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1 Random Networks

Random network models provide a probabilistic framework for studying the structure and dynamics
of complex systems. These models have applications in sociology, epidemiology, computer science, and
finance, where phenomena such as information diffusion, epidemic spreading, and social connectivity are
analyzed.

1.1 Fundamental Concepts

Definition. Graph
A graph G is defined as a pair G = (V, E), where:

o V is a set of nodes (or vertices),
e F is a set of edges connecting pairs of nodes.

Example 1.1. Consider a graph with five nodes:
V =1{1,2,3,4,5},

and an edge set:

E= {(172)7 (273)7 (1,3), (274)7 (3’4)7 (47 5)}

Figure 1| illustrates this graph.

Figure 1: A simple graph with five nodes and six edges.

Definition. Adjacency Matrix
For a graph G = (V, E) with N = |V| nodes, the adjacency matriz A is an N x N matrix defined by:

4 1, if there is an edge between nodes v and v,
uv —
0, otherwise.
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Example 1.2. For the graph above, the adjacency matriz is:

N

Il
[ i e )
O = = O

0
1
1
0
1

SO = O = =
O = O O O

The powers of the adjacency matrix reveal connectivity properties. In particular, (Ak)m, represents
the number of distinct walks of length k from node u to node v.

Theorem 1.1. Let A be the adjacency matriz of a graph G. Then, the entry (A*)., equals the number of
walks of length k from node u to node v.

Proof. We prove by induction on k. For k = 1, the claim holds by definition. Assume that (A*),, counts
the number of walks of length k from u to v. For k 4 1, we have:

(Ak+1)uv = Z (Ak)uw Ay
weV

Each term (Ak)uw counts the number of walks of length k& from u to w, and A, indicates the presence of
an edge from w to v. Summing over all w gives the total number of walks of length k£ + 1, completing the
induction. O

Example 1.3. For our graph, computing:

A% =

SN = =N
—_ = = O =

0
1
1
0
1

— = W
S W =N

For instance, (A?)11 = 2 indicates that there are two walks of length 2 from node 1 back to itself.

2 Random Network Models

Random network models provide a fundamental framework for generating graphs using simple probabilistic
rules. These models help us understand how local random interactions can lead to the emergence of
complex global network structures. In this section, we describe three influential models—the Erdés-Rényi
model, the Watts-Strogatz model for small-world networks, and the Barabési-Albert model for scale-free
networks—with an emphasis on the underlying principles and algorithms.

Fundamental Definitions

Definition. Degree Distribution

For a graph G = (V, E), the degree of a node is defined as the number of edges incident to it. The degree
distribution, denoted by P(k), is the probability that a randomly selected node has degree k. Formally,

~ {v €V :degree(v) = k}]

P(E) V]

with the normalization condition ), P(k) = 1.
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2.1 Erdés-Rényi Model

Definition. Erdés-Rényi Model
The Erdés-Rényi model, denoted by G(n,p), is one of the simplest random graph models. It constructs a

n

graph with n nodes by considering each of the (2) possible edges and including each edge independently
with probability p. That is, for any pair of distinct nodes v and v,

P((u,v) € E) = p.

Fundamentals of the Model: The basic idea is that every potential connection between nodes is
treated equally, with the same probability p of existing. This simplicity allows for precise mathematical
analysis while serving as a baseline for more complex network models.

Key Properties and Analysis:

o Degree Distribution: In G(n,p), the degree k of any node follows a binomial distribution:

P(k) = (n N 1>p'°(1 —p) R

For large n with small p such that np remains constant, the distribution can be approximated by a
Poisson distribution: ()"
np)e P
Pik) ~ =——
This reflects the model’s inherent randomness in edge formation.
o Connectivity and Phase Transition: A critical phenomenon occurs at the threshold

where the graph transitions from having many small disconnected components to containing a single
giant component.

e Clustering Coefficient: Because edges are formed independently, the clustering coefficient—the
probability that two neighbors of a node are connected—is low, roughly equal to p.

Applications and Limitations: Due to its simplicity, the Erdés-Rényi model is mathematically
tractable and provides valuable insights into the fundamental behavior of random graphs. However, its
assumptions of independent and uniform edge formation limit its ability to capture clustering and degree
heterogeneity observed in many real-world networks.

