Week #2: Random Variables

Stochastic Methods Course

Notes by: Francisco Richter

25.02.2025

In many computational applications, pseudorandom number generators (PRNGs) produce integers in a large finite set, typically $\{0, 1, ..., m-1\}$. To simulate a continuous uniform distribution, these integers are normalized to obtain numbers in the unit interval [0, 1). Formally, if $\{X_n\}$ is a sequence produced by an LCG (or similar PRNG), we define

 $U_n = \frac{X_n}{m}$.

Under ideal conditions, the sequence $\{U_n\}$ approximates a sequence of independent random variables uniformly distributed on [0,1).

Figure 1: Normalization of PRNG outputs to the unit interval [0, 1].

1 Mapping the Unit Interval to Discrete Outcome Spaces

Often the outcomes of an experiment belong to a discrete set. For instance:

- A fair die yields outcomes in $U_d = \{1, 2, 3, 4, 5, 6\}.$
- A coin toss yields outcomes in $U_c = \{H, T\}$.

A standard approach is to first generate a uniformly distributed number $U \in [0,1)$ and then use a deterministic mapping to convert U into an outcome in the desired set. Such mappings are typically constructed using modular arithmetic or thresholding techniques.

Example 1.1 (Simulating a Coin Toss). Consider an LCG that generates integers uniformly in $\{0, 1, ..., 2^{32} - 1\}$. Since exactly half of these values are less than 2^{31} , we define the outcome as follows:

$$Outcome = \begin{cases} H, & \text{if } X_n < 2^{31}, \\ T, & \text{if } X_n \ge 2^{31}. \end{cases}$$

Under the assumption of uniformity, this mapping yields P(H) = P(T) = 0.5.

2 A Rigorous Framework for Probability

Probability theory is founded on measure theory, which provides a precise mathematical description of uncertainty. The cornerstone of this framework is the concept of a *probability space*, defined as a triple (Ω, \mathcal{F}, P) :

- Ω is the sample space—the set of all possible outcomes of a random experiment.
- \mathcal{F} is a σ -algebra on Ω , meaning it is a collection of subsets of Ω (called *events*) that satisfies:
 - (i) $\Omega \in \mathcal{F}$,
 - (ii) If $E \in \mathcal{F}$, then its complement $E^c = \Omega \setminus E$ is also in \mathcal{F} ,
 - (iii) \mathcal{F} is closed under countable unions; that is, if $E_1, E_2, E_3, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{F}$.
- $P: \mathcal{F} \to [0,1]$ is a probability measure that assigns a number to each event in \mathcal{F} with the properties:
 - (i) $P(\Omega) = 1$ (the probability that some outcome occurs is 1),
 - (ii) For any countable collection of disjoint events $E_1, E_2, \dots \in \mathcal{F}$, we have

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

A classic example is the unit interval [0,1] with the *Lebesgue measure*. For any subinterval $[a,b] \subseteq [0,1]$, the measure is defined as

$$\mu([a,b]) = b - a.$$

Since $\mu([0,1]) = 1$, the Lebesgue measure naturally serves as a probability measure on [0,1].

The Borel σ -algebra on [0,1], denoted by $\mathcal{B}([0,1])$, is the collection of all sets that can be formed from open intervals by taking countable unions, intersections, and complements. This σ -algebra is crucial because it includes most sets encountered in practice, ensuring that the probability measure is defined on a rich collection of events.

Furthermore, if we have a measurable function (or mapping) $\phi: U \to [0,1]$ from another outcome space U, we can *induce* a probability measure on U by *pulling back* the Lebesgue measure. For any event $B \subseteq U$ (where B is measurable), the induced probability is defined as

$$P_U(B) = \mu(\phi(B)).$$

This construction guarantees that the essential properties of a probability measure—non-negativity, normalization, and countable additivity—are preserved.

3 Random Variables and Their Distributions

Once a probability measure P is established on a measurable space (U, \mathcal{F}) , a random variable is defined as a measurable function mapping outcomes to real numbers.

Definition. Random Variable

Let (U, \mathcal{F}, P) be a probability space. A function

$$X:U\to\mathbb{R}$$

is called a random variable if for every Borel set $B \subset \mathbb{R}$, the preimage $X^{-1}(B)$ is in \mathcal{F} . The set

$$R(X) = \{X(u) : u \in U\}$$

is called the range of X. If R(X) is countable, X is said to be discrete.

Discrete Random Variables

For discrete random variables, the distribution is fully characterized by its probability mass function (pmf).

