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From previous class:

Definition 0.1 (Discrete-Time Markov Chain). A discrete-time Markov chain {Xn}∞
n=0 is a sequence

of random variables taking values in a (countable) state space S such that for all n ≥ 0,

Pr(Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0) = Pr(Xn+1 = j | Xn = i),

for all states i, j ∈ S.

This property implies that the future depends on the past only through the current state.

Given a finite or countably infinite state space S, we write Pij for the one-step transition
probability from state i to state j:

Pij = Pr(Xn+1 = j | Xn = i).

Arranging Pij in a matrix P = (Pij)i,j∈S gives us the transition matrix, which satisfies:

Pij ≥ 0, and ∑
j∈S

Pij = 1 for each i ∈ S.

1 Multi-Step Transitions and the Chapman-Kolmogorov Equations

1.1 Definitions

Define the n-step transition probabilities as

P(n)
ij = Pr(Xk+n = j | Xk = i),

for any k ≥ 0 and i, j ∈ S. In particular, P(1)
ij = Pij are the one-step probabilities.

Theorem 1.1 (Chapman-Kolmogorov). For any nonnegative integers n, m ≥ 0,

P(n+m)
ij = ∑

k∈S
P(n)

ik P(m)
kj .

In matrix form, if P(n) = (P(n)
ij ), then

P(n+m) = P(n) · P(m).

Hence, P(n) = Pn (the n-th power of the matrix P).
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Example 1.1 (Weather Model: Two States). Consider a two-state weather chain where 0 = Rainy, 1 =
Sunny. Suppose

P =

(
0.7 0.3
0.4 0.6

)
.

Then

P2 =

(
0.7 0.3
0.4 0.6

)2

=

(
0.61 0.39
0.52 0.48

)
, P4 = (P2)2 =

(
0.5749 0.4251
0.5668 0.4332

)
.

Thus, if it is currently raining (state 0), the probability of it raining again 4 days from now is P(4)
00 ≈ 0.5749.

Example 1.2 (Extended Weather Model: Four States). Consider a chain that tracks the weather on two
consecutive days, thus having four states:

0 : (Rain, Rain), 1 : (No Rain, Rain), 2 : (Rain, No Rain), 3 : (No Rain, No Rain).

If the transition matrix is

P =


0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

 ,

we can compute P2 to get the 2-step probabilities. For instance, if the chain starts in state 0 (meaning the
last two days were both rainy), the chance that the next two days also include at least one rainy day can be
derived from particular entries of P2. This example illustrates how higher-dimensional Markov chains can
encode memory of previous states, albeit at the cost of an enlarged state space.

2 Classification of States and Long-Term Behavior

Understanding how a Markov chain behaves over many steps requires classifying its states and
determining whether certain long-term distributions exist.

2.1 Communicating Classes and Irreducibility

Definition 2.1 (Communicate, Class). States i and j communicate if P(n)
ij > 0 for some n and P(m)

ji > 0
for some m. A set of states C is a communicating class if every pair of states in C communicate and no
state outside of C communicates with a state in C.

Definition 2.2 (Irreducible Markov Chain). A Markov chain is irreducible if the entire state space S is
one single communicating class, i.e., one can get from any state i to any state j in a finite number of steps
(with positive probability).

2.2 Recurrence and Transience

Definition 2.3 (Recurrence/Transience). A state i is recurrent if starting from i, the expected number of
visits to i is infinite; equivalently, the probability of returning to i at some time in the future is 1. If that
probability is less than 1, then i is transient.

In finite Markov chains, irreducible classes are automatically recurrent (and at least one class
may be absorbing if there’s a state with Pii = 1).
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2.3 Periodicity

Definition 2.4 (Period). The period of a state i is

d(i) = gcd{ n ≥ 1 : P(n)
ii > 0}.

If d(i) = 1, we say i is aperiodic. A Markov chain is aperiodic if all its states are aperiodic. In an irreducible
chain, it suffices to check just one state.

