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In many computational applications, pseudorandom number generators (PRNGs) produce integers in
a large finite set, typically {0,1,...,m — 1}. To simulate a continuous uniform distribution, these integers
are normalized to obtain numbers in the unit interval [0,1). Formally, if {X,,} is a sequence produced by

an LCG (or similar PRNG), we define

X
Up = —.
m

Under ideal conditions, the sequence {U,} approximates a sequence of independent random variables
uniformly distributed on [0, 1).
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Figure 1: Normalization of PRNG outputs to the unit interval [0, 1].

1 Mapping the Unit Interval to Discrete Outcome Spaces

Often the outcomes of an experiment belong to a discrete set. For instance:

o A fair die yields outcomes in Uy = {1,2,3,4,5,6}.
e A coin toss yields outcomes in U, = {H,T}.

A standard approach is to first generate a uniformly distributed number U € [0,1) and then use a

deterministic mapping to convert U into an outcome in the desired set. Such mappings are typically

constructed using modular arithmetic or thresholding techniques.
Example 1.1 (Simulating a Coin Toss). Consider an LCG that generates integers uniformly in {0,1,...,23%—

1}. Since exactly half of these values are less than 23, we define the outcome as follows:

H, if X, <23,

Outcome =
T, if X, > 23

)

Under the assumption of uniformity, this mapping yields P(H) = P(T) = 0.5.
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2 A Rigorous Framework for Probability

Probability theory is founded on measure theory, which provides a precise mathematical description of
uncertainty. The cornerstone of this framework is the concept of a probability space, defined as a triple
(0, F, P):

e () is the sample space—the set of all possible outcomes of a random experiment.
o F is a o-algebra on 2, meaning it is a collection of subsets of ) (called events) that satisfies:
(i) Qe F,
(ii) If £ € F, then its complement E¢ = Q \ E is also in F,
(iii) F is closed under countable unions; that is, if Ey, Es, E3,--- € F, then 2, E; € F.
o P:F —0,1] is a probability measure that assigns a number to each event in F with the properties:
(i) P(Q2) =1 (the probability that some outcome occurs is 1),

(ii) For any countable collection of disjoint events E1, Eo, - -- € F, we have

P (fj E) = iP(Ei).
1=1 i=1

A classic example is the unit interval [0, 1] with the Lebesgue measure. For any subinterval [a,b] C [0, 1],
the measure is defined as

p(la,b]) = b —a.

Since u([0,1]) = 1, the Lebesgue measure naturally serves as a probability measure on [0, 1].

The Borel o-algebra on [0,1], denoted by B([0,1]), is the collection of all sets that can be formed
from open intervals by taking countable unions, intersections, and complements. This g-algebra is crucial
because it includes most sets encountered in practice, ensuring that the probability measure is defined on
a rich collection of events.

Furthermore, if we have a measurable function (or mapping) ¢ : U — [0, 1] from another outcome
space U, we can induce a probability measure on U by pulling back the Lebesgue measure. For any event
B C U (where B is measurable), the induced probability is defined as

Py(B) = p(6(B)).

This construction guarantees that the essential properties of a probability measure—mnon-negativity,
normalization, and countable additivity—are preserved.

3 Random Variables and Their Distributions

Once a probability measure P is established on a measurable space (U, F), a random variable is defined
as a measurable function mapping outcomes to real numbers.

Definition. Random Variable

Let (U, F, P) be a probability space. A function
X:U—=R
is called a random variable if for every Borel set B C R, the preimage X ~'(B) is in F. The set
R(X)={X(u):ueU}

is called the range of X. If R(X) is countable, X is said to be discrete.
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Discrete Random Variables

For discrete random variables, the distribution is fully characterized by its probability mass function

(pmi).