Definition. Probability Mass Function

For a discrete random variable X with range R(X), the probability mass function f_X is defined by

$$f_X(x) = P\{X = x\}, \quad x \in R(X),$$

subject to:

- 1. $0 \le f_X(x) \le 1$ for all x,
- 2. $\sum_{x \in R(X)} f_X(x) = 1$.

Example 3.1 (Discrete Uniform Distribution). If X takes values in a finite set $\{a, a + 1, ..., b\}$ with equal probability, then for each $x \in \{a, a + 1, ..., b\}$,

$$f_X(x) = \frac{1}{b-a+1}.$$

Example 3.2 (Bernoulli Distribution). Let X represent a binary outcome such that

$$X(u) = \begin{cases} 1, & \text{if the outcome is a success,} \\ 0, & \text{if the outcome is a failure.} \end{cases}$$

If P(X = 1) = p and P(X = 0) = 1 - p, then

$$f_X(1) = p, \quad f_X(0) = 1 - p.$$

Example 3.3 (Binomial Distribution). If n independent Bernoulli trials are conducted with success probability p, and X denotes the number of successes, then

$$f_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n.$$

Example 3.4 (Poisson Distribution). A random variable X is said to have a Poisson distribution with parameter $\lambda > 0$ if

$$f_X(k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Continuous Random Variables

For continuous random variables, the distribution is described by a probability density function (pdf).

Definition. Probability Density Function

A continuous random variable X with range $R(X) \subset \mathbb{R}$ has a probability density function f_X satisfying

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$
, for any $[a, b] \subset R(X)$,

with the normalization condition

$$\int_{R(X)} f_X(x) \, dx = 1.$$

Example 3.5 (Exponential Distribution). If X follows an exponential distribution with rate parameter $\lambda > 0$, then its pdf is given by

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0,$$

and $f_X(x) = 0$ for x < 0.

Figure 2: Exponential probability density function.

Example 3.6 (Normal Distribution). For a normal distribution with mean μ and variance σ^2 , the pdf is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}.$$

Figure 3: Normal probability density function.

4 The Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable X is defined as the probability that X takes a value less than or equal to x.

Definition. Cumulative Distribution Function

The cumulative distribution function of X is

$$F_X(x) = P\{X \le x\}.$$

For a discrete random variable,

$$F_X(x) = \sum_{t \le x} f_X(t),$$

and for a continuous random variable,

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

Moreover, if the CDF $F_X(x)$ is invertible, one can generate samples from the distribution of X using the inverse transform method:

$$X = F_X^{-1}(U),$$

where U is uniformly distributed on [0,1].

5 Exercises

Exercise 1: Maximum of Five Uniform (0,1) Variables.

Let Z_1, Z_2, \ldots, Z_5 be independent random variables uniformly distributed on (0,1). Define

$$M = \max\{Z_1, Z_2, Z_3, Z_4, Z_5\}.$$

- (a) Derive an expression for $P(M \le x)$ for $0 \le x \le 1$.
- (b) Differentiate $P(M \le x)$ to obtain the pdf of M and interpret the result.

Exercise 2: Sum of Two Uniform (0,1) Variables.

Let W_1 and W_2 be independent random variables uniformly distributed on (0,1), and define

$$S = W_1 + W_2$$
.

- (a) Derive the probability density function of S.
- (b) Derive the cumulative distribution function of S.

Exercise 3: Repeated Uniform (0,1) Picks Until Sum > 1.

Independently generate random numbers V_1, V_2, \ldots , each uniformly distributed on (0, 1), until

$$V_1 + V_2 + \cdots + V_N > 1.$$

Let X = N denote the number of picks required.

- (a) Determine the pmf $p_X(n) = P(X = n)$.
- (b) Determine the cdf $F_X(n) = P(X \le n)$.

Exercise 4: From Binomial to Poisson.

Let $X_n \sim \text{Bin}(n,p)$ be a binomial random variable with parameters n and p. Define $\lambda = np$. Show that as $n \to \infty$ and $p \to 0$ in such a way that λ remains constant, the pmf of X_n converges to that of a Poisson random variable with mean λ .

Exercise 5: From Poisson to Exponential.

Consider a Poisson process with rate λ , where $N(t) \sim \text{Poisson}(\lambda t)$ denotes the number of events in time t. Let

$$T = \inf\{t > 0 : N(t) \ge 1\}$$

be the waiting time until the first event. Prove that

$$P(T > t) = e^{-\lambda t},$$

and conclude that $T \sim \text{Exp}(\lambda)$.

Exercise 6: Memoryless Property of the Exponential Distribution.

Let $X \sim \text{Exp}(\lambda)$. Prove that for any $s, t \geq 0$,

$$P(X > s + t \mid X > s) = P(X > t).$$