If a Markov chain is irreducible and aperiodic (i.e., ergodic), then it enjoys a host of powerful
limit theorems.

2.4 Stationary and Limiting Distributions

A probability vector π = (π1, π2, . . . ) is called a stationary distribution if

πP = π and ∑
i∈S

πi = 1.

For a finite irreducible aperiodic chain, there exists a unique stationary distribution π, and more-
over,

lim
n→∞

P(n)
ij = πj, for every i, j ∈ S.

This means the chain forgets its initial state in the long run and converges to π.

Example 2.1 (Market Chain Convergence). Consider the 3 × 3 matrix

P =

0.5 0.3 0.2
0.4 0.1 0.5
0.1 0.7 0.2

 .

Numerical powers Pn for large n show that each row converges to the same vector

π ≈ (0.3426, 0.3519, 0.3055).

Hence, if you track states as “Bull”, “Bear”, and “Stagnant” markets, in the long run, the chain spends
around 34.26% of the time in the first state, 35.19% in the second, and 30.55% in the third, irrespective of
the initial condition.

3 Absorbing Markov Chains

A Markov chain is absorbing if it has at least one state i with Pii = 1 (such a state is called
absorbing), and from every state in the chain, there is some way (positive-probability path) to
eventually enter an absorbing state.

3.1 Canonical Form and Fundamental Matrix

One typically reorders the states so that absorbing states come last, yielding a transition matrix
in the form

P =

(
Q R
0 I

)
,

where Q is the transition matrix among transient states and I is an identity matrix for the absorbing
states. The fundamental matrix is

N = (I − Q)−1.

Its (i, j)-th entry Nij is the expected number of visits to state j starting from i, before absorption
occurs. The matrix NR then gives absorption probabilities into each absorbing state.
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Example 3.1 (Simple Absorbing Chain).

P =

 1 0 0
0.1 0.8 0.1
0.2 0.2 0.6

 .

State 1 (the first row) is absorbing since P11 = 1. One can reorder states if needed to analyze how states 2
and 3 eventually get absorbed.

4 Branching Processes

Branching processes model how populations evolve when each individual reproduces indepen-
dently of others. The canonical example:

Definition 4.1 (Galton-Watson Process). Let Z0 = 1. Each individual in generation n produces a random
number of offspring in generation n + 1 according to a fixed distribution {Pk}∞

k=0. Formally,

Zn+1 =
Zn

∑
i=1

Xn,i,

where Xn,i are i.i.d. with Pr(Xn,i = k) = Pk.

One key question is whether the population eventually dies out (i.e., hits Zn = 0 for some n).
Define the generating function

f (s) =
∞

∑
k=0

Pk sk.

Then the extinction probability π0 is a fixed point of f , i.e., π0 satisfies π0 = f (π0).

Example 4.1 (Binary Offspring). If each individual has 0 or 2 offspring with probability 0.5 each, then

f (s) = 0.5 s0 + 0.5 s2 = 0.5 + 0.5 s2.

Setting π0 = f (π0) gives π0 = 0.5+ 0.5 π2
0. One finds that π0 = 1 is the relevant solution here, indicating

eventual extinction with probability 1 in this critical case.

5 The Gambler’s Problem (Classic)

Even without actions, the classical gambler’s ruin scenario can be seen as a simple Markov
chain on {0, 1, . . . , G} with absorbing states at 0 and G. At wealth s, the gambler wins the next
coin toss with probability p and moves to s + 1, or loses with probability 1 − p and moves to s − 1.
Setting

P(s) = Pr(reach G | start at s),

yields the difference equation

P(s) = p P(s + 1) + (1 − p) P(s − 1),

with P(0) = 0 and P(G) = 1. The solution is

P(s) =


s
G

, p = 0.5,

(p/(1 − p))s − 1
(p/(1 − p))G − 1

, p ̸= 0.5.

This fundamental example underlies many gambler-like Markov chain models.
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