Stochastic Methods — Week 12 1

Week #12: Stochastic Optimization

Notes by: Francisco Richter

May 15, 2025

Overview

Building upon the foundational concepts of stochastic optimization covered in Week 11, this week we
delve deeper into advanced techniques that have revolutionized modern machine learning and large-
scale optimization. We explore stochastic gradient methods, distributed optimization frameworks, the
Expectation-Maximization algorithm, and Markov Chain Monte Carlo approaches for optimization. These
methods are essential for tackling complex, high-dimensional problems where traditional deterministic
approaches become computationally intractable.

The techniques presented in this lecture have found widespread applications across various domains,
from training deep neural networks with millions of parameters to solving complex inference problems
in statistical models with latent variables. By understanding the theoretical foundations and practical
implementations of these methods, we gain powerful tools for addressing the computational challenges
that arise in modern data science and artificial intelligence.

1 Stochastic Gradient Descent (SGD)

Gradient-based optimization methods form the backbone of many machine learning algorithms. While
traditional gradient descent uses the entire dataset to compute gradients, stochastic variants use subsets
of data, offering significant computational advantages for large-scale problems.

1.1 Deterministic Gradient Descent

For a differentiable objective function f : RY — R, gradient descent iteratively updates parameters in the
direction of steepest descent:

Definition. Gradient Descent

The gradient descent algorithm iteratively updates parameters according to:
Xp+1 = Xk — oV f(Xg)

where ay > 0 is the step size (learning rate) at iteration k, and V f(xy) is the gradient of f evaluated at
X

Stochastic Methods — Week 12 2

Intuition: Gradient descent visualization

Imagine a hiker in a mountainous landscape trying to reach the lowest point (minimum). At each
step, the hiker looks around to find the steepest downhill direction (the negative gradient) and
takes a step in that direction. The size of the step is determined by the learning rate. If the steps
are too large, the hiker might overshoot the valley; if too small, the journey takes unnecessarily
long.

For convex functions with Lipschitz continuous gradients, gradient descent converges to the global
minimum with an appropriate step size. The convergence rate depends on the properties of the objective
function:

Theorem 1.1 (Convergence of Gradient Descent). For a convex function f with L-Lipschitz continuous
gradients, gradient descent with constant step size o = % converges as:

_ Lo x|

Floa) = fx) < S

where x* is the global minimizer. For strongly convex functions with parameter p > 0, the convergence is
linear:

k
£ = 1) < (1= 1) (76) =)
1,..2

Example 1.1 (Quadratic Function Optimization). Consider minimizing f(x) = 52°. The gradient is
Vf(z) =x. With a fized step size « = 0.1 and initial point xo = 10, the gradient descent iterations proceed
as:

1 =10—-0.1x10=9

29=9—-01x9=81

x3=81—-0.1x81=7.29
The sequence converges to the global minimum at x* = 0. Fach iteration reduces the distance to the
optimum by a factor of (1 —a) = 0.9.
1.1.1 Newton’s Method

For twice-differentiable functions, Newton’s method incorporates second-order information to accelerate
convergence:

Definition. Newton’s Method
Newton’s method updates parameters according to:
Xpy1 = X — [Hyp(xp)]| 7'V f (x1)

where Hy(xy) is the Hessian matrix of f evaluated at x.

Intuition: Newton’s method vs. gradient descent

While gradient descent only uses the slope (first derivative) to determine the direction of the next
step, Newton’s method also uses the curvature (second derivative) to adjust the step size. This is
like a hiker who not only considers the steepness of the terrain but also how the steepness changes,
allowing for larger steps in flat regions and smaller steps in highly curved areas.

Newton’s method typically exhibits quadratic convergence near the optimum, making it much faster
than gradient descent for well-behaved functions. However, computing and inverting the Hessian can be
prohibitively expensive for high-dimensional problems.

Stochastic Methods — Week 12 3

1.2 Stochastic Gradient Methods

In many machine learning problems, the objective function has the form:

where each f; corresponds to the loss for a single data point. Computing the full gradient requires
evaluating all n component gradients, which becomes expensive for large datasets.

