S« S+7“S%+JSAW
sum < sum + max (S — K,0) Cy < e~ sum/M Cj

S(m)

Example 6.2 (European Call Pricing). Using the algorithm above, one samples M terminal prices Sy,
computes payoffs, discounts, and averages to obtain Co = e~"! E[max(St — K,0)] under the risk-neutral
measure.
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6.3 Machine Learning Approaches
6.3.1 Neural Networks for SDEs

Physics-Informed Neural Networks (PINNs) and Deep BSDE solvers approximate SDE solutions or
Fokker—Planck densities, overcoming the curse of dimensionality by learning high-dimensional mappings
from (z,t) to X; or p(z,t).

Intuition: Neural SDEs

Traditional grids explode in high dimensions. Neural networks, trained to satisfy the differential
equations and boundary conditions, can generalize across the domain and handle many state
variables efficiently.

6.3.2 Graph Neural Networks for Reaction—Diffusion

Encoding spatial cells as nodes and diffusion pathways as edges, GNNs propagate concentrations and apply
reaction updates via learnable message-passing layers, achieving fast, accurate predictions for complex
spatial networks.

Example 6.3 (GNNs for Reaction—Diffusion). 1. Model each cell as a graph node with state features
(protein concentrations).

2. Use graph convolutions to diffuse information along edges.
3. Apply node-wise MLPs to model local reactions.

4. Train on simulation or experimental data to predict spatiotemporal dynamics.

Practice Problems

1. Implement the Euler-Maruyama and Milstein algorithms above to simulate geometric Brownian
motion with = 0.1, 0 = 0.3, Sp = 100 over one year.

2. Compare local error of Euler—-Maruyama vs. Milstein on dX; = X; dt + Xt2 dW; with Xy =1
over [0, 1].

3. Outline a PINN setup to solve the Fokker—Planck equation for an Ornstein—Uhlenbeck process.

Solution:

For problem 1, apply the two algorithms in their pseudocode form, noting that Milstein’s extra term
2 00’[(AW)? — At] uses the known derivative of o(X) = X or X? as required.

For problem 2, the strong order of Euler—-Maruyama is 0.5, while Milstein attains order 1, so
Milstein’s local errors shrink approximately linearly in At.

For problem 3, define a network py(x,t), impose the PDE residual

O + 0:[0(pn — x)p) — %2 eap = 0

as a loss term, plus initial and normalization constraints, and train 6 via stochastic gradient descent.
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7 Some comments

Stochastic diffusion processes provide a powerful framework for modeling systems with randomness across
various disciplines. From the foundational Brownian motion to sophisticated jump diffusion and rough
volatility models, the field continues to evolve to address new challenges and applications.

As computational power increases and interdisciplinary collaboration grows, we can expect stochastic
diffusion processes to play an increasingly important role in understanding and predicting complex systems
characterized by randomness and uncertainty.

Intuition: The power of stochastic modeling

The true power of stochastic diffusion models lies in their ability to capture the essential features of
complex systems while remaining mathematically tractable. By embracing randomness rather than
trying to eliminate it, these models often provide more realistic and useful descriptions of the world.
As the mathematician Henri Poincaré noted: "It is far better to foresee even without certainty than
not to foresee at all." Stochastic models allow us to make probabilistic forecasts in situations where
deterministic predictions would fail completely.

The future of the field lies in combining the mathematical rigor of stochastic analysis with the
flexibility of machine learning and the computational power of modern computing—creating models
that are both theoretically sound and practically useful across an ever-widening range of applications.
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Exercises

Exercise 1:

Exercise 2:

Exercise 3:

Exercise 4:

Exercise 5:

Prove that for any constant ¢ > 0, the rescaled process

. 1
VVt:C_§ Wct, tZO,
of a standard Brownian motion (W});>¢ is itself a standard Brownian motion.

Non-Differentiability. Explain why almost all sample paths of Brownian motion are
nowhere differentiable. In particular, argue that zooming in on any portion of a Brownian
path preserves its jagged appearance, preventing the existence of a well-defined derivative at
any point.

Derivation of Geometric Brownian Motion. Starting from the discrete-time approxi-
mation
AS =puSAt+o0SAW,

where AW ~ N (0, At), derive the continuous-time SDE

dSy = p Sy dt + o Sy dW.
Applying Ité’s Lemma. Let (S;) satisfy
dSy = u Sy dt + o Sy dWr,
and set Y; = In S;. Use Itd’s lemma to show that
dY; = (u - %02) dt + o dWy,
and hence derive the explicit solution

Sy = So exp((u —1o%)t+ aWt>.

Ornstein—Uhlenbeck in Action. Consider the Ornstein—Uhlenbeck process
dXt = 9(,& — Xt) dt + O'th,
with 6 = 0.5, 4 = 100, o = 10.

(a) If Xo = 80, compute the drift term 0(u — Xo) and describe its effect.
(b) If Xg = 120, compute the drift term and explain how it pushes X; toward pu.
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