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In many computational applications, pseudorandom number generators (PRNGs) produce integers in
a large finite set, typically {0, 1, . . . , m − 1}. To simulate a continuous uniform distribution, these integers
are normalized to obtain numbers in the unit interval [0, 1). Formally, if {Xn} is a sequence produced by
an LCG (or similar PRNG), we define

Un = Xn

m
.

Under ideal conditions, the sequence {Un} approximates a sequence of independent random variables
uniformly distributed on [0, 1).
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Figure 1: Normalization of PRNG outputs to the unit interval [0, 1].

1 Mapping the Unit Interval to Discrete Outcome Spaces
Often the outcomes of an experiment belong to a discrete set. For instance:

• A fair die yields outcomes in Ud = {1, 2, 3, 4, 5, 6}.
• A coin toss yields outcomes in Uc = {H, T}.

A standard approach is to first generate a uniformly distributed number U ∈ [0, 1) and then use a
deterministic mapping to convert U into an outcome in the desired set. Such mappings are typically
constructed using modular arithmetic or thresholding techniques.

Example 1.1 (Simulating a Coin Toss). Consider an LCG that generates integers uniformly in {0, 1, . . . , 232−
1}. Since exactly half of these values are less than 231, we define the outcome as follows:

Outcome =

H, if Xn < 231,

T, if Xn ≥ 231.

Under the assumption of uniformity, this mapping yields P (H) = P (T ) = 0.5.
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2 A Rigorous Framework for Probability
Probability theory is founded on measure theory, which provides a precise mathematical description of
uncertainty. The cornerstone of this framework is the concept of a probability space, defined as a triple
(Ω, F , P ):

• Ω is the sample space—the set of all possible outcomes of a random experiment.
• F is a σ-algebra on Ω, meaning it is a collection of subsets of Ω (called events) that satisfies:

(i) Ω ∈ F ,
(ii) If E ∈ F , then its complement Ec = Ω \ E is also in F ,
(iii) F is closed under countable unions; that is, if E1, E2, E3, · · · ∈ F , then ⋃∞

i=1 Ei ∈ F .
• P : F → [0, 1] is a probability measure that assigns a number to each event in F with the properties:

(i) P (Ω) = 1 (the probability that some outcome occurs is 1),
(ii) For any countable collection of disjoint events E1, E2, · · · ∈ F , we have

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei).

A classic example is the unit interval [0, 1] with the Lebesgue measure. For any subinterval [a, b] ⊆ [0, 1],
the measure is defined as

µ([a, b]) = b − a.

Since µ([0, 1]) = 1, the Lebesgue measure naturally serves as a probability measure on [0, 1].
The Borel σ-algebra on [0, 1], denoted by B([0, 1]), is the collection of all sets that can be formed

from open intervals by taking countable unions, intersections, and complements. This σ-algebra is crucial
because it includes most sets encountered in practice, ensuring that the probability measure is defined on
a rich collection of events.

Furthermore, if we have a measurable function (or mapping) ϕ : U → [0, 1] from another outcome
space U , we can induce a probability measure on U by pulling back the Lebesgue measure. For any event
B ⊆ U (where B is measurable), the induced probability is defined as

PU (B) = µ
(
ϕ(B)

)
.

This construction guarantees that the essential properties of a probability measure—non-negativity,
normalization, and countable additivity—are preserved.

3 Random Variables and Their Distributions
Once a probability measure P is established on a measurable space (U, F), a random variable is defined
as a measurable function mapping outcomes to real numbers.

Definition. Random Variable
Let (U, F , P ) be a probability space. A function

X : U → R

is called a random variable if for every Borel set B ⊂ R, the preimage X−1(B) is in F . The set

R(X) = {X(u) : u ∈ U}

is called the range of X. If R(X) is countable, X is said to be discrete.
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Discrete Random Variables

For discrete random variables, the distribution is fully characterized by its probability mass function
(pmf).

Definition. Probability Mass Function
For a discrete random variable X with range R(X), the probability mass function fX is defined by

fX(x) = P{X = x}, x ∈ R(X),

subject to:

1. 0 ≤ fX(x) ≤ 1 for all x,

2.
∑

x∈R(X)
fX(x) = 1.