Definition. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) approximates the true gradient using a subset of the data:
X1 = X — p V f(x5)

where V f(x},) is a stochastic approximation of the true gradient V f(xy).

There are several variants of stochastic gradient methods, each with different approaches to approxi-
mating the gradient:

1.2.1 Vanilla SGD

The simplest form of SGD uses a single randomly selected data point to approximate the gradient:

Vi(xk) = Vi, (xx)

where iy, is randomly sampled from {1,2,...,n} at each iteration.

Intuition: Why SGD works

SGD works because, in expectation, the stochastic gradient equals the true gradient: E[V f(x)] =
V f(x). While each step is noisy, the overall trajectory moves toward the minimum. This is like a
drunk hiker who takes random steps but generally moves downhill—the path is erratic, but the
destination is eventually reached.

1.2.2 Mini-Batch SGD

Mini-batch SGD strikes a balance between the computational efficiency of vanilla SGD and the stability
of full-batch gradient descent by using a small batch of data points:

~ 1
Vi) = == > Viilxx)
|B | 1€By,
where By, C {1,2,...,n} is a randomly selected mini-batch of size |Bi| < n.

Remark.

The choice of batch size involves a trade-off: larger batches provide more accurate gradient estimates but
require more computation per iteration. In practice, batch sizes of 32 to 512 are common, with larger
batches enabling better parallelization on modern hardware.

Stochastic Methods — Week 12 4

1.2.3 SGD with Momentum

SGD with momentum incorporates information from past gradients to smooth the optimization trajectory:
Vi1 = B+ (1= B)V f(xk) (1)
Xpg+1 = Xk — QVE41 (2)

where § € [0,1) is the momentum parameter, typically set around 0.9.

Intuition: Momentum analogy

Momentum is like a ball rolling down a hill. The ball accumulates velocity (momentum) as it
descends, helping it overcome small bumps and local minima. Similarly, momentum in optimization
helps overcome small local variations in the gradient and accelerates progress along consistent
directions.

1.2.4 Adaptive Learning Rate Methods

Several algorithms adaptively adjust the learning rate for each parameter based on the history of gradients:

AdaGrad adjusts the learning rate for each parameter inversely proportional to the square root of the
sum of squared historical gradients:

Gi = Gpo1 + VF(xp) © Vf(xk) (3)

Xt =X~ e © V(1))

where ® denotes element-wise multiplication and e is a small constant to avoid division by zero.

RMSProp modifies AdaGrad to use an exponentially weighted moving average of squared gradients:
Gi = G 1+ (1 -)V f(xx) © VF(x) (5)
(8% ~
=xp—— OV 6
Xkl =Xk~ e © V f(xk) (6)

Adam combines momentum with adaptive learning rates:

my, = Bimy,_1 + (1 — B1)V f(xy) (7)

Vi = Bovi1 + (1 — B2)Vf(xk) © Vf(xk) (8)

y, = (9)
1-pf

i = lf—’“ﬁg (10)

Xk+1 = Xk — a& (11)

Ve + €
where (1 and (B2 are decay rates for the moment estimates, typically set to 0.9 and 0.999, respectively.

Remark.

Adam has become the default optimizer for many deep learning applications due to its robustness to
hyperparameter choices and good performance across a wide range of problems. However, recent research
has shown that SGD with momentum often generalizes better for some tasks, particularly in computer
vision.

Stochastic Methods — Week 12 5

Algorithm 1 Adam Optimizer
Require: Learning rate «, decay rates (1, f2 € [0,1), small constant e
1: Initialize parameters xq, first moment vector mg < 0, second moment vector vy < 0, time step ¢t < 0
2: while not converged do
3: t—t+1
Compute stochastic gradient g; < V f(x;_1)
Update biased first moment estimate: my < Sym;_1 + (1 — 51)gy
Update biased second moment estimate: v; < Bovy_1 + (1 — B2)g?
Correct bias in first moment: 1y < m;/(1 — %)
Correct bias in second moment: ¥; < v;/(1 — 3%)
9: Update parameters: x; < x;—1 — a - /(¥ + ¢€)
10: end while
11: return x;

1.3 Convergence Analysis of SGD

The convergence properties of SGD differ from those of deterministic gradient descent due to the noise
introduced by stochastic gradients.