2.2 Small-World Networks: The Watts-Strogatz Model

Small-world networks are notable for their high local clustering and short average path lengths. The
Watts-Strogatz model creates such networks by starting with an orderly structure and then introducing a
controlled amount of randomness.

Definition. Regular Ring Lattice

A regular ring lattice with n nodes is constructed by arranging the nodes in a circle. Each node is then
connected to its k nearest neighbors: k/2 neighbors on its left and k/2 neighbors on its right. This results
in an undirected graph where every node has exactly k£ connections.
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Definition. Watts-Strogatz Model

Given a regular ring lattice with n nodes and degree k, the Watts-Strogatz model introduces randomness
by rewiring each edge with a probability p. For each edge (i, 7) in the lattice, with probability p:

1. Remove the edge (i, j).

2. Choose a new node [ uniformly at random from all nodes such that [ # ¢ and there is no existing
edge between i and [.

3. Add the edge (i,1) to the graph.

If the random number exceeds p, the edge remains unchanged. This process avoids self-loops and duplicate
edges.

Simulation Algorithm: To simulate the Watts-Strogatz model, follow these steps:
1. Create the Regular Ring Lattice:

o Arrange n nodes in a circle.
o For each node i, connect it to its k/2 nearest neighbors on either side.

2. Rewire the Edges:

o For each node i, iterate over each edge (7,j) where j is one of the k/2 neighbors in a single
direction (to avoid processing each undirected edge twice).

o Generate a random number r € [0, 1].

o If r < p, remove the edge (7, ) and select a new node [ uniformly at random from the set of
nodes that are neither ¢ nor already connected to i. Then add the edge (i,1).

Key Properties:

e Clustering Coefficient: The initial lattice has high clustering since neighbors of a node are also
neighbors of each other. Even for small values of p, most local connections remain, preserving a
high clustering coeflicient.

e Average Path Length: The rewiring introduces long-range shortcuts, which greatly reduce the
average shortest path length in the network. For p = 0, the path length is high (reflecting the regular
structure), but for larger p, it drops toward values observed in random graphs.

e Interplay Between Order and Randomness: By varying p, one can smoothly transition from
an ordered lattice (p = 0) to a random graph (p = 1), thereby exploring the balance between local
structure and global efficiency.

This detailed description provides the fundamental steps and concepts needed to simulate the Watts-
Strogatz model.

2.3 Scale-Free Networks: The Barabasi-Albert Model

Scale-free networks are distinguished by the presence of a few highly connected nodes, or hubs, alongside
many nodes with relatively few connections. The Barabéasi-Albert model explains this phenomenon
through a process of preferential attachment.

Definition. Barabasi-Albert Model

The Barabési-Albert model builds a network using the following iterative algorithm:

1. Start with a small, connected network of mg nodes.
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2. At each time step, add a new node with m (m < mg) edges. These new edges connect the new node
to m distinct nodes already present in the network.

3. The probability II(k;) that the new node attaches to an existing node i is proportional to the degree
k; of node 1:

Fundamentals of the Model: The key principle here is the "rich-get-richer" phenomenon: nodes that
already have many connections are more likely to receive new links. This iterative, dynamic process
naturally leads to the formation of hubs within the network.

Key Properties and Analysis:

e Degree Distribution: Due to the preferential attachment mechanism, the degree distribution

follows a power-law:

P(k) ~ k77,
where the exponent ~ is typically around 3. This heavy-tailed distribution reflects the emergence of
a few hubs and many nodes with low connectivity.

« Robustness and Vulnerability: Scale-free networks are generally robust against random failures
because most nodes have few connections. However, they are particularly sensitive to targeted
attacks on the highly connected hubs.

e Growth Dynamics: As the network grows, the mechanism of preferential attachment continuously
amplifies the connectivity of already well-connected nodes, reinforcing the disparity in node degrees.

Applications and Limitations: The Barabasi-Albert model has found applications in explaining the
structure of the Internet, citation networks, and various social systems. While it successfully models
the emergence of hubs, it does not inherently generate the high clustering coefficients observed in some
real-world networks, prompting further extensions and refinements of the model.

For a hands-on exploration of these network models, you can directly simulate them using the interactive
web application. Visit this interactive app|to visualize and experiment with the models in real time.