Example 3.1 (Discrete Uniform Distribution). If X takes values in a finite set {a, a + 1, . . . , b} with
equal probability, then for each x ∈ {a, a + 1, . . . , b},

fX(x) = 1
b − a + 1 .

Example 3.2 (Bernoulli Distribution). Let X represent a binary outcome such that

X(u) =

1, if the outcome is a success,

0, if the outcome is a failure.

If P (X = 1) = p and P (X = 0) = 1 − p, then

fX(1) = p, fX(0) = 1 − p.

Example 3.3 (Binomial Distribution). If n independent Bernoulli trials are conducted with success
probability p, and X denotes the number of successes, then

fX(k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n.

Example 3.4 (Poisson Distribution). A random variable X is said to have a Poisson distribution with
parameter λ > 0 if

fX(k) = e−λλk

k! , k = 0, 1, 2, . . . .

Continuous Random Variables

For continuous random variables, the distribution is described by a probability density function (pdf).

Definition. Probability Density Function
A continuous random variable X with range R(X) ⊂ R has a probability density function fX satisfying

P (a ≤ X ≤ b) =
∫ b

a
fX(x) dx, for any [a, b] ⊂ R(X),

with the normalization condition ∫
R(X)

fX(x) dx = 1.
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Example 3.5 (Exponential Distribution). If X follows an exponential distribution with rate parameter
λ > 0, then its pdf is given by

fX(x) = λe−λx, x ≥ 0,

and fX(x) = 0 for x < 0.

Figure 2: Exponential probability density function.

Example 3.6 (Normal Distribution). For a normal distribution with mean µ and variance σ2, the pdf is

fX(x) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)
, x ∈ R.

Figure 3: Normal probability density function.



Stochastic Methods – Week #2: Random Variables 5

4 The Cumulative Distribution Function
The cumulative distribution function (CDF) of a random variable X is defined as the probability that X
takes a value less than or equal to x.

Definition. Cumulative Distribution Function
The cumulative distribution function of X is

FX(x) = P{X ≤ x}.

For a discrete random variable,
FX(x) =

∑
t≤x

fX(t),

and for a continuous random variable,

FX(x) =
∫ x

−∞
fX(t) dt.

Moreover, if the CDF FX(x) is invertible, one can generate samples from the distribution of X using
the inverse transform method:

X = F −1
X (U),

where U is uniformly distributed on [0, 1].

5 Exercises
Exercise 1: Maximum of Five Uniform (0, 1) Variables.

Let Z1, Z2, . . . , Z5 be independent random variables uniformly distributed on (0, 1). Define

M = max{Z1, Z2, Z3, Z4, Z5}.

(a) Derive an expression for P (M ≤ x) for 0 ≤ x ≤ 1.
(b) Differentiate P (M ≤ x) to obtain the pdf of M and interpret the result.

Exercise 2: Sum of Two Uniform (0, 1) Variables.
Let W1 and W2 be independent random variables uniformly distributed on (0, 1), and define

S = W1 + W2.

(a) Derive the probability density function of S.
(b) Derive the cumulative distribution function of S.

Exercise 3: Repeated Uniform (0, 1) Picks Until Sum > 1.
Independently generate random numbers V1, V2, . . . , each uniformly distributed on (0, 1),
until

V1 + V2 + · · · + VN > 1.

Let X = N denote the number of picks required.

(a) Determine the pmf pX(n) = P (X = n).
(b) Determine the cdf FX(n) = P (X ≤ n).
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Exercise 4: From Binomial to Poisson.
Let Xn ∼ Bin(n, p) be a binomial random variable with parameters n and p. Define λ = np.
Show that as n → ∞ and p → 0 in such a way that λ remains constant, the pmf of Xn

converges to that of a Poisson random variable with mean λ.

Exercise 5: From Poisson to Exponential.
Consider a Poisson process with rate λ, where N(t) ∼ Poisson(λt) denotes the number of
events in time t. Let

T = inf{t > 0 : N(t) ≥ 1}

be the waiting time until the first event. Prove that

P (T > t) = e−λt,

and conclude that T ∼ Exp(λ).

Exercise 6: Memoryless Property of the Exponential Distribution.
Let X ∼ Exp(λ). Prove that for any s, t ≥ 0,

P (X > s + t | X > s) = P (X > t).
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