Theorem 1.2 (Convergence of SGD for Convex FunctiPHS). For a convex function f with L-Lipschitz
continuous gradients, if the stochastic gradients satisfy E[V f(x)] = Vf(x) and E[||V f(x) — Vf(x)||?] < o2,

then SGD with step size oy, = % converges as:

2

_ . L||xo —x*|?> ao
B0 S0 < MR Xy 0o

where Xg = % Zle X @S the average iterate.

This result highlights a key difference between SGD and deterministic gradient descent: SGD converges
at a slower rate of O(1/v K) compared to O(1/K) for gradient descent. This is the price paid for the
computational efficiency of not computing the full gradient.

Practice Problems

1. Implement vanilla SGD, mini-batch SGD, and SGD with momentum for minimizing the function
f(z,y) = 22 + 2y?. Compare their convergence rates and trajectories.

2. Derive the update rule for AdaGrad from first principles, starting with the idea of adapting the
learning rate based on the historical gradient information.

3. Consider a linear regression problem with n data points. Compare the computational complexity
per iteration and the number of iterations required for convergence for full-batch gradient
descent, mini-batch SGD (with batch size b), and vanilla SGD.

Solution:

For problem 3: The computational complexity per iteration for full-batch gradient descent is O(nd),
where d is the dimension of the parameter vector. For mini-batch SGD, it’s O(bd), and for vanilla
SGD, it’s O(d).

For strongly convex functions, full-batch gradient descent requires O(log(1/€)) iterations to reach
an e-accurate solution, while SGD requires O(1/¢) iterations. Therefore, the total computational
complexity is:

Stochastic Methods — Week 12 6

o Full-batch GD: O(ndlog(1/¢))
o Mini-batch SGD: O(bd/¢)
e Vanilla SGD: O(d/e)

For large datasets where n is very large, SGD and mini-batch SGD can be much more efficient
despite requiring more iterations.

2 Distributed and Decentralized Optimization

As datasets grow and computational resources become more distributed, optimization algorithms that can
leverage parallel and distributed computing have become increasingly important.

2.1 Distributed Optimization Framework

In distributed optimization, the objective function is typically decomposed across multiple computing
nodes:

min f(x) = min — F,
x€R4 f(xERd Z

where F;, represents the objective function component associated with node m.

Definition. Distributed Gradient Descent

In distributed gradient descent, each node computes a local gradient based on its data, and these gradients
are aggregated to update the global model:

X+l = Xp — Qg7 Z VEn(xk)

where VF,,(x},) is the stochastic gradient computed at node m.

Intuition: Distributed optimization

Distributed optimization is like a team of hikers exploring different parts of a mountain range, each
reporting back the steepest descent direction in their area. A central coordinator combines these
reports to determine the overall best direction for the team to move. This parallel exploration
allows covering more ground efficiently.

2.2 Decentralized Optimization

In decentralized optimization, there is no central coordinator. Instead, nodes communicate only with their
neighbors in a network.

Definition. Decentralized Gradient Descent

In decentralized gradient descent, each node updates its local model by combining information from its
neighbors and its local gradient:

x (1) — Z Wi x®) — 0, VI, (x(0))
neN (m)

Stochastic Methods — Week 12 7

where N (m) is the set of neighbors of node m, and wy,,, are mixing weights that satisfy >, ¢ N(m) Wmn =1
for all m.

The mixing weights are typically derived from the network topology and are often represented as
a matrix W with entries wy,,. The convergence of decentralized algorithms depends on the spectral
properties of this matrix.

Theorem 2.1 (Convergence of Decentralized Gradient Descent). For a convex function f with L-Lipschitz
continuous gradients, if the mizing matriz W is doubly stochastic and the network is connected, then
decentralized gradient descent converges to the global optimum at a rate of O(1/k).

2.3 Communication-Efficient Distributed Optimization

Communication between nodes can become a bottleneck in distributed optimization. Several techniques
have been developed to reduce communication overhead:

2.3.1 Quantization and Sparsification

Gradient quantization reduces the precision of gradient values to decrease communication bandwidth:

Q(Vf(x)) =sign(Vf(x)) - [[VF(X)[l1/d

Gradient sparsification communicates only the largest components of the gradient:

Sk(Vf(x)) = top-k(V f(x))

where top-k selects the k components with the largest magnitude.

