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Monte Carlo Methods and Variance

Monte Carlo methods are a powerful class of numerical techniques that approximate solu-
tions to complex mathematical problems by leveraging random sampling. They are especially
useful when deterministic or closed-form methods either do not exist or are prohibitively
difficult to apply.

Estimating Integrals

A canonical example is estimating the integral of a real-valued function f (x) over [a, b]:

I =
∫ b

a
f (x)dx.

A fundamental Monte Carlo estimator proceeds by:

1. Drawing independent samples x1, x2, . . . , xN from the uniform distribution on [a, b].

2. Taking the sample mean of f at these points.

Since X ∼ Uniform(a, b) has density

p(x) =
1

b − a
, x ∈ [a, b],

we observe that

E[ f (X)] =
1

b − a

∫ b

a
f (x)dx =

I
b − a

.

Hence, multiplying by (b − a) yields:

I = (b − a)E[ f (X)].

An unbiased estimator for I is then:

Î = (b − a)
1
N

N

∑
i=1

f (xi).

By the Law of Large Numbers, Î → I almost surely as N → ∞.

Definition. Variance

For a random variable X with mean µ = E[X], the variance is given by

Var(X) = E
[
(X − µ)2] = E[X2]− µ2.
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Since Î is an average of i.i.d. random variables, we may also invoke the Central Limit Theorem
(CLT). The CLT tells us that for large N,

Î ≈ N
(

I,
(b − a)2 Var

(
f (X)

)
N

)
,

where X ∼ Uniform(a, b). In other words, the standard error of Î behaves like O(N−1/2). This
confirms that Monte Carlo estimators converge relatively slowly compared to, say, deterministic
methods for low-dimensional integrals. However, they remain feasible in high-dimensional
settings where grid-based or quadrature approaches fail due to the curse of dimensionality.

Importance Sampling

In some applications, especially high-dimensional ones, uniform sampling might be ex-
tremely inefficient if f (x) is sharply peaked in a small region of [a, b]. Importance sampling
addresses this by drawing points from a proposal or importance density p(x) that closely resem-
bles the shape of f (x). We then rewrite:

I =
∫

f (x)dx =
∫ f (x)

p(x)
p(x)dx = Ep

[ f (X)

p(X)

]
.

So an alternative unbiased estimator is:

ÎIS =
1
N

N

∑
i=1

f (xi)

p(xi)
, xi

iid∼ p(x).

The variance of ÎIS is

Var
(

ÎIS
)
=

1
N

Varp

( f (X)

p(X)

)
.

A well-chosen p(x) can drastically reduce this variance relative to uniform sampling. In an
extreme but instructive case, the optimal importance density is p∗(x) = | f (x)|∫

| f (x′)|dx′ , which, if
feasible to sample from, can reduce the integral variance to zero (for an integrable f ). In practice,
one picks a tractable p approximating f .

1 Rejection Sampling

Sometimes we want to sample from a distribution with density f (x) (normalized or unnor-
malized) but cannot directly draw from it. Rejection sampling overcomes this by comparing f to
a proposal q for which sampling is straightforward. Suppose we know a constant c ≥ 1 such that

f (x) ≤ c q(x) for all x.

The method proceeds:

1. Draw X ∼ q and U ∼ Uniform(0, 1) independently.

2. Accept X if U ≤ f (X)
c q(X)

; otherwise, reject and repeat.

Theorem 1.1 (Correctness of Rejection Sampling). Let {(X, U)} be as above. The conditional
distribution of X given that X is accepted coincides with the target distribution f . Specifically,

P
(
X ∈ dx

∣∣accepted
)
=

f (x)dx∫
f (y)dy

.
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Proof. The event “accept” occurs if

U ≤ f (X)

c q(X)
.

Because U is uniform(0,1), for each fixed x,

P
(
accept | X = x

)
=

f (x)
c q(x)

.

Hence, the joint density of (X, accept) is

q(x)
f (x)

c q(x)
=

f (x)
c

.

Integrating over x gives the acceptance probability

P(accept) =
1
c

∫
f (x)dx =

1
c

.

Thus, conditioned on acceptance, the density is

f (x)
c
1
c

= f (x)
/ ∫

f (y)dy,

as required.

The efficiency of rejection sampling depends on how tight the bound f (x) ≤ c q(x) is. The
probability of acceptance is 1/c. If c is large, many samples get rejected.

2 Dependence and Independence

Concepts of dependence and independence among random variables are foundational in
both probability theory and Monte Carlo methods. Two real-valued random variables X and Y
are independent if

fX,Y(x, y) = fX(x) fY(y),

which equivalently means

P
(
X ∈ A, Y ∈ B

)
= P

(
X ∈ A

)
P
(
Y ∈ B

)
for all measurable sets A, B.

Example 2.1. If X and Y are the results of rolling two fair dice, each taking values in {1, . . . , 6}, then

pX,Y(i, j) =
1
6

1
6

=
1
36

,

indicating independence. In contrast, a single die roll’s value and that value squared would not be
independent.

Conditional Probability and Bayes’ Theorem

Definition. Conditional Probability

For random variables X and Y with joint density fX,Y and marginal fY (assuming fY(y) ̸= 0),
the conditional probability density is

fX|Y(x | y) =
fX,Y(x, y)

fY(y)
.

The multiplication rule for densities states

fX,Y(x, y) = fX|Y(x | y) fY(y).
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Theorem 2.1 (Bayes’ Theorem). For random variables X and Y with fY(y) ̸= 0,

fX|Y(x | y) =
fY|X(y | x) fX(x)

fY(y)
.

Proof. From the multiplication rule,

fX,Y(x, y) = fX|Y(x | y) fY(y) = fY|X(y | x) fX(x).

Rearrange to solve for fX|Y(x | y):

fX|Y(x | y) =
fY|X(y | x) fX(x)

fY(y)
.

Bayesian inference and many advanced Monte Carlo techniques (like Markov chain Monte
Carlo) rely heavily on iterated conditioning and Bayes’ theorem. Understanding conditional
distributions and independence lays the groundwork for nearly all stochastic simulation meth-
ods.

Questions

• Exercise 1. Propose an explicit algorithm for simulating a random variable whose density
on (0, 1) is:

f (x) = 30 (x2 − 2x3 + x4) = 30 x2 (1 − x)2.

(Hint: Factor and consider whether a suitable Beta distribution might match this form.)

• Exercise 2. Let 0 ≤ X ≤ a for some constant a > 0. Show that:

(a) E[X2] ≤ a E[X].

(b) Var(X) ≤ E[X]
(
a − E[X]

)
.

(c) Var(X) ≤ a2

4 .

• Exercise 3. Suppose

σ2 = E[X2] =

∫ ∞
−∞ x2 exp{−|x|3/3}dx∫ ∞
−∞ exp{−|x|3/3}dx

,

where X has density q(x) ∝ exp{−|x|3/3}.

(a) Estimate σ2 using importance sampling with a suitable proposal distribution and
(standardized) weights.

(b) Repeat the estimation using rejection sampling. Analyze the acceptance rate in terms
of your chosen proposal.
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