Definition. Probability Mass Function

For a discrete random variable X with range R(X), the probability mass function fx is defined by
fx(x)=P{X =2}, z€R(X),

subject to:

1. 0 < fx(x) <1 for all z,

2. > fx(@)=1

zER(X)

Example 3.1 (Discrete Uniform Distribution). If X takes values in a finite set {a,a + 1,...,b} with
equal probability, then for each x € {a,a+1,...,b},

1

A

Example 3.2 (Bernoulli Distribution). Let X represent a binary outcome such that

1, if the outcome is a success,
X(u) =

0, if the outcome is a failure.
IfP(X =1)=p and P(X =0) =1 —p, then

fx(1)=p, fx(0)=1-p.

Example 3.3 (Binomial Distribution). If n independent Bernoulli trials are conducted with success
probability p, and X denotes the number of successes, then

Ix(k) = (Z)p’“(l —p)" % k=0,1,...,n.

Example 3.4 (Poisson Distribution). A random variable X is said to have a Poisson distribution with

parameter A > 0 if
e ANk
fx(k) = —7— k=0,1,2,....

Continuous Random Variables

For continuous random variables, the distribution is described by a probability density function (pdf).
Definition. Probability Density Function
A continuous random variable X with range R(X) C R has a probability density function fx satisfying

Pla< X <b)= /b fx(x)dz, for any [a,b] C R(X),

with the normalization condition

/ fx(z)dz = 1.
R(X)
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Example 3.5 (Exponential Distribution). If X follows an exponential distribution with rate parameter
A > 0, then its pdf is given by
fx(x) =X e >0,

and fx(z) =0 forz <0.

Exponential Distribution (A = 0.1)
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Figure 2: Exponential probability density function.

Example 3.6 (Normal Distribution). For a normal distribution with mean p and variance o2, the pdf is

N2
fX(x)=\/2;7eXp<—%), r €R.

Normal Distribution (u = 0.0, 0 = 1.0)
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Figure 3: Normal probability density function.
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4 The Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable X is defined as the probability that X
takes a value less than or equal to z.

Definition. Cumulative Distribution Function

The cumulative distribution function of X is
Fx(z) = P{X < z}.

For a discrete random variable,

Fx(z) =) fx(t),

t<z

and for a continuous random variable,
Fy(z) = / fx(t) dt.

Moreover, if the CDF Fx(z) is invertible, one can generate samples from the distribution of X using
the inverse transform method:

X =F'(U),

where U is uniformly distributed on [0, 1].

5 Exercises

Exercise 1: Maximum of Five Uniform (0,1) Variables.
Let Zy,Z, ..., Z5 be independent random variables uniformly distributed on (0, 1). Define

M = maX{Zl, ZQ, Zg, Z4, Z5}

(a) Derive an expression for P(M < z) for 0 <z < 1.
(b) Differentiate P(M < x) to obtain the pdf of M and interpret the result.

Exercise 2: Sum of Two Uniform (0,1) Variables.
Let W; and W be independent random variables uniformly distributed on (0, 1), and define

S =Wi + Ws.

(a) Derive the probability density function of S.
(b) Derive the cumulative distribution function of S.
Exercise 3: Repeated Uniform (0,1) Picks Until Sum > 1.
Independently generate random numbers Vi, Vs, ..., each uniformly distributed on (0, 1),

until
Vi+Vo+---+Vy>1.

Let X = N denote the number of picks required.

(a) Determine the pmf px(n) = P(X =n).
(b) Determine the cdf Fx(n) = P(X <mn).



Stochastic Methods — Week #2: Random Variables 6

Exercise 4:

Exercise 5:

Exercise 6:

From Binomial to Poisson.

Let X,, ~ Bin(n,p) be a binomial random variable with parameters n and p. Define A = np.
Show that as n — oo and p — 0 in such a way that A remains constant, the pmf of X,
converges to that of a Poisson random variable with mean .

From Poisson to Exponential.
Consider a Poisson process with rate A, where N(¢) ~ Poisson(At) denotes the number of
events in time ¢. Let

T =inf{t >0: N(t) > 1}

be the waiting time until the first event. Prove that
P(T >t)=e™,
and conclude that 7'~ Exp(\).

Memoryless Property of the Exponential Distribution.
Let X ~ Exp(\). Prove that for any s,t > 0,

PX>s+t| X >s)=PX >1).
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