2.3.2 Local SGD

In Local SGD, nodes perform multiple local updates before communicating:

X%}HT = -« Z VFn(x,, t+]) (local updates) (12)
M
n’itﬂ. = Z t ++ (synchronization) (13)

Remark.

The choice of synchronization period 7 involves a trade-off: larger values reduce communication frequency
but may lead to divergence between local models, especially in heterogeneous data settings.

2.4 Federated Learning

Federated learning is a special case of distributed optimization where data remains on local devices (e.g.,
mobile phones), and only model updates are communicated to a central server.

Definition. Federated Averaging

Federated Averaging (FedAvg) is an algorithm for federated learning that combines local SGD with
weighted averaging:

XT(TI’:,)t+T = Xﬁ,’i}t — Z @Fm(X,(,’f’)tﬂ) (local updates) (14)
j=0
Mo
x (k1) — Z %ng,)t-w (weighted averaging) (15)

m=1

Stochastic Methods — Week 12 8

Algorithm 2 Local SGD with Periodic Averaging

Require: Initial model xg, learning rate «, synchronization period 7, number of nodes M
1: Distribute xg to all nodes
2: for k=0,1,2,... do
3: for each node m =1,2,..., M in parallel do

4: xg,lf?o +— x(*) > Initialize local model
5: fort=0,1,...,7—1do

6: Sample mini-batch By, ; from local data

7 Compute stochastic gradient g, ; < VFm(ng?t; By t)

8: Update local model: xgrlf?tﬂ — ng?t — agm.t

9: end for

10: end for

11: x(k+1) ﬁ SM x#f} > Average models across nodes
12: Distribute x**1) to all nodes

13: end for

where n,, is the number of data points at node m, and n = 2%21 N,y is the total number of data points.
Federated learning faces unique challenges, including:

e Non-IID data: Local datasets may have very different distributions
e System heterogeneity: Devices have varying computational capabilities
e Communication constraints: Limited bandwidth and intermittent connectivity

e Privacy concerns: Sensitive data must remain on local devices

Practice Problems

1. Consider a network of 5 nodes arranged in a ring topology. Design a doubly stochastic mixing
matrix W for this network and analyze its spectral properties.

2. Compare the convergence rates of centralized SGD, distributed SGD with full gradient commu-
nication, and Local SGD with synchronization period 7 = 10 for a strongly convex objective
function.

3. In federated learning, how does the heterogeneity of data across clients affect the convergence
of FedAvg? Propose a modification to the algorithm to address this challenge.

3 Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm is a powerful method for finding maximum likelihood
estimates in models with latent variables or missing data.

3.1 Problem Formulation

Consider a probabilistic model with observed data X, latent variables Z, and parameters 6. The likelihood
function is:

L(6: X) = p(X|6) = [p(X.216) dZ

Stochastic Methods — Week 12 9

Direct maximization of this likelihood can be difficult due to the integral over latent variables. The
EM algorithm provides an iterative approach to this problem.

Definition. EM Algorithm
The EM algorithm alternates between two steps:

o E-step: Compute the expected log-likelihood with respect to the conditional distribution of latent
variables given the current parameter estimate:

Q(‘9|9(t)) = Ez\xﬂ(t) [log p(X, Z|0)]
e M-step: Find the parameters that maximize this expected log-likelihood:

0+ = arg max Q(0|6™)
[4

Intuition: EM algorithm

The EM algorithm can be understood as a coordinate ascent method on a lower bound of the
log-likelihood. In the E-step, we compute the tightest lower bound given the current parameters.
In the M-step, we maximize this bound with respect to the parameters. This process guarantees
that the likelihood increases with each iteration.

3.2 Theoretical Properties

The EM algorithm has several important theoretical properties:

Theorem 3.1 (Monotonicity of EM). The EM algorithm guarantees that the likelihood increases with
each iteration:
LW, X) > L(W; X)

Theorem 3.2 (Convergence of EM). Under mild regularity conditions, the EM algorithm converges to a
stationary point of the likelihood function, which may be a local mazimum or a saddle point.