3 The Friendship Paradox

The friendship paradoz is the counterintuitive phenomenon that, on average, your friends tend to have
more friends than you do. Formally, let G = (V| E) be an undirected graph with N nodes, where each
node i has degree d;. Define the average degree by

1 N

When we choose an edge uniformly at random and examine one of its endpoints, the probability that this
endpoint has degree k is proportional to kP(k), where P(k) is the probability that a uniformly selected
node has degree k. Hence, the expected degree of a node chosen in this way (i.e., a “friend”) is

_ Xk P(k) _ E[F]

E[dfriend] = = .
7 7

Since E[k?) > u? (with strict inequality if the degree distribution is not uniform), it follows that
E[dfriend] > M.

The theorem below captures this more formally.



https://franciscorichter-stochastic-methods-network-app-x42smf.streamlit.app/

Stochastic Methods — Week 5: Networks 6

Erdos-Renyi Graphs with n=25
p=0.5 p=0.8
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Figure 2: Erdos-Rényi graphs with NV = 25 nodes for different values of p. Lower p produces sparser
graphs, whereas higher p yields denser networks.

Theorem 3.1 (Friendship Paradox). In any graph whose degree distribution is not uniform, the average
degree of a randomly selected neighbor (friend) is strictly larger than the average degree of a randomly
selected node:

E[k?
E[dfriend] - EL ] > H,

with equality if and only if all nodes have the same degree.

Proof. Let P(k) be the probability that a uniformly chosen node has degree k. Then the average degree is
=Y kP(k).
k

Because a node of degree k is k times more likely to appear as an endpoint of a randomly chosen edge,
the probability that a randomly selected neighbor has degree k is

k P(k
Pfriend(k) = ( )
1
Hence, the expected degree of a friend is
1 E[k?
E[dfriend] = kafriend(k) = _Zk2 P(k) = [ ]
k g H

Writing E[k?] in terms of p and the variance 02, we have E[k?] = u? + 0. Thus,

0,2

E[dfriend] = /1‘""7 > W,

with equality if and only if 2 = 0, which means all nodes have the same degree. O
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Example 3.1. For a network with degree distribution P(1) = 0.5 and P(3) = 0.5:
p=1-05+3-05=2,

E[k*)=1%-05+3%-05=0.5+4.5=5.

Thus,

5!
E[dfriend] = 5 = 257

which exceeds the average degree p = 2.

4 Monte Carlo Integration with Missing Data in Business Networks

In real business networks, some edge information is often missing. Monte Carlo integration allows us to
compute the expected value of network metrics by integrating over the uncertainty.

Below, we detail three examples where missing data is modeled by random variables. We describe the
mathematical model, the metric of interest, and how to integrate over the uncertainty.

Example 1: Business Partnership Network with Missing Partnership Strengths

Model Setup: Consider a network G = (V, E') where each node represents a business and each edge (u,v)
represents a partnership with an associated strength w,,. For some partnerships, the weight is missing.
We model a missing weight as a continuous random variable W with a probability density function fyy (w).
For instance, if weights are normalized between 0 and 1, W might follow a Beta distribution.

Metric: Weighted Degree. For a node v, the weighted degree is defined by:

D(v) = Z Wy

u:(u,v)eE
If the weight on an edge (u,v) is missing and denoted by W, then the conditional weighted degree is:

D(v | W)= > Wy + W.
(wv)€E\{(u0)}

The expected weighted degree of v is given by:

E[D(v)] = > wyy + E[W],
(z)€E\{(u,v)}
where w
E[W] :/ w fiy(w) dw.
For several missing edges with independent missing values W = (W, Ws, ..., W,,), the expectation
becomes: .
E[D(v)] = - D(v | w) H fw, (w;) dw.
i=1

This integral is typically approximated using Monte Carlo methods by drawing samples w/) and computing
the average of D(v | wl)).
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Example 2: Supply Chain Network with Uncertain Supplier-Customer Relationships

Model Setup: In a supply chain network, nodes represent companies and an edge (u,v) indicates a
supplier—customer relationship. For some potential edges, the existence of the relationship is uncertain.
We model the existence of a missing edge e = (u,v) as a Bernoulli random variable X, with parameter p:

P(Xe=1)=p, P(Xc=0)=1-p.