Remark.

While the EM algorithm is guaranteed to increase the likelihood with each iteration, it may converge to
a local maximum rather than the global maximum. Multiple random initializations are often used to
mitigate this issue.

3.3 Examples and Applications
3.3.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) represents a probability distribution as a weighted sum of Gaussian
components:

K
p(x]0) = > mpN (x|, Si)
k=1

where 0 = {7y, ug, Zk}szl are the mixture weights, means, and covariances.
For a dataset X = {x1,x9,...,2,}, the EM algorithm for GMMs proceeds as follows:

Stochastic Methods — Week 12 10

Algorithm 3 EM Algorithm for Gaussian Mixture Models
Require: Data X = {x,z9,...,2,}, number of components K

1: Initialize parameters (0 = {w,(go), u,go), E,(go)}szl
2: while not converged do

3: E-step: Compute responsibilities

4: fori=1,2,...,nand k=1,2,...,K do
N (@il 250)

5: ik <
ik Zf:l ﬂJ(t)N(xi"u;t),E;t))

6: end for
& M-step: Update parameters
8: for k=1,2,...,K do
9: N < 220 Vik
10: alth o N

t+1
11: pp Y e T ik

t+1 t+1 t+1
12 B e L (e — 0) (@ —)T
13: end for

14: t+—t+1
15: end while
16: return () = {W;(:), MS), Eff)}ﬁil

Example 3.1 (GMM for Clustering). Consider a dataset of customer purchase patterns. By fitting a
GMM with K = 3 components, we can identify three distinct customer segments. The responsibilities v
represent the probability that customer i belongs to segment k, providing a soft clustering of customers.
The means py represent the typical purchase pattern for each segment, while the covariances ¥y capture
the variability within each segment.

3.3.2 Hidden Markov Models

Hidden Markov Models (HMMs) are used for sequential data with latent state sequences. The EM
algorithm for HMMSs is known as the Baum-Welch algorithm and uses the forward-backward algorithm
for the E-step.

3.3.3 Factor Analysis

Factor Analysis models high-dimensional data as being generated from a lower-dimensional set of latent
factors. The EM algorithm provides an efficient way to estimate the factor loadings and noise variances.

3.4 Variants and Extensions
3.4.1 Monte Carlo EM (MCEM)

When the E-step involves intractable expectations, Monte Carlo methods can be used to approximate
them:

S
QI8 ~ &3 logp(X, 7]6)

s=1

where Z() ~ p(Z|X,0®) are samples from the conditional distribution of latent variables.

Stochastic Methods — Week 12 11

3.4.2 Stochastic EM

Stochastic EM replaces the expectation in the E-step with a single sample:

Z® ~ p(Z]X,00) (S-step) (16)
g+ — arg max log p(X, Z(t)|9) (M-step) (17)
0

3.4.3 Generalized EM

In some cases, the M-step may be difficult to solve exactly. Generalized EM (GEM) relaxes the requirement
to find the global maximum in the M-step, requiring only that Q(#¢+D]0®1) > Q(8®|91)).

Practice Problems

1. Derive the EM update equations for a mixture of two univariate Gaussian distributions with
unknown means but fixed variances.

2. Implement the EM algorithm for a Gaussian Mixture Model with K = 2 components on a
synthetic dataset. Visualize the evolution of the model parameters and the log-likelihood across
iterations.

3. Consider a coin-flipping experiment where we have two biased coins with unknown probabilities
of heads 6; and 62. We randomly select one of the coins for each of n flips, but we don’t know
which coin was used for each flip. Formulate this as a latent variable problem and derive the
EM algorithm to estimate 6; and 6,.

Solution:

For problem 3: Let X; € {0,1} be the outcome of the i-th flip (0 for tails, 1 for heads), and let
Z; € {1,2} be the latent variable indicating which coin was used.
The complete data likelihood is:

n

p(X, Z|0) = [[p(Zi)p(Xi|Zs, 0)
i=1
Assuming equal probability of selecting either coin, p(Z; = 1) = p(Z; = 2) = 0.5, and p(X; =
11Z; = j,0) = 0;.
In the E-step, we compute:

p(Z; =))p(X;|Z; = 5,00)
p(X;]0®)

vij = p(Zi = §|1X;,00) =

For X, = 1:

§ 0.5- 6% 6"
i1 = =
05-68 +05-60 oY 4+ gV

In the M-step, we update:
D) _ Lixi=1 Vis
J - n .
i=1"ij

Stochastic Methods — Week 12 12

4 Markov Chain Monte Carlo (MCMC) for Optimization

While Markov Chain Monte Carlo (MCMC) methods are primarily used for sampling from complex
probability distributions, they can also be adapted for optimization tasks.
4.1 Simulated Annealing Revisited

Simulated annealing, which we studied in Week 11, can be viewed as an MCMC method for optimization.
It uses the Metropolis-Hastings algorithm to sample from a sequence of distributions that gradually
concentrate on the global optimum.

For a function f(z) that we want to minimize, we define a Boltzmann distribution:

pp(x) oc e P

where # > 0 is an inverse temperature parameter.
As 8 — oo, the distribution concentrates on the global minimum of f(z). Simulated annealing
gradually increases while sampling from pg(z) using MCMC methods.

4.2 Stochastic Gradient Langevin Dynamics (SGLD)

SGLD combines SGD with Langevin dynamics to perform approximate Bayesian inference:

Xk+1 = Xk — ak@f(xk) + vV 204]c Zp

where z;, ~ N(0,1) is standard Gaussian noise.

SGLD can be viewed as SGD with added noise. The noise helps escape local minima and explore
the parameter space more thoroughly. As the learning rate decreases, the algorithm transitions
from exploration to exploitation, eventually converging to a local minimum.

For optimization purposes, we can use a variant called preconditioned SGLD:

Xiep1 = X5, — G x) TV f () + V2 Glxp) Tz

where G(xy) is a preconditioning matrix that adapts to the local geometry of the objective function.

4.3 Parallel Tempering

Parallel tempering runs multiple MCMC chains at different temperatures and occasionally swaps states
between chains:

Remark.

Parallel tempering is particularly effective for multi-modal objective functions, as the lower temperature
chains can explore the space more freely, while the higher temperature chains focus on promising regions.

4.4 Evolutionary MCMC

Evolutionary MCMC combines ideas from evolutionary algorithms with MCMC methods. It maintains a
population of states and uses genetic operators (crossover, mutation) to propose new states, which are
accepted or rejected based on Metropolis-Hastings criteria.

Stochastic Methods — Week 12 13

Algorithm 4 Parallel Tempering for Optimization

Require: Objective function f(x), number of chains M, temperatures 51 < B2 < ... < By
1: Initialize states x1,Xo,..., Xy
2: fort=1,2,...do
3: form=1,2,...,M do
Update x,, using MCMC targeting pg,, (x) o e Bmf(@)
end for
form=1,2,...,M —1do
Compute swap probability:
Q= min{17 exp((ﬂm - Bm-l-l)(f(xm) - f(xm—l—l)))}
With probability «, swap x,, and X;,11
10: end for
11: end for
12: return x); (state from the highest temperature chain)

Practice Problems

1. Implement simulated annealing and SGLD for minimizing a multi-modal function such as the
Rastrigin function. Compare their performance in terms of finding the global minimum.

2. Derive the acceptance probability for state swaps in parallel tempering from the detailed balance
condition.

3. Design an evolutionary MCMC algorithm for a combinatorial optimization problem, such as the
traveling salesman problem. Specify the state representation, genetic operators, and acceptance
criteria.

5 No Free Lunch Theorems

The No Free Lunch (NFL) theorems provide fundamental limits on the performance of optimization
algorithms across all possible problems.

Theorem 5.1 (No Free Lunch Theorem for Optimization). When averaged over all possible objective
functions, every optimization algorithm has the same expected performance. In other words, no algorithm
is universally better than any other algorithm for all possible problems.