Metric: Shortest Path Length. Suppose we are interested in the shortest path length d(i,7)
between two companies ¢ and j. If an uncertain edge is involved, its existence alters the path length. For
a single uncertain edge:

E[d(laj)] :pd(lv.] | Xe = 1) + (1 _p) d(la] ‘ Xe = 0)
For multiple uncertain edges, denote X = (X1, Xo,...,X,,) and the expected shortest path is:

Eld(i,j)]= > d(i,j|X=x)P(X=x),
xe{0,1}™
with

P(X = X) = H pge(l —pe)l_xe.
eeM

Monte Carlo integration approximates this expectation by sampling x from the Bernoulli distributions
and averaging the corresponding d(i, j | x).
Example 3: Financial Risk Network with Missing Transaction Data

Model Setup: Consider a financial network where nodes represent institutions and an edge (u,v)
represents a financial transaction or exposure w,,. If some transactions are missing, we model them as
continuous random variables. For example, suppose a missing transaction follows a log-normal distribution:

W ~ LogNormal(u, 0?),

with density

fw(w) = ! exp (_(lnw—u)z> . w>0.

wo/ 27 202

Metric: Total Financial Exposure. Let the total exposure in the network be:

R(G) = Z Wy

(u,v)EE

If the set M C E represents edges with missing data, then conditioned on the missing data W = (We)eenr,

RGIW)= > wup+ Y W

(u,v)eE\M eeM
The expected total exposure is
ERG)]= >  ww+ » E[W,
(u,0)eE\M eeM

where for each missing edge,

2
E[W,] = exp (M + 02> .
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If multiple missing values are present, we have:

EIR(©)] = |

R

M| ( Z Wyy + Z we) H fw. (we) dw.
+ (

u,w)EE\M ecM ecM

This integral is often estimated by Monte Carlo methods, sampling many realizations of W and averaging
the corresponding total exposure.
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5 Exercises

Exercise 1:

Exercise 2:

Exercise 3:

Consider a business partnership network G = (V, E) where each edge (u,v) is assigned a
strength w,, representing the quality of the partnership. Some partnership strengths may be
missing. Fach missing weight W is modeled by a continuous random variable with density

fw(w) =12w?(1 —w), 0<w<1.
For a node v, the weighted degree is defined as

D(v) = Z Wayy-
(u,v)eE

(a) Suppose node v has three partnerships. Two edges have observed strengths wy = 0.7
and we = 0.5, and the third edge’s strength is missing. Calculate E[D(v)].

(b) Now consider a more general scenario: node v has k observed partnerships with weights
w1, wa, . . ., w and m missing partnerships, where the missing weights {Wy, Wa, ..., W, }
are independent random variables with density fy(w) = 12w?(1 — w). Derive an
expression for E[D(v)] in terms of the observed weights and m. Then, outline an
algorithm to approximate E[D(v)] using Monte Carlo simulation when m > 1.

In a supply chain network, nodes represent companies and an edge (u,v) indicates a
supplier—customer relationship. Some potential edges are uncertain. An edge e = (u,v)
exists with probability p and does not exist with probability 1 — p. The metric of interest is
the shortest path length between two companies. Suppose that when the edge exists the
shortest path length is d(A, B | X = 1) and when it does not exist it is d(A, B | X = 0).
(a) Given that for companies A and B the edge exists with probability 0.3, d(A,B | X =
1)=2and d(A,B | X =0) =5, compute E[d(A, B)].
(b) Now assume there are two independent uncertain edges with existence probabilities py
and po. Let d;; be the shortest path length when the first edge is present if i =1 (or

absent if 4 = 0) and the second edge is present if j = 1 (or absent if j = 0). Derive an
expression for E[d] in terms of pi, p2, and d;;.

In a financial network, nodes represent financial institutions, and each edge (u, v) represents
a transaction with a reported value w,,. However, the reported transaction values are
measured with error. Assume that the true transaction value is given by

Wyo = Wy X €yp,
where the multiplicative error factor €, is an independent random variable with density

G — exp<—“”‘“>2>, 2> 0.

xo\/ 2 202

The total exposure of the network is defined as
RG) = ) Wa.
(u,v)EE

Suppose there are two transactions with reported values w; = 100 and wo = 150, and the
error factors €; and ey are independent with parameters 4 = 0 and o = 0.25.

(a) Compute the expected true transaction value E[W,,| for each transaction, and then
calculate E[R(G)].

(b) Outline an algorithm to estimate the distribution of R(G) using Monte Carlo simulation
when multiple transactions are present. Explain how you would use this simulation to
approximate the risk measure P(R(G) > T) for a given threshold T'.
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