Intuition: NFL intuition

The NFL theorem can be understood through a simple analogy: If you're searching for a specific
book in a library where books are arranged randomly, no search strategy is better than any other
in the long run. You might get lucky with a particular strategy for a specific arrangement, but
across all possible arrangements, all strategies perform equally well on average.

5.1 Implications and Practical Considerations

The NFL theorems have several important implications:

e Algorithm selection should be based on problem-specific knowledge

Stochastic Methods — Week 12 14

¢ Performance guarantees must be tied to specific problem classes
e Hyper-parameter tuning is essential for good performance

e Domain expertise is valuable for designing effective algorithms

Remark.

While the NFL theorems state that no algorithm is universally superior, in practice, we often work with
specific problem classes that have structure (e.g., convexity, smoothness). Within these classes, some
algorithms can indeed outperform others consistently.

5.2 Beyond NFL: Algorithm Portfolios

Given the NFL theorems, one approach is to use algorithm portfolios that combine multiple optimization
methods:

e Run multiple algorithms in parallel and select the best result
e Use meta-learning to predict which algorithm will perform best for a given problem

o Develop hybrid algorithms that adapt their behavior based on the observed performance

Practice Problems

1. Provide a formal proof sketch of the NFL theorem for optimization, starting from the assumption
that all objective functions are equally likely.

2. Design an algorithm portfolio for a class of optimization problems, such as continuous black-box
optimization. Specify the algorithms in the portfolio and the strategy for selecting or combining
their results.

3. Discuss how the NFL theorems relate to the concept of "inductive bias" in machine learning. How
can we reconcile the success of specific algorithms in practice with the theoretical limitations
imposed by the NFL theorems?

6 Some comments

In this lecture, we have explored advanced stochastic optimization techniques that are essential for
solving large-scale and complex optimization problems. We began with stochastic gradient methods,
which form the backbone of modern machine learning algorithms, and examined their variants and
convergence properties. We then discussed distributed and decentralized optimization frameworks that
enable leveraging parallel computing resources while managing communication constraints.

The Expectation-Maximization algorithm provided a powerful approach for maximum likelihood
estimation in models with latent variables, with applications ranging from mixture models to hidden
Markov models. We also explored how Markov Chain Monte Carlo methods, primarily designed for
sampling, can be adapted for optimization tasks through techniques like simulated annealing and stochastic
gradient Langevin dynamics.

Finally, the No Free Lunch theorems reminded us of the fundamental limitations of optimization
algorithms and the importance of matching algorithms to specific problem classes.

Stochastic Methods — Week 12 15

References

1.

10.

Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization methods for large-scale machine
learning. STAM Review, 60(2), 223-311.

. Kingma, D. P.,; & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

. Lian, X., Zhang, C., Zhang, H., Hsieh, C. J., Zhang, W., & Liu, J. (2017). Can decentralized

algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems.

. McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics.

. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1-22.

. Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In

Proceedings of the 28th International Conference on Machine Learning.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67-82.

. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

. Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11(2), 125-139.

Nedic, A., & Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1), 48-61.

	Stochastic Gradient Descent (SGD)
	Deterministic Gradient Descent
	Newton's Method

	Stochastic Gradient Methods
	Vanilla SGD
	Mini-Batch SGD
	SGD with Momentum
	Adaptive Learning Rate Methods

	Convergence Analysis of SGD

	Distributed and Decentralized Optimization
	Distributed Optimization Framework
	Decentralized Optimization
	Communication-Efficient Distributed Optimization
	Quantization and Sparsification
	Local SGD

	Federated Learning

	Expectation-Maximization (EM) Algorithm
	Problem Formulation
	Theoretical Properties
	Examples and Applications
	Gaussian Mixture Models
	Hidden Markov Models
	Factor Analysis

	Variants and Extensions
	Monte Carlo EM (MCEM)
	Stochastic EM
	Generalized EM

	Markov Chain Monte Carlo (MCMC) for Optimization
	Simulated Annealing Revisited
	Stochastic Gradient Langevin Dynamics (SGLD)
	Parallel Tempering
	Evolutionary MCMC

	No Free Lunch Theorems
	Implications and Practical Considerations
	Beyond NFL: Algorithm Portfolios

	Some comments

